The burden of healthcare-associated Clostridium difficile infection in a non-metropolitan setting

Stuart Bond
University of Wollongong, Wollongong Hospital, seb708@uowmail.edu.au

Craig S. Boutlis
Wollongong Hospital, cboutlis@uow.edu.au

Wilfred W. Yeo
University of Wollongong, Illawarra Shoalhaven Local Health District, wilf@uow.edu.au

William Pratt
University of Wollongong, Shoalhaven District Memorial Hospital, wpratt@uow.edu.au

M E. Orr
Shoalhaven District Memorial Hospital

See next page for additional authors

Publication Details

The burden of healthcare-associated Clostridium difficile infection in a non-metropolitan setting

Abstract

Objective: Healthcare-associated Clostridium difficile infection (HCA-CDI) remains a major cause of morbidity and mortality in industrialized countries. However, few data exist on the burden of HCA-CDI in multi-site non-metropolitan settings. This study examined the introduction of an antimicrobial stewardship programme (ASP) in relation to HCA-CDI rates, and the effect of HCA-CDI on length of stay (LOS) and hospital costs.

Methods: A comparative before-and-after intervention study of patients aged ≥16 years with HCA-CDI from December 2010 to April 2016 across the nine hospitals of a non-metropolitan health district in New South Wales, Australia was undertaken. The intervention comprised a multi-site ASP supported by a clinical decision support system, with subsequent introduction of email feedback of HCA-CDI cases to admitting medical officers.

Main outcome measures: HCA-CDI rates, comparative LOS and hospital costs, prior use of antimicrobials and proton pump inhibitors, and appropriateness of CDI treatment.

Results: HCA-CDI rates rose from 3.07 to 4.60 cases per 10,000 occupied bed-days pre-intervention, and remained stable at 4 cases per 10,000 occupied bed-days post-intervention (P = 0.24). Median LOS (17 vs six days; P < 0.01) and hospital costs (AU$19,222 vs $7861; P < 0.01) were significantly greater for HCA-CDI cases (N = 91) than for matched controls (N = 172). Half of the patients with severe HCA-CDI (4/8) did not receive initial appropriate treatment (oral vancomycin).

Conclusions: HCA-CDI placed a significant burden on the regional and rural health service through increased LOS and hospital costs. Interventions targeting HCA-CDI could be employed to consolidate the effects of ASPs.

Disciplines
Medicine and Health Sciences

Publication Details

Authors
Stuart Bond, Craig S. Boutlis, Wilfred W. Yeo, William Pratt, M E. Orr, and Spiros Miyakis

This journal article is available at Research Online: http://ro.uow.edu.au/ihmri/1044
The burden of healthcare associated *Clostridium difficile* infection in a non-metropolitan setting

Stuart E Bond,¹,²,³ Craig S Boutlis,⁴ Wilfred W Yeo,²,³,⁵ William AB Pratt,²,⁶ Megan E Orr,⁷ Spiros Miyakis,²,³,⁴

1. Department of Pharmacy, Wollongong Hospital, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
2. School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
3. Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, Australia
4. Department of Infectious Diseases, Wollongong Hospital, New South Wales, Australia
5. Division of Medicine, Illawarra Shoalhaven Local Health District, Wollongong, New South Wales, Australia
6. Department of Medicine, Shoalhaven District Memorial Hospital, Nowra, New South Wales, Australia
7. Department of Pharmacy, Shoalhaven District Memorial Hospital, Nowra, New South Wales, Australia

Preliminary results from this study were presented at the 4th APAC Forum: Leading Healthcare Transformation, Auckland, New Zealand, 23-25 September 2015
Abstract

Objective

Clostridium difficile infection is a major cause of healthcare associated diarrhoea in industrialised countries and is associated with considerable morbidity and mortality. No data exist on the burden of healthcare associated *Clostridium difficile* infection (HCA-CDI) in multisite non-metropolitan settings. This study examined the introduction of an antimicrobial stewardship program (ASP) in relation to HCA-CDI rates and the effect of HCA-CDI on length of stay (LOS) and hospital costs.

Methods

A comparative before-and-after intervention study of patients aged 16 years and over with HCA-CDI from December 2010 to April 2016 across the nine hospitals of a regional and rural health district in New South Wales, Australia. The intervention consisted of a multisite ASP supported by a clinical decision support system, with subsequent introduction of email feedback of HCA-CDI cases to admitting medical officers. Main outcome measures: HCA-CDI rates; comparative LOS and hospital costs; prior antimicrobial and proton-pump inhibitor use; appropriateness of CDI treatment.

Results

HCA-CDI rates were stable at four cases per 10,000 occupied bed days following the intervention. Median LOS (17 vs. 6 days, *P*<0.01) and hospital costs (AUS$19,222 vs. $7,861, *P*<0.01) were significantly greater for HCA-CDI cases (*N*=91) than for matched controls (*N*=172). Half of the patients with severe HCA-CDI (4/8) did not receive initial treatment concordant with Australian guidelines (oral vancomycin).
Conclusions

HCA-CDI placed a significant burden on our regional and rural health service through increased LOS and hospital costs. Interventions targeting HCA-CDI could be employed to consolidate the effects of ASPs.

Keywords: *Clostridium difficile* infection, antimicrobial stewardship program, clinical decision support system, health care costs, length of stay
Introduction

Clostridium difficile infection (CDI) is a major cause of healthcare associated diarrhoea in industrialised countries and is associated with considerable morbidity and mortality.\(^1\) In Australia, the annual incidence of hospital-identified CDI was 4.03 cases/10,000 patient days in 2012.\(^2\) Risk is increased by antimicrobial use and/or immunosuppression.\(^3\) Other putative risk factors include gastrointestinal surgery, gastric acid-suppressive therapy and prolonged hospital stay.\(^3\)

Healthcare associated *Clostridium difficile* infection (HCA-CDI) has been associated with increased length of stay (LOS), additional costs from hospitalisation\(^4\) and antimicrobial treatment,\(^3\) and indirect costs such as productivity losses.\(^5\)

Most antimicrobials have been related to CDI, with lincosamides (e.g. clindamycin), third generation cephalosporins (e.g. ceftriaxone), and broad-spectrum penicillins (e.g. amoxicillin/clavulanic acid) showing strong associations.\(^6\) Fluoroquinolones have been particularly associated with the hypervirulent NAP1/027 strain.\(^7\) There is probable association between proton pump inhibitor (PPI) use and CDI, with the combination of PPIs and antimicrobials carrying a greater risk than either alone.\(^8\)

Antimicrobial stewardship programs (ASPs) should be employed to reduce the incidence of HCA-CDI.\(^1\) Despite HCA-CDI being an outcome measure for ASPs,
increasing community acquisition of CDI may cloud interpretation of HCA-CDI rates.² Antimicrobial stewardship (AMS) interventions targeting HCA-CDI have predominantly been conducted in metropolitan teaching hospitals, at single sites or within a defined clinical area.⁹-¹³ Very limited data exist on the burden of HCA-CDI in Australia, particularly in regional and rural settings.¹⁴ To our knowledge this is the first study to examine a multisite ASP in relation to HCA-CDI rates in the non-metropolitan setting.

The aims of our study were: to describe HCA-CDI rates before and after an ASP; to measure LOS and hospital costs in HCA-CDI patients across multiple hospital sites; to compare prior antimicrobial and PPI use in HCA-CDI patients with the background use; and to assess appropriateness of HCA-CDI antimicrobial treatment according to guidelines.
Methods

Setting

From December 2010 to April 2016, a comparative before-and-after intervention study on the burden of HCA-CDI was performed across the nine public hospitals (1000 total beds) of Illawarra Shoalhaven Local Health District (ISLHD) in southeastern New South Wales (NSW), Australia. The district services 390,000 residents across a catchment that begins one hour south of Sydney, and extends 250km along a coastal strip. The three largest hospitals comprise one principal referral hospital (550 beds), a large acute hospital (150 beds) and a medium acute hospital (100 beds). The remaining six hospitals are either small acute or mixed sub- and non-acute. This study employed Plan, Do, Study, Act (PDSA) quality improvement methodology.

Antimicrobial Stewardship

In May and June 2012, an ASP supported by a computerised clinical decision support system (CDSS; GuidanceMS) was uniformly implemented across the district’s nine hospitals. In addition to the CDSS, the ASP involved a restriction policy, whereby broad spectrum antimicrobials were only stocked in pharmacy (with supply contingent on CDSS approval) or specialist areas (i.e. intensive care unit [ICU], emergency department, haematology/oncology ward). An education campaign
involved regular departmental presentations, and an intranet webpage was established to improve access to guidelines. Regular AMS rounds occurred at the three largest hospitals, and an antimicrobial advice telephone hotline was established across the district to support the smaller hospitals without onsite AMS clinicians. See Figure 1 for the study flowchart. There were no major changes to infection control policies related to either *Clostridium difficile* or hand hygiene during the study period.

Following a review of HCA-CDI rates, in April 2013 the AMS team (infectious diseases doctors and pharmacists) introduced a targeted CDI intervention. The AMS pharmacist audited all CDI cases for the following: patient demographics, risk factors, antimicrobial treatment, severe disease,3 ICU admission, surgical intervention, and NAP1/027 strain. A feedback email was then sent to the attending medical officer (AMO) within two weeks (Appendix A). Qualitative analysis of email responses determined the level of acceptance by AMOs. Responses were categorised as clinical feedback, basic acknowledgment or defensive. The appropriateness of HCA-CDI treatment3 was assessed during AMS rounds or retrospectively from medical notes. Results were presented to the AMS, drug and therapeutics, and infection control committees.

Clostridium difficile laboratory testing

From December 2010, our laboratory protocol subjected all diarrhoeal stools to *Clostridium difficile* testing. First line testing targeted glutamate dehydrogenase
(GDH) antigen and toxins A and B (C. Diff Quik Chek Complete®, Techlab, Blacksburg, VA, USA). If those tests were discordant, then a polymerase chain reaction (PCR; GeneXpert®, Cepheid, Sunnyvale, CA, USA) test was employed, which could also detect the NAP1/027 strain.

Effect of HCA-CDI on LOS and hospital costs

LOS and hospital cost analysis was performed only for the three acute hospitals due to a shortage of matched controls and other confounders for LOS at smaller hospitals (e.g. nursing home availability, social factors). Definitions for HCA-CDI were: HCA-healthcare facility onset, diarrhoea onset >48 hours after admission; HCA-community onset, diarrhoea onset in the community or <48 hours after admission, but within four weeks of last discharge.\(^{18}\) Demographic data for HCA-CDI cases did not differ significantly between hospitals, or between the two types of HCA-CDI (data not shown).

A post hoc analysis of LOS and hospital costs was conducted for those HCA-CDI cases identified from 1\(^{st}\) April 2013 to 30\(^{th}\) April 2014. Matched controls were identified from diagnosis-related group (DRG) data\(^{19}\) for HCA-CDI cases (\(N=103\)). Controls were identified from 1\(^{st}\) January 2013 to 30\(^{th}\) June 2014. Two controls were matched to each case by site, sex, age (+/- 5 years), and DRG (81 cases). Where two matched controls were not available, one control was identified (10 cases), resulting in 91 cases and 172 controls (Figure 1). DRGs were grouped and the most common
DRGs were reported. Additional analysis was performed on those HCA-CDI cases and controls with LOS of ≥8 days to address time-dependent biases (8 days equalled the median time to HCA-CDI onset).

Antimicrobial and PPI use

Antimicrobial use within one month prior to diagnosis among HCA-CDI patients was compared with background antimicrobial use data, regularly collected in Australia as part of standard surveillance reports. Those data (defined daily doses [DDDs] per 1000 occupied bed days [OBDs]) from the three acute hospitals were derived from the Australian National Antimicrobial Utilisation Surveillance Program (from pharmacy software) and the Australian National Antimicrobial Prescribing Survey (point prevalence survey in November 2013, seasonally corrected, antimicrobial class use as a percentage of total use). PPI use was also compared with background use (point prevalence survey 2013).

Statistical analyses

Interrupted time series analysis 20 was used to assess HCA-CDI rates at the three large hospitals (due to comparability of acute OBD data). Data were included from December 2010 (earliest time point with current CDI testing methods) to April 2016, with the intervention point defined as May 2012 (introduction of multisite ASP).
Separate analyses were performed for May 2012- Mar 2013 and April 2013 onwards (targeted CDI intervention). Since those periods did not reveal any significant differences (data not shown) the post-intervention period was reported as one interval. A chi-square test was used for proportions or Fisher’s exact test where appropriate. A Mann-Whitney U-test was used to compare continuous variables such as LOS and hospital costs. Stata® Statistical Software Version 14 was used (Statacorp, College Station, Texas, USA). Significance was accepted as $P<0.05$.

Ethics

Ethics approval was received from the joint University of Wollongong and Illawarra Shoalhaven Local Health District (ISLHD) Human Research Ethics Committee, approval number HE13/137.
Results

Figure 2 shows interrupted time series analysis of monthly HCA-CDI rates. The model-predicted HCA-CDI rate in December 2010 was 3.07 cases/10,000 OBDs. Prior to introduction of the ASP, the model-predicted rate was 4.6 cases/10,000 OBDs. Following ASP’s introduction, and including the targeted email intervention, HCA-CDI rates remained stable at 4 cases/10,000 OBDs. None of those differences reached statistical significance. Detailed time series data are provided in Appendix B.

During the targeted intervention phase from April 2013 to April 2014, 120 primary HCA-CDI cases were identified. The median age was 73 years (interquartile range [IQR] 63-81yrs) and 51/120 patients were male (43%). Antimicrobials one month prior to HCA-CDI diagnosis were received by 107/120 patients (89%). Severe disease was identified in 8/120 (7%) cases; there were 8/120 (7%) ICU admissions, no surgical interventions, and no NAP1/027 strains.

Of the emails sent to AMOs for 120 HCA-CDI cases from April 2013-14, 23 responses were received (19% response rate). Of those responses, 10 contained clinical feedback, 13 contained basic acknowledgement, and there were no defensive responses. Examples of clinical feedback responses were: “...in the setting of immune suppression and...other complications with chemo I am treating C diff…”; and, “the (antibiotic) was for aspiration… the PPI (was) longstanding…”.
Median LOS was 11 days greater for HCA-CDI patients \((N=91; \text{17 days [IQR 8-27]})\) than their matched controls \((N=172; \text{6 days [IQR 3-12]}; P<0.01)\). Also, median hospital cost was AU$11,361 higher for the HCA-CDI group \((\text{AU$19,222 [IQR $7,817 - $41,337]}\)) compared to controls \((\text{AU$7,861 [IQR $3,477 - $14,553]}; P<0.01)\). The median time to onset of HCA-CDI was 8 days (IQR 4-14).

The median hospital cost for 48 HCA-CDI patients with LOS \(\geq 8\) days was AU$17,832 (IQR 9,472-28,840) vs. AU$12,563 (9,072-20,086) for 70 controls with LOS \(\geq 8\) days \((P=0.17)\). For patients with LOS \(\geq 8\) days, the median LOS was 16 days (IQR 10-26) for HCA-CDI cases vs. 15 days (IQR 12-26) for controls. After excluding non-treated patients \((N=6)\) with available controls \((N=11)\), the difference between HCA-CDI patients and controls persisted for median LOS \((18 \text{ vs. 7 days}; P<0.01)\) and cost \((\text{AU$20,245 vs. $8,924}; P<0.01)\). The five most common primary DRG groups among 263 HCA-CDI cases and controls were: gastrointestinal \((N=18 \text{ for cases, } N=36 \text{ for controls})\), haematological malignancy \((N=9, N=17)\), orthopaedic surgery \((N=8, N=15)\), abdominal surgery \((N=6, N=10)\), and cardiac \((N=5, N=9)\).

Antimicrobial use among the HCA-CDI group at the three acute hospitals was compared with background antimicrobial use. Over-represented in HCA-CDI patients were third generation cephalosporins (e.g. ceftriaxone; 34% of total use in HCA-CDI patients vs. 11% of background use; \(P<0.01\)), beta-lactamase inhibitor combinations (e.g. piperacillin/tazobactam; 58% vs. 36%; \(P=0.01\)), nitroimidazoles (e.g.}
metronidazole; 28% vs. 11%; $P<0.01$), and glycopeptides (e.g. vancomycin; 23% vs. 6%; $P<0.01$). Under-represented in HCA-CDI patients were beta lactamase resistant penicillins (e.g. flucloxacillin; 7% vs. 18%; $P=0.02$), beta lactamase sensitive penicillins (e.g. benzylpenicillin; 2% vs. 9%; $P=0.03$), extended spectrum penicillins (e.g. ampicillin; 14% vs. 33%; $P=0.03$), macrolides (e.g. azithromycin; 4% vs. 19%; $P<0.01$), and tetracyclines (e.g. doxycycline; 4% vs. 38%; $P<0.01$).

Vancomycin and metronidazole were over-represented in HCA-CDI patients, but are also recommended for CDI treatment. Those two classes were further analysed. For vancomycin, the most commonly co-prescribed antimicrobial was piperacillin/tazobactam (11/25) with febrile neutropenia the commonest known indication (9/11). Vancomycin use was intravenous in all of those cases. For metronidazole, the most commonly co-prescribed antimicrobial was ceftriaxone (13/35), predominantly for abdominal infections (10/13). There was an overall decrease in use of broad spectrum antimicrobials following implementation of the multisite ASP (data not shown). PPI use was documented in 83/120 (69%) HCA-CDI patients compared with 343/730 (47%) patients audited as part of the local 2013 point prevalence survey ($P<0.01$).

In non-severe HCA-CDI treated at the acute hospitals ($N=95$), oral metronidazole was initiated in 78 (82%) cases. Oral vancomycin plus oral metronidazole was used in eight (8%) cases, where metronidazole alone would have sufficed.\(^3\) No therapy was given in nine non-severe cases, due to cessation of diarrhoea with or without identification of an alternative correctable cause. In the severe HCA-CDI group
(N=8), oral metronidazole was initiated in 4 (50%) cases, where oral vancomycin, intravenous metronidazole or a combination was indicated. In those cases a relevant AMS intervention was made.
Discussion

Our study describes the relationship between HCA-CDI rates and a multisite ASP supported by a CDSS, education and antimicrobial restriction combined with targeted audit and feedback. Implementation of an ASP was temporally associated with stable HCA-CDI rates. Targeted interventions may help to combat the waning of the initial impact of a program over time. We found that in an Australian non-metropolitan setting, LOS and hospital costs were significantly increased in HCA-CDI patients when compared with matched controls. Increased antimicrobial and PPI use in patients with HCA-CDI were consistent with previous reports. Although the initial treatment of non-severe HCA-CDI cases predominantly matched guidelines, there was concerning use of oral metronidazole in half of the severe cases (albeit with small numbers). This was similar to previous findings elsewhere, likely resulting from under-recognition of severity criteria.

HCA-CDI has been associated with increased LOS and hospital costs. Most studies evaluating these effects were either epidemiological studies or performed in the metropolitan setting. To our knowledge this is the first study to combine evaluation of the burden of HCA-CDI with multisite ASP implementation in a regional and rural setting. Comparison with matched controls allowed for a pragmatic approach to identifying additional LOS and hospital costs associated with HCA-CDI. For those patients with LOS ≥ 8 days, there was a 42% increase in hospital costs in HCA-CDI patients compared with controls, despite similar LOS in those groups. This
highlighted the increased cost of caring for HCA-CDI patients additional to greater LOS, and alleviated the potential for time-dependent biases.

There were several limitations to this study. We included all positive *Clostridium difficile* tests during the targeted intervention phase, as the frequency of daily diarrhoeal episodes was unreliably documented. Alternative causes of diarrhoea may have been present in some patients carrying *Clostridium difficile*. We could not attribute the increase in LOS and hospital costs to HCA-CDI alone. Alternative statistical methods such as multi-state modelling to account for time-dependent biases, and propensity matching to accurately estimate the impacts of CDI have been proposed. To account for those limitations, we applied the case-control methodology in two additional subsets: the “long-stay” patients (≥8 days, the median time-to-onset of HCA-CDI) and only those treated for HCA-CDI. Those results were in line with our primary evaluation, emphasising the high LOS and cost burden of HCA-CDI. As expected, gastrointestinal DRGs were overrepresented. In some cases the primary DRG may have been allocated to gastrointestinal due to CDI severity or duration.

Community cases could not be accurately assessed with the current study resources. Of 120 HCA-CDI cases, only 91 were eventually analysed for LOS and cost. Assessing the impact on HCA-CDI rates might have been confounded for antimicrobials (e.g. metronidazole, vancomycin) often given to treat CDI or co-administered with antimicrobials associated with HCA-CDI. Intravenous vancomycin has been associated with CDI; however, vancomycin was associated with CDI in this study only when combined with other antimicrobials. We did not evaluate
appropriateness of prior antimicrobial use, in order to define avoidable HCA-CDI cases. Detailed demographic data and prior antimicrobial use were not collected for controls, as this dataset was collected to allow for a post hoc analysis. Using background antimicrobial and PPI data allowed for larger numbers and accounted for the potential of bias due to under-reporting of those agents in control patients in whom CDI was not considered. However, detailed characteristics of patients from whom the background use data were derived were not available. The largest hospital accounted for two thirds of the total OBDs; hence its infection rate largely determined the overall rate. The response rate to emails was only 19%, limiting conclusions about their impact; however, responses were not requested in the initial email, and still some useful clinical feedback was received. Due to the hospitals’ geographic disparity, email remained the most pragmatic feedback method.

Patient complexity in our hospitals may be lower compared with larger metropolitan hospitals, limiting generalisability to those settings. Further studies combining evaluation of ASPs with targeted CDI interventions would be useful, particularly in multisite and non-metropolitan settings. In this study we identified high risk antimicrobial classes that have formed targets for ongoing AMS activities.

Our study demonstrates the high burden of HCA-CDI in a non-metropolitan setting. While it confirms the association between high-risk antimicrobial use and HCA-CDI, it also identifies the possibility of under-recognition of CDI severity criteria during treatment initiation. Targeted audit and feedback interventions may be a useful way of
consolidating the effects of a multisite ASP, contributing to sustainability, which remains one of the major challenges of contemporary antimicrobial stewardship.

Acknowledgments

Many thanks to Joanna Harris and Beth Bint for infection control expertise, Keith Wise, Peter Newton, and Jeannie Botes for CDI results, Eyra Munzner for data collection, Andrew McDonnell for performance data, and Rowena Hockings from ISLHD Research Central for statistical assistance.

Conflict of interest

None declared.
References

Figure 1: Study flowchart.

ASP, antimicrobial stewardship program; CDSS, clinical decision support system; HCA, healthcare associated; LOS, length of stay; risk factors, anti-peristaltic use, gastrointestinal surgery, immunosuppression; PPIs, proton pump inhibitors; HCA-CDI, healthcare associated *Clostridium difficile* infection; DRG, diagnosis-related group; background use, whole hospital prevalence data on antimicrobial use
Figure 2: HCA-CDI rates for the three acute hospitals in Illawarra Shoalhaven Local Health District, Australia from December 2010 to April 2016

Vertical line, implementation of antimicrobial stewardship program; HCA-CDI, healthcare associated *Clostridium difficile* infection; OBD, occupied bed day.

Appendix A: Exemplar feedback email to admitting medical officer on *Clostridium difficile* infection case

Dear Doctor,

As part of routine antimicrobial stewardship activities we are conducting a prospective audit into all episodes of C. diff diarrhoea across the district.
Your patient X (MRN: 111111) was diagnosed with C. diff diarrhoea on dd/mm/yyyy.

Potential risk factors for your patient included:

(As appropriate)

• Proton pump inhibitor use –
• Anti-peristaltic use –
• Prior GI surgery –
• Immunosuppression –
• Antimicrobial use within one month prior to diagnosis –

Details of antimicrobial treatment of CDI.

I’ve attached a copy of the audit form for your information. Please don’t hesitate to contact me if you have any questions.

Regards,

AMS pharmacist
Appendix B: HCA-CDI rates before and after implementation of an ASP

<table>
<thead>
<tr>
<th>HCA CDI per 10,000 OBDs, n (LCI, UCI)</th>
<th>Pre-ASP (Dec 2010 to April 2012)</th>
<th>Post-ASP (May 2012 to April 2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial level</td>
<td>3.07(^a)</td>
<td>-0.83(^a)</td>
</tr>
<tr>
<td>Initial trend</td>
<td>0.09(^a)</td>
<td>0.24</td>
</tr>
<tr>
<td>p-value</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Change in level</td>
<td>(-0.06-0.24)</td>
<td>(-2.25-0.58)</td>
</tr>
<tr>
<td>Change in trend</td>
<td>(-2.25-0.58)</td>
<td>(-0.24-0.07)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.23</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Initial level, number of cases of HCA-CDI per 10,000 occupied bed days per month; initial trend, rate of increase per month; change in level, immediate difference between pre-intervention and post-intervention cases; change in trend, difference between pre-intervention and post-intervention trend by month; ASP, antimicrobial stewardship program, detail described in Methods; HCA-CDI, healthcare associated Clostridium difficile infection, data included for the three large acute hospitals of the health district; OBDs, occupied bed days; LCI, lower 95% confidence interval; UCI, upper 95% confidence interval; \(^a\) adjusted for first order autocorrelation;