Problem solving in technology-supported learning environments

G. Brickell
University of Wollongong, gbrickel@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Problem Solving in Technology-Supported Learning Environments

Gwyn Brickell

B.Sc. (NSW), Dip.Ed. (W'gong), M.Ed. (W'gong).

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Education from the Faculty of Education, University of Wollongong.

April, 2002
Abstract

The increasing availability of technology-supported learning environments designed to enhance the development of skills for life-long learning in the classroom and the wider community provides opportunities for student-centred and cooperative learning. Researchers experimenting with these learning environments are attempting to use cognitive tools to scaffold learners in the process of a cognitive task, usually presented in the form of a problem. Constructivist approaches to learning shifts the focus for organising knowledge construction from the teacher to the learner. Learners therefore need to develop a range of information processing skills to cope with this approach to learning. When faced with the responsibility for knowledge construction, they are thrown on their own management resources. While some may have the metacognitive skills to cope, many fend poorly in the increased complexity of such a learning environment. Many see the task as daunting and complex and feel ill-prepared for such creative freedom and choice of direction. Such learners need tools to help them represent the knowledge they are acquiring.

This study explores ways in which a range of support frameworks may be used to assist learners when solving problems of an ill-structured nature. The main objective was to gain a better understanding of how learners identify, organise and present information when problem solving in technology supported learning environments. The research has focussed on the three main areas: problem clarification (identifying the nature of the task and what information was required or provided); solution formulation including data collection and the solution process (sorting out the resources and generating new information as required); and presentation of argument for the solution (identifying propositions and the appropriate evidence for support or refuting the argument). The primary data gathering strategies adopted for the study focussed on individual participants' notes, audio transcripts of think-aloud protocols, participant observation and participant interviews.
The results from the analysis of the collected data indicate that many learners have underdeveloped skills and find it difficult to adopt a systematic approach to both information gathering and in the analysis of supporting information. In constructing a response to the problems under investigation many participants preferentially consider one or two pieces of information rather than discriminating between issues. As a result of poor search strategies a number of participants missed access to essential information. Consequently this resulted in the formation of poorly constructed responses when developing an argument to support the answer to the problem under investigation.

Of the four frameworks introduced into the study, the Six Hats framework and the Critical Thinking framework appear to offer clearer strategies to assist learners with problem clarification and solution formulation. There was little difference in the quality of argument produced by participants using the different frameworks. The findings arising from the research suggest that many learners would benefit from cognitive support tools when engaged in solving ill-structured problems within technology supported learning environments.
Acknowledgement

Without the help, support and encouragement of a number of people, this thesis would neither have been started nor completed. I would like to take this opportunity to publicly thank all those involved.

In total, thirty-two pre-service teachers participated in the study and I would like to extend my appreciation to each of them for their cheerful and generous contributions and for their time and commitment associated with the data collection.

Specific acknowledgement is also due to my two supervisors, Professor Barry Harper and Doctor Brian Ferry who provided constant, prompt and supportive feedback that helped maintain my enthusiasm and direction.

I am also grateful to my peers and colleagues at the University of Wollongong for their guidance, support and friendship throughout this study.

To my wife Dianne, and our sons Scott, Evan and Paul, thank you for being there in helping maintain a focus on the important things in life.
I, Gwyn Brickell, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Education, in the Faculty of Education, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged.
The dissertation has not been submitted for qualifications at any other academic institution.

Signed:

Date:
Table of Contents

List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td></td>
</tr>
</tbody>
</table>

List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 1

1.1. Background
 1.1.1 The Problem 4
 1.1.2 Terminology used in Study 5
 1.1.3 Cognitive Tools 7
 1.1.4 Discussion of Research Materials 7
 1.1.5 Purpose of the Study 9
 1.1.6 Significance of the Study 9

1.2. Overview of Methodology
 1.2.1 Theoretical Perspective 11
 1.2.2 Research Questions 12
 1.2.3 Research Strategies and Data Sources 13
 1.2.4 The Participants 13
 1.2.5 Limitations 14

1.3. Structure of Thesis 15

Chapter 2

2.1. Problem Solving and Related Concepts
 2.1.1 Well-structured and ill-structured Problems 23
 2.1.2 Learning Strategies and Information Processing Theory 26
 2.1.3 Mental Representations of the Problem 31
 2.1.4 Scaffolding 32
 2.1.5 Transfer 35
 2.1.6 Reasoning 36
 2.1.7 Argumentation 37

2.2. Learning Theory and Problem Solving
 2.2.1 Constructivism 39
 2.2.2 Constructivism: associations with Learning Theories 41
 2.2.3 Constructivism: associations with Problem solving 44

2.3. Technology Supported Learning Environments 52
Chapter 3

3.1 Introduction 67
3.2 Research Protocols 69
3.3 The Study 72
 3.3.1 Site and Participants 72
 3.3.2 Research Materials and Strategies Used 73
3.4 Data Collection Process 82
 3.4.1 Ethics 82
 3.4.2 Orientation Phase 83
 3.4.3 Training Phase 83
 3.4.4 Problem Solving Phase 85
 3.4.5 Triangulation of Data 88
3.5 Data Analysis 90

Chapter 4

4.1 Introduction 92
4.2 Methods of Analysis 93
 4.2.1 Phase 1 - Preliminary Analysis
 4.2.1.1 Participant access to data 93
 4.2.1.2 Participant Strategies 97
 4.2.1.3 Evidence of Framework use 101
 4.2.2 Phase 2 - Research Question 1
 4.2.2.1 Critical Thinking Framework - Case 1 104
 Action Plan CT2 - Problem 1 105
 Action Plan CT2- Problem 2 109
 Summary of Group Profiles 113
 4.2.2.2 Six Thinking Hats Framework - Case 2 116
 Action Plan SH7 - Problem 1 117
 Action Plan SH7 - Problem 2 119
 Summary of Group Profiles 122
 4.2.2.3 Venn Diagram Framework - Case 3 126
 Action Plan VD7 - Problem 1 126
 Action Plan VD7 - Problem 2 128
 Summary of Group Profiles 130
 4.2.2.4 Concept Mapping Framework - Case 4 133
 Action Plan CM4 - Problem 1 135
 Action Plan CM4 - Problem 2 138
4.3 Summary

Chapter 5

5.1 Introduction
5.2 Cognitive Strategies used by Learners
5.3 Impact of Support Framework on Learners
5.4 Use of Guides
5.5 The need for Scaffolding
5.6 Conclusion
5.7 Implications for future research into Supporting Frameworks.

References

Appendices
List of Tables

Chapter 2

Table 2.1 Comparison of Problem Solving Models 20
Table 2.2 Characteristics of well-structured and ill-structures problems 23

Chapter 3

Table 3.1 Data Collection Procedures 70
Table 3.2 Research Protocols 71
Table 3.3 Weekly Schedule for Study 72
Table 3.4 Comparison of Critical/Non-critical Thinking 75
Table 3.5 Time Allocation 86

Chapter 4

Table 4.1 Access & Use of Evidence to support problem 1 95
Table 4.2 Access & Use of Evidence to support problem 2 96
Table 4.3 Identifiable Learning Skills – Problem 1 99
Table 4.4 Identifiable Learning Skills – Problem 2 100
Table 4.5 Action Steps for Problem Solving 103
Table 4.6 Analysis of action steps in cognitive strategies used in individual problem solving process (Critical Thinking) 115
Table 4.7 Analysis of action steps in cognitive strategies used in individual problem solving process (Six Hats) 124
Table 4.8 Analysis of action steps in cognitive strategies used in individual problem solving process (Venn Diagram)) 132
Table 4.9 Analysis of action steps in cognitive strategies used in individual problem solving process (Concept Map) 142
Table 4.10 Criteria used in assessing use of support framework 145
Table 4.11 Use of Critical Thinking Framework 148
Table 4.12 Use of Six Hats Framework 151
Table 4.13 Use of Venn Diagram Framework 155
Table 4.14 Use of Concept Map Framework 159
List of Figures

Chapter 2

Figure 2.1 Suggested Problem Solving Model 22
Figure 2.2 Model of the Human Memory System (after Ormrod, 2000) 27
Figure 2.3 Information Processing Model (after Gick, 1986) 28
Figure 2.4 Overview of the learning process (after Barker et al, 1998) 31
Figure 2.5 Solution Framework (after Land & Hannafin, 1996) 34
Figure 2.6 A systemic framework for arguments (after Palonis et al. 1999) 38

Chapter 3

Figure 3.1 PDA viewer and electronic notebook 80
Figure 3.2 The Water Research Centre 84
Figure 3.3 Setting for Problem 1 86
Figure 3.4 Setting for Problem 2 88

Chapter 5

Figure 5.1 Demonstrated weaknesses in problem solving 185
Figure 5.2 Proposed Solution Framework 187