A new xanthone and a biphenyl from the flower and twig extracts of Garcinia mckeaniana

Chiramet Auranwiwat
Chiang Mai University

Thunwadee Limtharakul
Chiang Mai University

Stephen G. Pyne
University of Wollongong, spyne@uow.edu.au

Roonglawan Rattanajak
National Science and Technology Development Agency, Thailand, BIOTEC, Pathum Thani 12120, Thailand

Sumalee Kamchonwongpaisan
National Science and Technology Development Agency, Thailand, BIOTEC, Pathum Thani 12120, Thailand

Follow this and additional works at: https://ro.uow.edu.au/smhpapers1

Publication Details Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
A new xanthone and a biphenyl from the flower and twig extracts of Garcinia mckeaniana

Abstract
The phytochemical investigation of the flower and twig extracts of Garcinia mckeaniana yielded a new xanthone, mckeanianone F (1) and a new biphenyl, mckeaniabiphenyl (2) together with 15 known compounds. The isolated compounds were characterized using spectroscopic techniques and mass spectrometry. Some of the isolated compounds from the twigs exhibited antimalarial and cytotoxic activities.

Publication Details

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers1/1098
A new xanthone and a biphenyl from the flower and twig extracts of *Garcinia mckeaniana*

Chiramet Auranwiwat\(^a\), Thunwadee Limtharakul\(^a\), Stephen G. Pyne\(^b\) Roonglawan Rattanajak\(^c\) and Sumalee Kamchonwongpaisan\(^c\)

\(^a\) Department of Chemistry, Faculty of Science and Research Center on Chemistry for Development of Health Promoting Products from Northern Resources, Chiang Mai University, Chiang Mai, Thailand. \(^b\) School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia; \(^c\) Medical Molecular Biotechnology Research Group, Natural Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand

Contact: Chiramet Auranwiwat, *e-mail* address: chiramet.a@gmail.com, chiramet_aur@cmu.ac.th
A new xanthone and a biphenyl from the flower and twig extracts of
Garcinia mckeaniana

ABSTRACT
The phytochemical investigation of the flower and twig extracts of Garcinia mckeaniana yielded a new xanthone, mckeanianone F (1) and a new biphenyl, mckeaniabiphenyl (2) together with 15 known compounds. The isolated compounds were characterized using spectroscopic techniques and mass spectrometry. Some of the isolated compounds from the twigs exhibited antimalarial and cytotoxic activities.

Keywords: Garcinia mckeaniana; xanthone; biphenyl; antimalarial activity; cytotoxicity

1. Introduction
Garcinia mckeaniana is a member of the Garcinia genus (Clusiaceae) which is found in the north of Thailand. Plants in this genus have been used in traditional medicine to treat lymphatitis, parotitis, struma, dysentery, inflections and wounds (Mahabusarakam et al. 2016 and Ibrahim et al. 2018). Our previous study on the isolation of the leaf and branch extracts of G. mckeaniana led to the isolation of xanthones and biflavones with some of these exhibiting antimalarial and cytotoxic activities (Auranwiwat et al. 2016). In this study we report the results of our investigation of the flower and twig extracts of G. mckeaniana which yielded a new xanthone (1) and a new biphenyl (2) together with 15 known compounds (3-17). The antimalarial activities against the Plasmodium falciparum strains TM4 and K1 and the cytotoxicities against KB and Vero cells of some of the isolated compounds are also reported.

2. Results and discussion
The dried flowers of G. mckeaniana were extracted with acetone and the crude extract was subjected to separation by column chromatography to provide a new xanthone, mckeanianone F (1) together with 10 known compounds, melisimiplin (3) (Promchai et al. 2018), bannaxanthones D (4), I (5) and E (7) (Han et al. 2008 and Na et al. 2010), mckeanianones C (6) and B (8) (Auranwiwat et al. 2016), apigenin (9) (Liu et al. 2013), amentoflavone (10) (Carbonezi et al. 2007), mckeaniabiflavone (11) (Auranwiwat et al. 2016), and...
The acetone extract of the twigs of *G. mckeaniana* was separated by column chromatography to yield a new biphenyl, mckeaniabiphenyl (2), along with six known compounds, pancixanthone A (12) (Ito et al. 1996), nerifolone A (13) (Nuangnaowarat et al. 2010), 1,3,5-trihydroxy-13,13-dimethyl-2H-pyran[6,7-b]-xanthen-9-one (14) (Nilar et al. 2005), 1,3,6-trihydroxy-7-methoxyxanthone (15) (Iinuma et al. 1996), [1,1′-biphenyl]-2-(3-methyl-2-butenyl)-3-methoxy-4,4′,5,6-tetraol (16) (Rukachaisirikul et al. 2005) and 4,4′-dihydroxy-3,3′-dimethoxybenzophenone (17) (Chang et al. 2010). The structures of all isolated compounds were characterized by spectroscopic techniques and mass spectrometry as shown in Figure 1.

 Compound 1 was isolated as a yellow oil and its molecular formula was deduced to be C_{30}H_{32}O_{9} based on the molecular ion peak at m/z 537.2114 [M+H]^+ (calcd for C_{30}H_{33}O_{9}, 537.2115) in the positive ion HRESIMS. The UV, IR and NMR spectroscopic data of 1 were similar to those of mckeanianone C (6) (Auranwiwat et al. 2016) indicating they had a similar structure except for the position of the acetoxy group. The methylene proton CH=2-1 (δ_H 4.26) of the acetoxypropenyl unit in 1 showed HMBC correlations (Figure S1) between C-7 (δ_C 139.6), C-8 (δ_C 124.1) and C-8a (δ_C 111.4) indicating that the acetoxypropenyl unit was located at C-8 and not at C-5 as found in 6. From this information, the hydroxypropenyl unit was substituted at C-5 which was supported from the HMBC correlations shown in Figure S1. Therefore, compound 1 was determined as 1,6,7-trihydroxy-6,6′-dimethyl-2H-pyrano(2′,3′:3,2)-8-(4-acetoxy-3-methylbut-2-enyl)-5-(4-hydroxy-3-methylbut-2-enyl)-xanthone and was named mckeanianone F.

 Compound 2 was obtained as a yellow oil. The molecular formula C_{11}H_{14}O_{4} was indicated from the mass ion peak at m/z 247.0980 [M+H]^+ (calcd. for C_{11}H_{15}O_{4}, 247.0970) in the HRESIMS spectrum. The UV spectrum showed the maximum absorption bands at 209 and 269 nm that indicated the presence of a benzene chromophore (Sukandar et al. 2018). The IR spectrum showed bands for a hydroxy group and a benzene ring at 3423, and 1614 and 1504 cm⁻¹, respectively. The ¹H NMR spectrum exhibited resonances for a 1,2,4-trisubstituted benzene [δ_H 7.42 (1H, d, J = 8.1 Hz), 6.89 (1H, brd, J = 8.1 Hz) and 6.73 (1H, brs)] and two methoxy groups [δ_H 3.94 (3H, s)]. The ¹³C NMR spectroscopic data showed resonances for three quaternary carbons [δ_C 154.8, 147.3, 132.6], three methine carbons [δ_C 128.2, 115.6, 103.8] and a methoxy carbon (δ_C 56.4). This information established a dimeric benzene structure indicating a biphenyl. The aromatic protons H-
6/H-6’ (δH 7.42/δC 128.2) gave cross peaks with H-5/H-5’ (δH 6.89) in the COSY spectrum and exhibited HMBC correlations to C-1/C-1’ (δC 132.6), C-4/C-4’ (δC 154.8) and C-6/C-6’ (δC 128.2) as shown in Figure S1. The aromatic protons H-5/H-5’ correlated with C-1/C-1’, C-3/C-3’ (δC 103.6) and C-4/C-4’ in the HMBC spectrum. The HMBC correlations of the H-3/H-3’ resonance at δH 6.73 between C-1/C-1’ and C-2/C-2’ (δC 147.3) indicated that the methoxy group was located at C-2/C-2’ which was further supported by the NOESY correlation between the resonances for H-3/H-3’ and the methoxy group (Figure S1). Compound 2 has been synthesized earlier, however, this is the first report of this compound as a natural product (Sato et al. 1960 and Horner et al. 1963). Thus, compound 2 was identified as 4,4’-dihydroxy-2,2’-dimethoxybiphenyl and was named as mckeaninabiphenyl.

Compounds 2, 14-17 were evaluated for their antimalarial activities against the Plasmodium falciparum strains, TM4/8.2 and K1CB1 (wildtype and multidrug resistant strains, respectively) and cytotoxicities against human mouth epidermal carcinoma cells (KB) and kidney epithelial cells from African green monkey (Vero). Compounds 5-8, 10 and 11 were tested previously (Auranwiwat et al. 2016). Compounds 15 and 16 displayed weak antimalarial activities with IC50 values of 23.6 and 39.4 against TM4/8.2 and 27.1 and 43.1 µM against K1CB1, respectively. Only compound 14 exhibited cytotoxicity against KB and Vero cells with IC50 values of 37.7 and 41.6 µM, respectively. The other compounds were inactive >50 µM in all assays.

3. Experimental

3.1 General experimental procedures, plant materials, extraction and isolation

For these details see the Supplementary material

3.2 Spectral data

McKeanianone F (1): yellow oil; UV (MeOH) λmax (log ε): 291 (4.6), 337 (4.2), 382 (4.0) nm; IR (neat) ν: 3422, 1715, 1648, 1610, 1445 and 1242 cm⁻¹; ¹H NMR (500 MHz, CDCl3): δH 13.73 (1H, s, OH), 6.74 (1H, d, J = 10.0 Hz, H-11), 6.32 (1H, s, H-4), 5.57 (1H, d, J = 10.0 Hz, H-12), 5.56 (1H, t, J = 6.9 Hz, H-22), 5.46 (1H, t, J = 8.0 Hz, H-17), 4.85 (2H, s, H-25), 4.39 (2H, s, H-20), 4.26 (2H, d, J = 6.9 Hz, H-21), 3.67 (2H, d, J = 8.0 Hz, H-16), 2.13 (3H, s, OCOMe), 1.79 (3H, s, H-19), 1.73 (3H, s, H-24), 1.47 (6H, s, Me-14, Me-15); ¹³C NMR (125 MHz, CDCl3): δC 182.8 (C-10), 172.5 (OCOMe), 159.9
(C-3), 158.0 (C-1), 156.4 (C-4a), 151.2 (C-6), 149.3 (C-10a), 139.6 (C-7), 134.8 (C-18), 129.8 (C-23), 129.1 (C-22), 127.2 (C-12), 125.5 (C-17), 124.1 (C-8), 115.9 (C-11), 112.4 (C-5), 111.4 (C-8a), 104.5 (C-2), 103.9 (C-9a), 94.1 (C-4), 78.0 (C-13), 64.5 (C-25), 62.5 (C-20), 28.5 (C-14, C-15), 25.7 (C-21), 22.6 (C-16), 22.4 (C-19), 21.3 (C-24), 21.2 (OCOMe); HRESI-MS m/z [M+H]+ 537.2114 (calcd for C$_{30}$H$_{33}$O$_9$, 537.2115).

Mckeaniabiphenyl (2): yellow oil; UV (MeOH) λ_{max} (log ε): 209 (4.3), 269 (3.9) nm; IR (neat) ν: 3423, 1614, 1504 and 1119 cm$^{-1}$; 1H NMR (500 MHz, CDCl$_3$): δH 7.42 (2H, d, J = 8.1 Hz, H-6/H-6'), 6.89 (2H, brd, J = 8.1 Hz, H-5/H-5'), 6.73 (2H, brs, H-3/H-3'), 3.94 (6H, s, 2-OMe/2'-OMe); 13C NMR (125 MHz, CDCl$_3$): δC 154.8 (C-4/C-4'), 147.3 (C-2/C-2'), 132.6 (C-1/C-1'), 128.2 (C-6/C-6'), 115.6 (C-5/C-5'), 103.8 (C-3/C-3'), 56.4 (2-OMe/2'-OMe); HRESI-MS m/z [M+H]$^+$ 247.0980 (calcd for C$_{14}$H$_{15}$O$_4$, 247.0970).

4. Conclusions

The phytochemical investigation of the flower and twig extracts led to isolation of two new compounds and 15 known compounds. Compounds 15 and 16 showed antimalarial activities against the *Plasmodium falciparum* strains, TM4/8.2 and K1CB1 while compound 14 exhibited cytotoxicity against KB cell line. Compound 2 was related in structure to previously reported biphenyls that were isolated from fungi (Li et al. 2017 and Zhu et al. 2019).

Acknowledgements

We would like to thank Department of Chemistry, Faculty of Science, Chiang Mai University and the University of Wollongong for partial support. We are also grateful to Dr. Wisanu Maneerat for mass spectrometric data. S.K. thanks Research Chair Grant (no. P1850116) from NSTDA, Thailand.

Supplementary material

The copies of NMR spectra and mass spectra of 1 and 2 are provided.

Disclosure statement

The authors declare no conflict of interest
ORCID

Thunwadee Limtharakul: 0000-0002-0426-3663
Stephen G. Pyne: 0000-0003-0462-0277

References

Figure 1. Structures of isolated compounds from flower and twig of *G. mckeaniana* (1-17).