2014

Assessment of an Environmental Sustainability Index for the Underground Coal Gasification Process by Using Numerical Analysis

Vidal Navarro Torres
University of Lisbon

Anthony Steven Atkins
University of Stafford

Raghu Nath Singh
University of Nottingham

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
ASSESSMENT OF AN ENVIRONMENTAL SUSTAINABILITY INDEX FOR THE UNDERGROUND COAL GASIFICATION PROCESS BY USING NUMERICAL ANALYSIS

Vidal Navarro Torres¹, Anthony Steven Atkins² and Raghu Nath Singh³

ABSTRACT: In this study, an innovative numerical model is developed to quantify the environmental sustainability situation of an in-situ underground coal gasification (UCG) process which is expressed in terms of an Environmental Sustainability Index (ESI). This approach is based on four environmental indicators, namely: (i) rock and soil subsidence, (ii) groundwater quality, (iii) surface water quality and (iv) atmospheric quality, respectively. Based on the ESI values, this paper proposes a methodology for classifying the environmental sustainability state of the underground coal gasification (UCG) process and also proposes the corresponding Threshold Limit Value. Finally, a mathematical model is developed which is applied to El Tremedal Spanish trial.

INTRODUCTION

The Underground Coal Gasification (UCG) technique is an environmentally friendly process of extracting thermal energy compared to conventional underground and surface coal mining operations. The UCG process produces gas suitable for high-efficiency power generation by providing high-pressure product gas which can be easily treated to eliminate solid waste discharge and also has fewer particulates such as NOx and SOx. The UCG cavity is a potential for CO2 sequestration locations and a source of low-carbon hydrogen for transport and other applications. In spite of these potential benefits, the process still creates environmental risks.

The UCG process, involves air or oxygen pumped into an underground coal seam through an injection well. The introduction of an oxidizing gas produces heat, which partially combusts the coal in-situ and creates the synthesis gas (syngas) product Friedman (2009), primarily composed of hydrogen, carbon monoxide, and smaller amounts of carbon dioxide and methane Friedman (2009), Stephen et al. (1985). The syngas is extracted from the UCG burn cavity by a production well, which brings the gas product to the surface for energy or power station utilization.

A review of the world’s historical UCG sites in the former Soviet Union, Europe, United States, New Zealand, Australia and China between 1974 and 2002 revealed a limited number of pilot projects and full-scale operations, suggesting two main environmental risks associated with UCG processes. Firstly there is a risk of groundwater contamination and organic contaminants such as Polycyclic Aromatic Hydrocarbons (PAHs) may be generated during combustion of coal, and trace metals in the coal may be released through geochemical reactions induced by the UCG process. Contaminants may also be released from adjacent geological formations and these organic and metal contaminants could migrate and contaminate groundwater aquifers. Secondly, because the in situ burning of coal creates cavities in the subsurface, there is a risk of ground subsidence, whereby the overlying rock layers partially collapse into the newly created void space. Subsidence creates a hazard for any surface infrastructure that might be present above the UCG zone, and may create detrimental changes in surface or groundwater hydrology above the cavity (Sury, et al., 2004, Walter, 2007).

Another potential environmental impact risk in UCG constitutes the atmosphere air pollution following gas utilization and surface water pollution. These UCG environmental situations need to be managed on the basis of sustainability. In this context, the research focuses on the Environmental Sustainability Index and will be an important contribution to sustainable UCG. Currently there are no standard references for the assessment of sustainability levels and this paper makes an attempt to quantitatively...
assess by developing and Environmental Sustainability Index (ESI) for UCG (Navarro Torres, Singh and Pathan, 2008), based on four main environmental indicators: atmosphere quality, surface water quality, rock and soil subsidence, and groundwater quality.

The quantitative model to calculate the environmental sustainability condition developed by the first author (Navarro Torres) was first applied to underground mines in 2006 having been introduced to model three environmental indicators: geotechnical, groundwater and underground atmosphere (Navarro and Dinis, 2006). Based on these encouraging results, in 2008 this was applied to mine water environmental assessment considering three environmental indicators: physic-chemical properties, toxic components and other components (Navarro, et al., 2008).

In both cases the results were excellent, so it was decided to apply this concept and develop the numerical model of the environmental sustainability in UCG process based on the Environmental Sustainability Index (ESI).

POTENTIAL OF ENVIRONMENTAL IMPACT IN UCG

Environmental interactions in the UCG process

In the UCG process the physic-chemical interactions changes the natural stress state in the surrounding rock mass, influencing in contaminants formations in the UCG reactor and through the surrounding ground, as well as inducing potential subsidence and pollutions of the groundwater, surface water and atmospheric Quality (Figure 1).

![Figure 1 - Summary of UCG vs. environment interactions](image)

Drilling and gasification actions would cause important alteration in the rock mass and in the virgin water table. These alterations would adversely influence the effects of subsidence. The gasification cavities of the coal seams are sources of gaseous and liquid pollutants and they constitute some environmental risks to groundwater in the adjacent strata, depending on whether the contaminants can migrate beyond the immediate UCG reactor zone.

Characterisation of the environmental indicators in the UCG process

Subsidence

In the UCG process, the potential of subsidence will be quite small compared to underground mining, as exemplified in Centralia and Chinchilla where negligible subsidence was experienced (Friedman and Upadhye, 2004). However, subsidence risk is present, as demonstrated by numerical modelling results (Ren, et al., 2003), while observed important displacements occurred around UCG cavities. In the UCG process an underground cavity is opened from coal seam burning into a stressed rock mass and the stresses in the vicinity of the new opening are re-distributed.
Before the cavity is opened, \textit{in situ} stresses are uniformly distributed in the area of rock under consideration. After removal of the coal seam from within the cavity, the stresses in the immediate vicinity of the cavity are changed and new stresses are induced. The stresses values are varied depending of depth, the structural and geotechnical properties of the rock mass surrounding UCG cavity. As the induced stresses overcome the tensile or compressive rock mass strength this will cause failure and a potential horizontal or vertical extension of the cavity and may ultimately lead to a subsidence above cavity (Hoek, 2000, Navarro, \textit{et al}., 2011).

Ground water contamination

The main pollutants of groundwater quality in UCG are results of the coal burning processes; these could include benzene, toluene, ethyl-benzene, and xylenes (BTEX), phenols, coal ash and tars, aromatic hydrocarbons and sulphides, NO$_x$, NH$_3$, boron, cyanide, CO and H$_2$S (Creedy, \textit{et al}., 2001) (Table 1). Phenol leachate is regarded as the most significant environmental hazard due to its high water solubility and high affinity to gasification (Shuquin and Jun-hua, 2002).

Uncontrolled migration and leakage of the syngas itself could result in contamination of overlying aquifers. In addition, bye-products, such as organic contaminants (PAHs, phenols, and benzene), as well as inorganics (sulphate, boron, and metals and metalloids such as mercury, arsenic, and selenium), may be inadvertently generated from the coal during the UCG process (Sury, \textit{et al}., 2004; Liu, \textit{et al}., 2006). Mercury, arsenic, and selenium are volatile, and they can also be released as gases during the UCG process. Their liberation could possibly negatively affect the underground water and air qualities.

Surface water contaminations

The potential pollution of surface water in UCG is extremely low, and the common pollutants are phenols, ammonia, chemical oxygen demand (COD), pH, conductivity and sulphides (Sury, \textit{et al}., 2004). The surface water can be affected by groundwater pumping and drilling operations and in a Spanish trial, the water pumped to the surface was polluted with phenol (500 ppm) (Green, 1999).

Atmosphere contamination

The major constituents of the product gas from UCG are CO$_2$, H$_2$, CH$_4$, and CO. An example for UCG trial process for bituminous coal with sulphur, chlorine and nitrogen contents of 2.0%, 0.8% and 0.2% in weight respectively give a product gases emission which was 22.7% of H$_2$O, 46.1% of CO$_2$, 19.2% of CO, 9.4% of CH$_4$, 1.6% of H$_2$ and 1.0% of others (H$_2$S, HCl, N$_2$).

For air quality, however, the unused gases are not put into the atmosphere, but this process end by gas clean-up and then combustion. It seems therefore, that the environmental impact should be assessed on the amount of contamination that is emitted after utilization, and since these are controlled by emissions legislation for SO$_x$, NO$_x$, etc, the abated plant will always meet the current standards. For control action the CO$_2$ emissions are penalised by payment of the carbon tax (Green, 1999).

Table 1 - Main groundwater pollutants found in Texas UCG pilot sites (Creedy, \textit{et al}., 2001)

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Before burn (mg/l)</th>
<th>After burn (mg/l)</th>
<th>Increase (mg/l)</th>
<th>Increase %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrogen sulphide</td>
<td>H$_2$S</td>
<td>4</td>
<td>1150</td>
<td>1146</td>
<td>28650</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH$_3$</td>
<td>1</td>
<td>100</td>
<td>99</td>
<td>9900</td>
</tr>
<tr>
<td>Phenols</td>
<td>C$_6$H$_5$OH</td>
<td>0.1</td>
<td>20</td>
<td>19.9</td>
<td>19900</td>
</tr>
</tbody>
</table>

Rock masses, the mineralogy and trace impurities, immediately adjacent to the targeted coal seam will also likely be influenced by UCG operations, and thus, oxidation and other geochemical processes in the surrounding rock could also result in the release of contaminants (Stratus Consulting Inc. 2010).
MATHEMATICAL MODEL TO ASSESS AN ENVIRONMENTAL SUSTAINABILITY INDEX FOR UCG

Structure of Environmental Sustainability Index of UCG

The key for sustainable development of UCG will comprise of three "basic pillars": economic, social and environmental. In the present paper a quantitative model is developed to assess the environmental component of UCG process, which is called the Environmental Sustainability Index (ESI$_{UCG}$) (Figure 2).

![Figure 2 - Pillars of UCG sustainable development and quantification of the environmental components by environmental sustainability index](image)

The global quantitative expression of sustainable development (SD) in UCG is a complex task since it involves a large numbers of parameters (6 shown in Figure 2) and data involved throughout the life cycle of the UCG process. In the proposed model the expression of the SD by Sustainability Index that is an innovative and important method, because it allows a quantification of SD and enables efficient management of SD, compared with admissible sustainability values previously defined.

The proposed ESI$_{UCG}$ is a composite of a four dimensional structure as shown in Figure 3, that is formed by indicators which have many sub-indicators depending on the type, dimension, location and other characteristics of the UCG operations.

![Figure 3 - Structure of Environmental Sustainability Index for UCG](image)

The relationship between the four SD indicators of the potential environmental impact and the Environmental Sustainability Index of the UCG (ESI$_{UCG}$) is given by equation (1), which is a function of a Subsidence Sustainability Index (SSI), Groundwater Sustainability Index (GWSI), Surface Water Sustainability Index (SWSI) and Atmosphere Sustainability Index (ASI).

$$ESI_{UCG} = \frac{1}{4} (SSI + GWSI + SWSI + ASI) \quad (1)$$
Equation (1) expresses the Environmental Sustainability Index of the UCG process based on the criterion of equal weighting of the four environmental indicators. Section 2.2 i of this paper shows that in the UCG process, where contamination of groundwater and subsidence are major environmental hazards and the pollution of surface and atmosphere have only a few incidences there is still a potential risk. This difference in size or occurrence of each of the four environmental indicators are considered in their specific mathematical models and presented as follow.

To calculate the sustainability index (SI) of each component, the condition of sustainability of each pollutant is based on environmental standards given for the norms. Three criteria are taken considering the local environmental condition with variable \(x_i \):

1) When the sustainability is \(x_i \leq X \), when \(X \) is maximum standard
2) When the sustainability is \(x_i \geq Y \), when \(Y \) is minimum standard
3) When the sustainability is \(Y \leq x_i \leq X \), when \(Y \) and \(X \) are minimum and maximum standards.

Considering the conditions of criterion 1, the SI can be calculated using the equation (2), based on condition \(x_i \leq X \). In this criterion when \(x_i \) values are less the sustainability is high. In this case \(X \) is a maximum standard (Figure 5).

\[
SI = 1 - \frac{x_i}{X} \quad (2)
\]

Incorporating the following two conditions:

1) If \(x_i = X \) or \(x_i > X \) \(\rightarrow \) SI = 0
2) If \(x_i = 0 \) \(\rightarrow \) SI = 1

In the conditions of criterion 2, the SI can be calculated using the equation (3), based on condition \(x_i \geq Y \) where high values of \(x_i \) generate high values of sustainability. In this case \(X \) corresponds to a minimum standard (Figure 6).

\[
SI = \frac{x_i}{Y} \quad (3)
\]

Incorporating the following two conditions:

1) If \(x_i = Y \) or \(x_i > Y \) \(\rightarrow \) SI = 1
2) If \(x_i = 0 \) \(\rightarrow \) SI = 0

Considering the criterion 3 for minimum and maximum admissible standards values, the SI can be calculated using equation (4) when \(x_i \geq X \) and when \(x_i = X \), is unsustainable and, also considering the criterion 3, the SI can be calculated by equation (5) when \(x_i \leq Y \) and \(x_i = Y \), is unsustainable.

If

\[
x_i \geq X \rightarrow SI = 1 - \frac{x_i - X}{X - X} \quad (4)
\]

Incorporating the following two conditions:

1) If \(Y < x_i < X \) or \(x_i = X \) \(\rightarrow \) SI = 1
2) If \(x_i = X \) \(\rightarrow \) SI = 0
If \(x_i \leq Y \rightarrow SI = 1 - \frac{Y - x_i}{Y - Y_i} \) \hspace{1cm} (5)

Incorporating the following two conditions:

1) If \(Y < x_i < X \) or \(x_i = Y \rightarrow SI = 1 \)
2) If \(x_i = Y \rightarrow SI = 0 \)

Subsidence Sustainability Index (SSI)

Reactor cavities formed during UCG process may affect the surface and subsurface structures (such as landscapes, surface water, water table, etc.), but their presence also alters ground movement around these cavities. The terms defining the geometry and settlement and the coordinate system which will be adopted throughout this paper are defined in Figure 4.

Figure 4 - Subsidence model of UCG process and parameters influencing ESI_{UCG}

Building risk damage from subsidence classification is based on horizontal tensile strain in five categories:

- categories 0 to 2 (\(\varepsilon_h = 0 - 0.15\% \)) correspond to aesthetical damage,
- serviceability damage occurs in categories 3 and 4 (\(\varepsilon_h = 0.15 - 0.3\% \))
- stability of the structure is affected by damage of category 5 (\(\varepsilon_h > 0.3\% \)) \hspace{1cm} (17).

Horizontal tensile strain develops as a change in length over the corresponding length.

The mathematical model for obtaining SSI is based on the limiting horizontal tensile strain as given in Table 2, where \(\varepsilon_h > 0.15 \). Using the limiting values of the potential damage to the modern infrastructures (buildings) in equation (2), the subsidence sustainability index (SSI) can be calculated by using equation (6) as follows:

\[
SSI = 1 - \frac{\varepsilon_h}{\varepsilon_h(L)} = 1 - 6.67\varepsilon_h
\]

where,
- \(\varepsilon_h \) horizontal soil displacement (%) as calculated by equation (7), and
- \(\varepsilon_h(L) \) is the admissible horizontal soil displacement (0.15%).

Note: \(\varepsilon_h(L) \): Limiting Tensile strain
\[\varepsilon_h = \frac{\delta_{v,max}}{z_0} \left(\frac{x^2}{i_x^2} - 1 \right) \]

(7)

In Equation (3) \(\delta_{v,max} \) is the maximum vertical settlement above the reactor cavity axis and can be calculated by equation (8), \(z_0 \) is the depth of the cavity axis below the surface, \(x \) that denotes the distance from the tunnel centre line in the transverse direction and \(i_x \) is the distance of cavity axis to the point of inflection in Gauss curve as shown in Figure 4.

\[\delta_{v,max} = \sqrt{\frac{\pi V_L D^2}{2}} \frac{x^2}{4i_x} e^{x^2} \]

(8)

where \(V_L \) is the volume loss calculated by equation (9) based on Borms and Bennemark proposals and \(D \) is the reactor cavity diameter (Figure 5).

\[V_L = 1.33 \left(\frac{P_t - P_s}{\sigma_t} \right) - 1.4 \]

(9)

where,

- \(P_t \) is the total overburden pressure at tunnel axis level (including any surcharges);
- \(P_s \) is the cavity pressure (if present), and
- \(\sigma_t \) is the un-drained shear strength of rock or soil.

<table>
<thead>
<tr>
<th>Category of Damage</th>
<th>Normal Degree of Severity</th>
<th>Limit Value (\varepsilon_{n(L)}) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Negligible</td>
<td>0-0.05</td>
</tr>
<tr>
<td>1</td>
<td>Very slight</td>
<td>0.05-0.075</td>
</tr>
<tr>
<td>2</td>
<td>Slight</td>
<td>0.075-0.15</td>
</tr>
<tr>
<td>3</td>
<td>Moderate</td>
<td>0.15-0.3</td>
</tr>
<tr>
<td>4 to 5</td>
<td>Severe to Very severe</td>
<td>>0.3</td>
</tr>
</tbody>
</table>

Table 2 - Subsidence standard based in the limiting tensile strain (Burland, 1995)

Groundwater Sustainability Index (GWSI)

The groundwater sustainability index (GWSI) can be calculated by using equation (10).

\[GWSI = \frac{1}{n} \left(\sum_{i=1}^{n} \frac{GW_{i(1)}}{L_V_{i}} - \sum_{i=1}^{n} \frac{GW_{i(2)}}{L_V_{i}} - \sum_{i=1}^{n} \frac{GW_{i(3)}}{L_V_{i}} - \cdots - \sum_{i=1}^{n} \frac{GW_{i(n)}}{L_V_{i}} \right) \]

(10)

where,

- \(n \) is the number of groundwater pollutants,
- \(L_V_1, L_V_2, L_V_3, \ldots, L_V_n \) are limit values of the groundwater quality standard.
- \(GW_{1}, GW_{2}, GW_{3}, \ldots, GW_{n} \) are groundwater pollutants and
- \(i_1, i_2, i_3, \ldots, i_n \) are local quantities.
For six environmental indicators number (n=6), when pollutants are Hydrogen sulphide (H$_2$S), Ammonia (NH$_3$), Phenols (C$_6$H$_5$OH), pH, conductivity (C) and Benzene (C$_6$H$_6$), using the average Groundwater Quality Standards (Table 3) and applying equation (2), the groundwater sustainability index (GWSI) can be calculated for the following two conditions:

(a) For the pH values <6 and unsustainable pH=0, applying equation (4) results in equation (11):

$$GWSI = 0.8 - 2.86H_2S - 8NH_3 - 0.0033C_6H_5OH - 0.04C_6H_6 - 0.0002C + 0.03pH$$ \hspace{1cm} (11)

For pH>9 and unsustainable pH=14, applying equation (5) results in equation (12):

$$GWSI = 1.3 - 2.86H_2S - 8NH_3 - 0.0033C_6H_5OH - 0.04C_6H_6 - 0.0002C - 0.04pH$$ \hspace{1cm} (12)

Thus, for pH<6 and unsustainable pH=0:

$$\begin{align*}
\text{pH} &\leq 6 \\
\text{C}_6\text{H}_5\text{OH} &\leq 6 \\
\text{NH}_3 &\leq 0.025 \\
\text{H}_2\text{S} &\leq 0.07 \\
\text{pH} &\leq 9 \\
\text{C}_6\text{H}_6 &\leq 5 \\
\text{Conductivity} &\leq 1000\mu\text{S/cm}
\end{align*}$$

Table 3 - Groundwater quality standards (Wisconsin Natural Resource Board, 2008; State Water control Board, 2004)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Limit Value</th>
<th>Institution</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$S</td>
<td>0.07 mg/kg</td>
<td>US - EPA, 2004</td>
<td>Human health</td>
</tr>
<tr>
<td>NH$_3$ (N$_2$)</td>
<td>0.025 mg/l</td>
<td>Virginia State, US, 2004</td>
<td>Public health or welfare</td>
</tr>
<tr>
<td>C$_6$H$_5$OH</td>
<td>6 mg/l</td>
<td>Wisconsin State, US, 2008</td>
<td>Public Health</td>
</tr>
<tr>
<td>pH</td>
<td>6 – 9</td>
<td>Virginia State - US, 2004</td>
<td>Public health or welfare</td>
</tr>
<tr>
<td>C$_6$H$_6$</td>
<td>5 µg/l</td>
<td>Pennsylvania State, US, 2001</td>
<td>Public health</td>
</tr>
<tr>
<td>Conductivity</td>
<td>1000µS/cm</td>
<td>European quality at 20 °C</td>
<td>Public health</td>
</tr>
</tbody>
</table>

It is well known that the pH scale ranges from 0 to 14 and it measures the acidity for values less than 7; with a pH value of 7 is neutral and a pH greater than 7 is basic. The pH=0 and pH=14 are unsustainable values, because they represent the extreme acidic and basic conditions.

Surface Water Sustainability Index (SWSI)

The surface water sustainability index (SWSI) can be calculated by using equation (13) as follows:

$$SWSI = \frac{1}{m} \left(\sum_{i=1}^{l_1} \frac{SW_{1(i)}}{l_1\text{VL}_1} - \sum_{i=1}^{l_2} \frac{SW_{2(i)}}{l_2\text{VL}_2} - \sum_{i=1}^{l_3} \frac{SW_{3(i)}}{l_3\text{VL}_3} - - \sum_{i=1}^{l_m} \frac{SW_{m(i)}}{l_m\text{VL}_m} \right)$$ \hspace{1cm} (13)

where,

- m is the surface water pollutants quantity;
- $l_1, l_2, l_3, , l_m$ are local quantity;
- $SW_1, SW_2, SW_3, , SW_m$ are surface water pollutants and $L_{V1}, L_{V2}, L_{V3}, , L_{VM}$ are limit values of surface water quality standard.

For the following four environmental indicator (m=4): Phenols (C$_6$H$_5$OH), Ammonia (NH$_3$), pH and Conductivity using the Surface Water Quality Standards (Table 4 and applying equation (2) for pH values between 6 to 9, the surface water sustainability index (SWSI) can be calculated for the following two conditions:

(a) Applying equation (4) when pH<6 and unsustainable when pH=0, and results in equation (14) as follows.

$$SWSI = 1 - 250C6H5OH - 10NH_3 - 0.00025Conduct + 0.042pH$$ \hspace{1cm} (14)

(b) For pH>9 and unsustainable pH=14: results are given by equation (15)
\[SWSI = 1.45 - 250C6H5OH - 10NH_3 - 0.00025 \text{Conduct} - 0.05pH \]
(15)

Table 4 - European surface water quality standards

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Limit Value</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_6H_5OH</td>
<td>0.001 mg/l</td>
<td>Human</td>
</tr>
<tr>
<td>NH_3 (N_2)</td>
<td>0.025 mg/l</td>
<td>Fish</td>
</tr>
<tr>
<td>pH</td>
<td>5.5 – 9.0</td>
<td>Human</td>
</tr>
<tr>
<td>Conductivity</td>
<td>1000 to (\mu)S/cm at 20 °C</td>
<td>Human</td>
</tr>
</tbody>
</table>

Atmosphere Sustainability Index (ASI)

The Atmosphere Sustainability Index (ASI) in UCG process will be calculated by equation (16) where \(s\) is the number of atmosphere pollutants; \(l\) is the local quantity around the emission points.

\[
ASI = \frac{1}{p} \left(p - \sum_{i=1}^{s} A_{i} \frac{1}{l_{i}VL_{l_{i}}} - \sum_{i=1}^{s} A_{2(i)} \frac{1}{l_{2}VL_{l_{2}}} - \sum_{i=1}^{s} A_{3(i)} \frac{1}{l_{3}VL_{l_{3}}} - \ldots - \sum_{i=1}^{s} A_{p(i)} \frac{1}{l_{p}VL_{l_{p}}} \right)
\]

(16)

where,

- \(p\) is the atmosphere pollutants quantity;
- \(l_1, l_2, \ldots, l_p\) are local quantity and ASI;
- \(A_1, A_2, A_3, \ldots, A_s\) are groundwater pollutants and
- \(VL_1, VL_2, VL_3, \ldots, VL_p\) are limiting values of air quality standard.

For four environmental indicators \((r=4)\), using average values of Atmospheric Quality Standards (Table 5 and applying equation (16) for \(CO_2\) and equation (2) for \(CO\), and equations (4) and (5) for \(H_2\) and \(CH_4\) gases respectively, results in equations (17) and (18). The \(H_2\) standard varies from 4% to 74.2% and \(CH_4\) from 5% to 14%.

(a) For \(H_2<4\%\) and \(CH_4<5\%\) and unsustainable \(H_2=0\) and \(CH_4=0\): equation (17) gives:

\[
ASI = 0.5 - 0.00005CO_2 + 0.063H_2 + 0.05CH_4 - 0.005CO
\]

(17)

(b) For \(H_2>74.2\%\) and \(CH_4>14\%\) and unsustainable \(H_2=100\) and \(CH_4=100\): equation (18) represents:

\[
ASI = 1.76 - 0.00005CO_2 - 0.0097H_2 - 0.0029CH_4 - 0.005CO
\]

(18)

Table 5 - Atmosphere quality standard (Navarro, 2006)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Limit Value</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2</td>
<td>5000 ppm</td>
<td>Mine Safety and Health Administration - USA</td>
</tr>
<tr>
<td>H_2</td>
<td>4% - 74.2%</td>
<td>Bureau of Mines Diagram - USA</td>
</tr>
<tr>
<td>CH_4</td>
<td>5% - 14%</td>
<td>Bureau of Mines Diagram - USA</td>
</tr>
<tr>
<td>CO</td>
<td>50 ppm</td>
<td>Mine Safety and Health Administration - USA</td>
</tr>
</tbody>
</table>

The environmental pollutant quantities \((n, m, s)\) depend upon geological, hydro-geological, physicochemical, operational conditions, etc. of UCG process.

PROPOSED PERMISSIBLE MINIMUM LEVEL OF ESI_{UCG}

Proposed ESI_{UCG} levels and sustainability criteria

The proposals of ESI_{UCG} for standardizing the permissible minimum level of SD in UCG are expressed by coefficients varying between 0 and 1, Table 6.
Table 6 - Proposals of ESI_{UCG} for permissible minimum level assessment

<table>
<thead>
<tr>
<th>ESI_{UCG}</th>
<th>ESI_{UCG}</th>
<th>ESI_{UCG}</th>
<th>ESI_{UCG}</th>
<th>ESI_{UCG}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 ≤ 0.25</td>
<td>0.25 ≤ 0.50</td>
<td>0.50 ≤ 0.75</td>
<td>0.70 ≤ 1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Very Low</td>
<td>Low</td>
<td>Moderate</td>
<td>Good</td>
<td>Very Good</td>
</tr>
</tbody>
</table>

The UCG sustainability will vary when subsidence, groundwater, surface water, and atmosphere quality vary with time. The permissible sustainability is obtained when ESI_{UCG} is 1 (Figure 6).

Environmental quality standards

The UCG subsidence assessment can be used to evaluate the type of damage to landscape, or buildings, etc. In this paper, a typical example of possible building damage is based on the tensile strain (Wisconsin Natural Resource Board Rules, 2008) (Table 2).

![Figure 6 - Permissible level of Environmental Sustainability Index of UCG](image)

Normally each region or countries have the groundwater quality standards for substances of public health or environmental goal (Navarro, 2006; El Tremedal, Final Summary Report, 1999) (Tables 3).

Based on the main potential pollutants for surface water as phenols, ammonia, chemical oxygen demand (COD), pH and conductivity, as an example are shown in the Table 4, the European surface water quality standard. As discussed earlier, the major and main potential pollutant gases emitted in the UCG process are CO₂, H₂, CH₄, and CO. The atmospheric air quality standard is presented in Table 5.

NUMERICAL MODEL APPLICATION TO THE EL TREMEDAL SPANISH CASE-HISTORY

Technical data of El Tremedal Spanish trial

The mathematical model developed above was applied to the El Tremedal trial of UCG in the Province of Teruel, Spain, with the following site characteristics:

- two dipping coal seams separated by 7 to 14 metres of limestone,
- depth of 500-700 metres and
- a seam thickness varies between 1.9 and 7.0 metres with
- a thin layer of carbonaceous clay lays under both coal seams and
- an area of continuous coal seam is at least 200 metres from any significant faults (Figure 7).

The following conditions are assumed for the measured environmental indicators in the El Tremedal trial:

- measured pollutants concentrations would be similar with hypothetical production at commercial level; measured pollutants values used any after remedial action.
In a hypothetical production at commercial level applied to the CO$_2$ capture and underground sequestration technique; in local atmospheric air velocity the CO gas dilution even 50 meters surrounding emission point at average 40 ppm.

9Main environmental results

In El Tremedal UCG Spanish trials there is no report on the soil or rock subsidence because the site condition is not favourable for potential subsidence.

For the El Tremedal trial, excess water is produced during gasification and the main pollutants show in Table 7. The product gas composition in the 1st and 2nd gasification period was 14% of CO$_2$, 12.8% of CO, 24.8% of H$_2$, 13.2% of CH$_4$ and 8.3% of H$_2$S (Table 8 and Figure 8) (El Tremedal, Final Report 1999).

In the El Tremedal UCS trial project the environmental impact observed on the surface facilities and the plant operations including surface water are shown in Tables 7 and 8 (Skousan, et al., 2000).

<table>
<thead>
<tr>
<th>Pollutants</th>
<th>Record Concentrations</th>
<th>Pollutants</th>
<th>Record Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenols</td>
<td>2.6 - 575 ppm (0.26 – 57.5 mg/l)</td>
<td>Conductivity</td>
<td>1410 – 5640 μ S/cm</td>
</tr>
<tr>
<td>Ammonia</td>
<td>5.9 - 1080 ppm (0.59 – 108 mg/l)</td>
<td>COD</td>
<td>102 – 5880 ppm</td>
</tr>
<tr>
<td>Sulphurs</td>
<td>0.94 - 148 ppm (0.095 – 14.8 mg/l)</td>
<td>pH</td>
<td>8.4 – 7.6</td>
</tr>
</tbody>
</table>

Figure 7 - Geological and well layout of El Tremedal UCG trial (Skousen, et al., 2000)
Table 8 - Product Gas Composition in El Tremedal Trial (El Tremedal Final Report, 1999)

<table>
<thead>
<tr>
<th>Product Gas</th>
<th>Gasification Period</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>CO₂</td>
<td>43.4%</td>
<td>39.4%</td>
</tr>
<tr>
<td>CO</td>
<td>8.7%</td>
<td>15.6%</td>
</tr>
<tr>
<td>H₂</td>
<td>24.9%</td>
<td>24.7%</td>
</tr>
<tr>
<td>CH₄</td>
<td>14.3%</td>
<td>12.4%</td>
</tr>
<tr>
<td>H₂S</td>
<td>8.8%</td>
<td>7.9%</td>
</tr>
</tbody>
</table>

Environmental Sustainability of El Tremedal UCS trial

Calculation of SSI

The subsidence sustainability index (SSI) is calculated by using equation 6, taking the horizontal soil displacement $\varepsilon_h(L)$ as 0 that is negligible according to the standard quality adopted, and

$$SSI = 1 - \frac{\varepsilon_h}{\varepsilon_h(L)} = 1 - 6.67 \times 0 + 1$$

Calculation of GWSI

For calculating the Ground Water Sustainability Index (GWSI), it is necessary to analyse pH as a measured pollutant that varies between the permissive limits of Groundwater Quality Standard between 7.6 and 8.4, therefore the sustainability index of this pollutant is 1. Based on this result, with groundwater standards presented in Table 3 ($H₂S=0.07 \text{ mg/kg}, NH₃=0.025 \text{ mg/l}, C₆H₅OH=6 \text{ mg/l}, \text{Conductivity}=1000 \mu\text{s/cm-1}$) are applied to equations (2), (4) and (5) resulting in equation (10) as follows:

$$GWSI = \frac{1}{5} \left(1 - \frac{H₂S}{0.07} + 1 + \frac{NH₃}{0.025} + 1 - \frac{C₆H₅OH}{6} + 1 - \frac{C}{1000} + 1 \right)$$

However, the four environmental groundwater indicators measured in El Tremedal as shown in Table 8 are greater than groundwater quality standards (Table 4) except pH. For these situations applying four pollutants values ($H₂S, NH₃, C₆H₅OH$ and Conductivity) to equation (10) and equation (2), the ground water sustainability index is calculated, using

$$x_i = X \text{ or } x_i > X \rightarrow S_I = 0 \text{ }, \text{ as follows:}$$

$$GWSI = \frac{1}{5} (0 + 0 + 0 + 0 + 1) = 0.25$$

Applying equation (13) to the condition of equation (2) for SWSI calculation, with $S_I_{ph}=1$ for Surface Water Quality Standard, the general equation for the main pollutants result in the following equation:

$$SWSI = \frac{1}{4} \left(1 - \frac{C₆H₅OH}{0.001} + 1 - \frac{NH₃}{0.025} + 1 - \frac{C}{1000} + 1 \right)$$
In El Tremedal UCG trial no report of surface water pollution was obtained. Therefore, the pollutant value is taken as zero and the SWSI result is as follows:

\[SWSI = \frac{1}{4} (1 + 1 + 1 + 1) = 1 \]

Calculation of ASI

Finally, in order to calculate atmospheric Sustainability Index (ASI) air pollutants \(\text{CO}_2 \), \(\text{H}_2 \), \(\text{CH}_4 \) and \(\text{CO} \) are measured in El Tremedal trial. Concentrations of pollutants \(\text{H}_2 \) and \(\text{CH}_4 \) are 24.8% and 13.2%, respectively, applying to Equations 16 and equation (2) and \(\text{CH}_4 \) which is applying the equation (16) and equation (2) results in the following equation:

\[ASI = \frac{1}{4} \left(1 - \frac{\text{CO}_2}{5000} + 1 + 1 + 1 - \frac{\text{CO}}{50}\right) \]

The gases obtained from the El Tremedal trial production well (\(\text{CO}_2 = 410000 \) ppm and \(\text{CO} = 128000 \) ppm), are processed for utilization and after which there are air pollution potential risk, so that, for purposes of developed model application, assumes a \(\text{CO}_2 \) and \(\text{CO} \) of 5000 ppm and 40 ppm, respectively, to about 50 meters from the emission source for atmospheric local air velocity condition. For this assumed condition the Atmospheric Sustainability Index results in the following equation:

\[ASI = \frac{1}{4} \left(1 - \frac{5000}{5000} + 1 + 1 + 1 - \frac{40}{50}\right) = 0.60 \]

If it is assumed that all \(\text{CO}_2 \) gas is captured and sequestered in underground cavern, the sustainability for \(\text{CO}_2 \) gas result 1. The \(\text{CO} \) gas assumed 40 ppm concentration above 50 meters for certain atmospheric local air velocity condition, the ASI of El Tremedal UCG trial result:

\[ASI = \frac{1}{4} \left(1 + 1 + 1 + 1 - \frac{40}{50}\right) = 0.80 \]

The result of application the quantitative ESI model with measured and assumed environmental indicator in El Tremedal Spanish UCG trial assessment by proposal sustainability levels for UCG process (Table 6) shows the sustainability due subsidence and surface water is very good, due to atmosphere pollution is good and due groundwater is extremely low.

Applying equation (1) the ESI results in 0.74 and globally environmental sustainability of El Tremedal UCG trial as shown in Figure 9 is good.

Figure 9 - Environmental Sustainability Index of El Tremedal UCG trial

The ESI determination process and the results demonstrate that the implementation of remediation action is needed for reducing ground water pollutants (\(\text{H}_2\text{S} \), \(\text{NH}_3 \), \(\text{C}_6\text{H}_5\text{OH} \) and Conductivity) to
permissible levels. The ESI is very useful index for indicating remediation actions and applications of the Management of Sustainable UCG Practices.

DISCUSSION OF RESULTS

In the quantitative assessment of the Environmental Sustainability Index of the UCG process, for most of the environmental pollution components (H₂S, NH₃, C₆H₅OH, pH, C₆H₆, CO, CO₂, SOₓ, NOₓ, phenols, conductivity, etc.) are applied to the mathematical model and conditions of sustainability criterion 1 (equation 2) based on their minimum standards.

For only subsidence then the mathematical model and conditions of sustainability criterion 2 based on the maximum standards (admissible horizontal tensile), and for pH, CH₄ and H₂ applies the mathematical models and conditions of sustainability criterion 3 (equations 4 and 5) based on a permissible range from a low to a high standard.

Table 9 shows the calculated Environmental Sustainability Index for El Tremedal Underground Coal Gasification trial, as compared to those for underground tungsten mining in Portugal (6) and surface water And groundwater sustainability index in underground mining showing close resemblance of results with reference to GWSI and other Environmental Indicators.

Table 9 - Environmental Sustainability Index (ESI) of El Tremedal UCG trial compared with underground mining and mine water

<table>
<thead>
<tr>
<th>Sustainability Index</th>
<th>El Tremedal UCG trial</th>
<th>Panasqueira Portuguese mine[5, 6]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Underground mining</td>
</tr>
<tr>
<td>SSI</td>
<td>1</td>
<td>0.25</td>
</tr>
<tr>
<td>GWSI</td>
<td>0.70</td>
<td>0.98</td>
</tr>
<tr>
<td>SWSI</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>ASI</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>GSI</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>UASI</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>ESI</td>
<td>0.74(high)</td>
<td>0.45(Low)</td>
</tr>
</tbody>
</table>

SSI: Subsidence Sustainability Index; GWSI: Groundwater Sustainability Index; SWSI: Surface Water Sustainability Index; ASI: Exterior Atmosphere Sustainability Index; GSI: Geotechnical Sustainability Index; UASI: Underground Atmosphere Sustainability Index

Table 9 also indicates that the ESI result 0.74, equivalent to **good** level according to (Table 6). Compared with ESI=0.45 for underground tungsten mining (d) and equivalent to **low** level and ESI=0.35 for mine water (Stephan et. al. 1985), also equivalent to **low** level.

During assessment of the environmental sustainability of El Tremedal UCG trial, low sustainability of groundwater (GWSI = 0.25) greatly reduces the global Environmental sustainability Index (ASI), this behavior is also observed in the case of mining underground (GWSI = 0.27) and even for mine water (GWSI = 0.35).

CONCLUSIONS

Underground coal gasification, in the future, will be an important activity for human development, but the future projects must be implemented based on acceptable environmental sustainability.

The environmental sustainability of underground coal gasification can be quantified by calculating the Environmental Sustainability Index through the developed mathematical model.

The numerical model presented in this paper opens a way for analysis, assessment, remediation and contribution to effective Sustainable management of the underground coal gasification process.

The Environmental Sustainability Index, calculated by the developed model, is a quantitative indicator of the environmental sustainability of an UCG project. In the future, this index will be able to standardize the minimum level of sustainability of UCG process.
ACKNOWLEDGEMENT

This project was funded by the Portuguese Science and Technology Foundation (Fundação para a Ciência e a Tecnologia – FCT). Thanks are also due to Professor C. Dinis da Gama for his contribution to this project.

REFERENCES

Navarro Torres V F, 2006. Sustainability indicators in underground works. III Portuguese-Brazilian Geotechnical Congress, Florianópolis, Brazil, pp.7