Construction of amicable orthogonal designs

Jennifer Seberry

University of Wollongong, jennie@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/infopapers

Recommended Citation
Seberry, Jennifer: Construction of amicable orthogonal designs 1975.
https://ro.uow.edu.au/infopapers/962

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Construction of amicable orthogonal designs

Abstract
Infinite families of amicable orthogonal designs are constructed with
(i) both of type \((1, q)\) in order \(q + 1\) when \(q = 3, (\text{mod } 4)\) is a prime power,
(ii) both of type \((1, q)\) in order \(2(q+1)\) where \(q = 1, (\text{mod } 4)\) is a prime power or \(q + 1\) is the order of a conference matrix,
(iii) both of type \((2, 2q)\) in order \(2(q+1)\) when \(q = 1, (\text{mod } 4)\) is a prime power or \(q + 1\) is the order of a conference matrix.

Disciplines
Physical Sciences and Mathematics

Publication Details
Constructions for amicable orthogonal designs

Jennifer Seberry Wallis

Infinite families of amicable orthogonal designs are constructed with

(i) both of type \((1, q)\) in order \(q + 1\) when \(q \equiv 3 \pmod{4}\) is a prime power,

(ii) both of type \((1, q)\) in order \(2(q+1)\) where \(q \equiv 1 \pmod{4}\) is a prime power or \(q + 1\) is the order of a conference matrix,

(iii) both of type \((2, 2q)\) in order \(2(q+1)\) when \(q \equiv 1 \pmod{4}\) is a prime power or \(q + 1\) is the order of a conference matrix.

Introduction

The concept of an orthogonal design was first introduced in [1]. An \(n \times n\) matrix, \(X\), is an orthogonal design of type \(\{u_1, u_2, \ldots, u_s\}\) on the variables \(x_1, x_2, \ldots, x_s\) in order \(n\) if \(X\) has entries from the set \(\{0, \pm x_1, \ldots, \pm x_s\}\) and

\[
XX^T = \left[u_1 x_1^2 + u_2 x_2^2 + \cdots + u_s x_s^2 \right] I_n,
\]

where \(I_n\) denotes the identity matrix of order \(n\). It was shown in [1] that if there is a pair of orthogonal designs, \(X, Y\), which satisfy the equation \(XY^T = YX^T\), then these designs became a powerful tool in the

Received 12 November 1974.

179
construction of new orthogonal designs (for example, see Construction 22 of [1]).

The existence of such designs has been studied further in [3] and limits are given on the number of variables possible in each design. We define

DEFINITION. Two orthogonal designs, \(X \), \(Y \), of the same order, satisfying

\[
XY^T = YX^T,
\]

will be called amicable orthogonal designs.

In this note we construct infinite families of amicable orthogonal designs.

The constructions

Let \(q = p^n \) be a prime power. Then with \(a_0, a_1, \ldots, a_{q-1} \) the elements of \(\mathbb{GF}(q) \) numbered so that

\[
a_0 = 0, \quad a_{q-i} = -a_i, \quad i = 1, \ldots, q-1,
\]

define \(Q = (x_{i,j}) \) by

\[
x_{i,j} = \chi(a_i-a_j),
\]

where \(\chi \) is the character defined on \(\mathbb{GF}(q) \) by

\[
\chi(x) = \begin{cases}
0, & x = 0, \\
1, & x = y^2 \text{ for some } y \in \mathbb{GF}(q), \\
-1, & \text{otherwise}.
\end{cases}
\]

Then \(Q \) is a type 1 matrix (see [2; p. 285-291]) with the properties that

\[
\begin{align*}
QQ^T &= qI - J, \\
QJ &= JQ = 0, \\
Q^T &= \begin{cases}
Q & \text{for } q \equiv 1 \pmod{4}, \\
-Q & \text{for } q \equiv 3 \pmod{4},
\end{cases}
\end{align*}
\]

where \(I \) is the identity matrix and \(J \) the matrix of all ones.
Now let $U = aI + dQ$ where a, d are commuting variables. Define $R = \{ r_{ij} \}$ by

$$
\begin{cases}
1, & a_i + a_j = 0, \\
0, & \text{otherwise}.
\end{cases}
$$

Then, as in [2, p. 289] UR is a symmetric type 2 matrix.

We now consider the matrices

$$
A = \begin{bmatrix} a & b & \ldots & b \\ -b & \vdots & \ddots & \vdots \\ \vdots & aI+bQ & \ddots & \vdots \\ -b & \vdots & \ddots & -b \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} -c & d & \ldots & d \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & d \\ (aI+dQ)R & \vdots & \ddots & d \end{bmatrix}
$$

of order $q + 1$, where a, b, c, d are commuting variables.

We claim that for $q \equiv 3 \pmod{4}$,

(i) A and B are orthogonal designs, and

(ii) $AB^T = BA^T$ (this follows since $aI + bQ$ is type 1 and $(aI + dQ)R$ is type 2).

Hence we have

Theorem 1. Let $q \equiv 3 \pmod{4}$ be a prime power. Then there exists a pair of amicable orthogonal designs of order $q + 1$ and both of type $(1, q)$.

Further we note that for $q \equiv 1 \pmod{4}$ choosing

$$
N = \begin{bmatrix} 0 & 1 & \ldots & 1 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 1 & \ldots & 1 & 0 \end{bmatrix}
$$

gives a $(0, 1, -1)$ matrix N satisfying

$$
N^T = N, \quad NN^T = qI_{q+1}.
$$

Such matrices have been called symmetric conference matrices (see [2, 293, 452]) and we have
THEOREM 2. Let \(n + 1 \equiv 2 \pmod{4} \) be the order of a symmetric conference matrix. Then there exist pairs of amicable orthogonal designs of order \(2(n+1) \) and both of the pair of type

(i) \((2, 2n)\),

(ii) \((1, n)\).

Proof. Let \(N \) be a symmetric conference matrix and \(a, b, c, d \) be commuting variables. Then for (i) the required designs are

\[
\begin{bmatrix}
 aI+bn & aI-bn \\
 aI-bn & -aI+bn
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
 aI+dn & aI-dn \\
 -aI+dn & aI-dn
\end{bmatrix},
\]

while for (ii) they are

\[
\begin{bmatrix}
 aI & bN \\
 bN & -aI
\end{bmatrix}
\quad \text{and} \quad
\begin{bmatrix}
 aI & dN \\
 -dN & aI
\end{bmatrix}.
\]

COROLLARY. Let \(q \equiv 1 \pmod{4} \) be a prime power. Then there exist pairs of amicable Hadamard designs of order \(2(q+1) \) where both of the pair are of type \((2, 2q)\) or of type \((1, q)\).

References

