Neutron diffraction study of MnNiGa2 - Structural and magnetic behaviour

Jianli Wang
University of Wollongong, jianli@uow.edu.au

L Ma
Chinese Academy of Science

M Hofmann
Technische Universitat Munchen

M Avdeev
ANSTO

S J. Kennedy
ANSTO

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the [Engineering Commons](https://ro.uow.edu.au/aiimpapers), and the [Physical Sciences and Mathematics Commons](https://ro.uow.edu.au/aiimpapers)

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Neutron diffraction study of MnNiGa2 - Structural and magnetic behaviour

Abstract
MnNiGa2 crystallizes in the L21 (Heusler) structure and has a ferromagnetic ordering temperature $T_C \sim 192$ K. Rietveld refinement of the neutron diffraction patterns indicates that the Ga atoms occupy the equivalent 8c position, while Mn and Ni share the 4a (0, 0, 0) and 4b (0.5, 0.5, 0.5) sites with a mixed occupancy of Mn and Ni atoms. It is found that that $\sim 83\%$ of Mn and $\sim 17\%$ Ni are located at the 4a site while $\sim 83\%$ of Ni and $\sim 17\%$ Mn occupy the 4b site. There is no evidence of a magneto-volume effect around T_C. In agreement with this finding, our detailed critical exponent analyses of isothermal magnetization curves and the related Arrott plots confirm that the magnetic phase transition at T_C is second order.

Keywords
diffraction, magnetic, structural, mnniga2, study, behaviour, neutron

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
Jianli Wang, L Ma, M Hofmann, M Avdeev, S J. Kennedy, S J. Campbell, M F. Md Din, M Hoelzel, G H. Wu, and S X. Dou

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1000
Neutron diffraction study of MnNiGa2—Structural and magnetic behaviour
J. L. Wang, L. Ma, M. Hofmann, M. Avdeev, S. J. Kennedy, S. J. Campbell, M. F. Md Din, M. Hoelzel, G. H. Wu, and S. X. Dou

Citation: Journal of Applied Physics 115, 17A904 (2014); doi: 10.1063/1.4857455
View online: http://dx.doi.org/10.1063/1.4857455
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/115/17?ver=pdfcov
Published by the AIP Publishing
Neutron diffraction study of MnNiGa$_2$—Structural and magnetic behaviour

J. L. Wang, L. Ma, M. Hofmann, M. Avdeev, S. J. Kennedy, S. J. Campbell, M. F. Md Din, M. Hoelzel, G. H. Wu, and S. X. Dou

1Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
2Bragg Institute, ANSTO, Lucas Heights, NSW 2234, Australia
3School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Canberra, ACT 2600, Australia
4Institute for Superconductivity and Electronic Materials, University of Wollongong, Wollongong, NSW 2522, Australia
5Fachbereich Materialwissenschaften, Technische Universität Darmstadt, 64287 Darmstadt, Germany

(Received 8 November 2013; received 22 September 2013; accepted 10 October 2013; published online 7 January 2014)

MnNiGa$_2$ crystallizes in the L21 (Heusler) structure and has a ferromagnetic ordering temperature $T_C \approx 192$ K. Rietveld refinement of the neutron diffraction patterns indicates that the Ga atoms occupy the equivalent 8c position, while Mn and Ni share the 4a (0, 0, 0) and 4b (0.5, 0.5, 0.5) sites with a mixed occupancy of Mn and Ni atoms. It is found that that $\sim 83\%$ of Mn and $\sim 17\%$ Ni are located at the 4a site while $\sim 83\%$ of Ni and $\sim 17\%$ Mn occupy the 4b site. There is no evidence of a magneto-volume effect around T_C. In agreement with this finding, our detailed critical exponent analyses of isothermal magnetization curves and the related Arrott plots confirm that the magnetic phase transition at T_C is second order. © 2014 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4857455]

Ferromagnetic shape memory alloys are of great technical interest due to their unusual properties that provide new possibilities for applications as sensors and actuators [see, e.g., Ref. 1]. Interest in Mn-Ni-Ga-based ferromagnetic shape memory alloys continues unabated due to their unique magnetoelastic properties. 2 Of particular interest is the interplay between structural and magnetic properties and their role in determining shape memory behaviour. Much of the research has centred on the alloy MnNi$_2$Ga, which orders ferromagnetically at $T_C \approx 368$ K and undergoes a martensitic transformation at $T_m \approx 337$ K. 2 Due to the brittleness of MnNi$_2$Ga, the search for new materials has attracted significant interest in recent years. 3 Barman et al. 4 predicted the existence of a ferromagnetic shape memory alloy MnNiGa$_2$ using density-functional theory and confirmed that the Ga atoms occupy the equivalent 8c sites (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75) based on their x-ray data. Given that the atomic numbers of Mn (25), Ni (28), and Ga (31) are similar and that the order-dependent structure factors in the Heusler structure are small, determining the site occupancies. 5 As is also evident from Fig. 1(a) (right scale—inverse susceptibility) that below ~ 200 K the compound is in the ferromagnetic state. The sample has been measured in an applied field of $H = 50$ Oe on warming after first cooling in zero field (marked as ZFC). The field-cooled magnetization curve, FC, was then recorded on cooling in the same field of $H = 50$ Oe from 300 K to 5 K after ZFC. It can be seen from Figure 1(a) that different thermo-magnetic behaviours are detected for the ZFC and FC magnetization curves. This behaviour can be ascribed to the magneto-history effect originating from the narrow magnetic domain pinning. 6 Moreover, it can be seen that below ~ 55 K there exists a clear drop of magnetization in the FC magnetisation versus temperature curve with decreasing temperature, indicating the presence of anti-parallel magnetic coupling in this compound. The value of T_C has been derived to be 192 K that is very different from the value reported (240 K, i.e., well above T_C = 192 K, the inverse susceptibility follows Curie–Weiss (C–W) behaviour. Below ~ 240 K, however, a pronounced derivation from the C–W law is
observed, reflecting the presence of short-range FM ordering above T_C in this compound. In order to fully understand the magnetic behaviour of MnNiGa$_2$ around T_C, we have measured the variable temperature magnetization curves with a typical set of magnetization versus field curves shown in Figure 1(b). The positive slopes of the Arrott-plots confirm that the magnetic transition around T_C is of second order. According to the conventional static scaling law, the critical properties of a second-order magnetic transition can be described by the critical exponents β, γ, and δ as derived from magnetization measurements around the transition temperature. We use the Kouvel-Fisher (KF) method and the critical isotherm analysis at T_C to determine the critical exponents as drawn in Figures 2(a) and 2(b). The values of $\beta = 0.42$, $\gamma = 1.12$, and $\delta = 3.9$ have been derived. The mean field interaction model for long range ordering has theoretical critical exponents of $\beta = 0.5$, $\gamma = 1.0$, and $\delta = 3.0$, while theoretical values based on the three dimensional Heisenberg model corresponding to short range interactions are $\beta = 0.365$, $\gamma = 1.386$ and $\delta = 4.80$ [see, e.g., Ref. 11]. The values we have derived for β, γ and δ for NiMnGa$_2$ are close to the mean field model—indicating that long range ordering is dominant. According to the prediction of the scaling equation, the magnetic equation can be written as $M(H,e) = e^\beta f_e(H/e^{\beta+\gamma})$, where f_e are regular functions with f_e for $T > T_C$ and f_e for $T < T_C$. $e = (T-T_c)/T_C$ is the reduced temperature. Using the values of β and γ obtained above, we plotted the graph of M/e^β versus $H/e^{\beta+\gamma}$ as shown in Figure 2(c), which yields two universal curves, one for temperatures above T_C and the other for temperatures below T_C, in agreement with the scaling theory.

The magnetic entropy values, $-\Delta S_M$, around ferromagnetic ordering temperature for fields up to $B = 5$ T were derived from the magnetisation measurements using the standard Maxwell relationship as shown in Fig. 2(d). The changes in maximum magnetic entropy were plotted as a function of H around T_C in the inset on log$_{10}$-log$_{10}$ scale. The valid linear-relationship of $-\Delta S_M \propto (H/T_C)^{2/3}$ confirms that the magnetic phase transition around T_C belongs to second order as derived above.

As mentioned above, since the neutron scattering amplitudes of the three elements Mn, Ni, and Ga are significantly different, we carried out a detailed neutron diffraction investigation from 3 K to 300 K ($\lambda = 1.548 \text{ Å}$) to determine the atomic occupancies. In addition, we collected patterns at $T = 3$ K and 300 K with longer wavelength ($\lambda = 2.536 \text{ Å}$).
The low temperature pattern provided enhanced signals from the magnetic contributions while the higher temperature patterns (above T_C) were used to obtain information about the atomic occupancies. The diffraction patterns have been refined using the FULLPROF program package. The best refinements of the 300 K patterns indicate that Ga atoms occupy the (0.25, 0.25, 0.25) and (0.75, 0.75, 0.75) sites, which agrees well with the reported data based on X-ray results. However, we found that the Mn and Ni atoms share the 4a (0, 0, 0) and 4b (0.5, 0.5, 0.5) sites with a mixed occupancy of Mn and Ni atoms. Rietveld refinements of the neutron diffraction patterns (e.g., Fig. 3(a)) indicate that ~83% of Mn and ~17% Ni are located at the 4a site while ~83% of Ni and ~17% Mn occupy the 4b site. Given that x-rays cannot readily distinguish the difference of Ni and Mn, it is not surprising that this mixed occupancy could not be detected.

In principle, while magnetic diffraction can provide information about the magnetic structure of materials, in the case of MnNiGa_2, we found that the magnetic intensities are extremely low (see inset of Figure 3(b)); correspondingly free refinement of the crystal structure parameters and magnetic moments on metal sites led to unstable fits. We therefore imposed some reasonable constraints to refine the neutron patterns collected below the magnetic transition temperature: (1) we fixed the occupancy factors determined from the room temperature; (2) an overall magnetic moment was varied for each metal site rather than for individual Mn and Ni moments; (3) the total moment was fixed to the value of spontaneous magnetization from our magnetic measurements (e.g., M_s = 0.85 \mu_B at 10 K). A number of refinements were then carried out with the moment on the 4a and 4b sites allowed to vary in the range from -1.4 \mu_B to 2.1 \mu_B with a step (\Delta = 0.2 \mu_B). As drawn in the inset of Figure 3(a), the magnetic R-factor (R_{mag}) demonstrates two minima (mirror type): M_{4a} = -0.65 \mu_B and M_{4b} = 1.50 \mu_B. Considering the symmetry of MnNiGa_2 (Fm-3m), we conclude that there exists linear anti-parallel coupling between moments at the 4a and 4b site and the moments are determined to be M_{4a} = -0.65 \mu_B and M_{4b} = 1.50 \mu_B. The temperature dependence of the lattice constant as derived from the refinements is shown in Fig. 3(c) with no indication of an obvious magnetovolume effect around T_C. This is also emphasised by the dashed line through the data in Fig. 3(c), which represents the phonon contribution to the thermal expansion for Debye temperature \theta_D = 300 K.

Detailed investigations of the magnetic and structural behaviours of MnNiGa_2 below 300 K have shown that the Ga atoms occupy the equivalent sites 8c, while Mn and Ni show a mixed occupancy at both the 4a and 4b sites. The magnetic atoms at 4a and 4b sites show an antiparallel coupling with the moment values of 0.65 \mu_B and 1.50 \mu_B, respectively, as estimated by a constrained Rietveld analysis. The magnetic phase transition at T_C is shown to be second order with detailed critical exponent analyses demonstrating that long-range order magnetic interactions dominate.