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New pieces to the Archaean terrane jigsaw puzzle in the Nuuk region, southern 

West Greenland: Steps in transforming a simple insight into a complex regional 

tectonothermal model 
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2 Research School of Earth Sciences, Australian National University, Canberra, ACT 0200, 
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Abstract:  In the south of the Nuuk region of West Greenland our 1980s mapping recognised four Archaean 

gneiss terranes (Færingehavn, Tre Brødre, Tasiusarsuaq and Akia terranes) with different protolith ages and 

separate early tectono-thermal histories.  Later in the Archaean these were juxtaposed and then experienced the 

same 2700-2500 Ma tectono-thermal events.  Here we abandon extrapolation of only these four terranes across 

the whole region, and distinguish two new terranes in the northeast.  The northernmost Isukasia terrane 

(previously regarded as the northernmost exposure of the Færingehavn terrane) consists of Palaeoarchaean 

rocks (>3600 Ma) tectonically bounded on its south by the 3075-2960 Ma Kapisilik terrane – these were 

juxtaposed and metamorphosed together by 2950 Ma.  The previously recognised Færingehavn terrane to the 

southwest is another, separate entity of Palaeoarchaean rocks that was juxtaposed with adjacent terranes only 

after c. 2800 Ma. Hence in an increasingly complex regional model, there were several mid- to Neoarchaean 

terrane assembly events, with superimposed “orogenies” from c. 2950 Ma until after 2700 Ma. Although the 

Færingehavn and Isukasia terranes were incorporated into the later Archaean terrane collage at different times, 

they might be disporia from a larger Palaeoarchaean complex rifted apart from c. 3500 Ma onwards. 
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Much of the Archaean (>2500 Ma) geological record is dominated by polyphase banded granulite-amphibolite 

facies orthogneisses displaying complex tectonothermal histories (e.g., McGregor 1973).  As barometry on 

these complexes always yields pressures of 5 to 10 Kbar (starting from Wells 1976) these gneisses must 

represent deep levels of ancient orogens.  However, the general lithological uniformity of these ancient 

basement rocks has hampered understanding the orogenies that moulded them.  In contrast, Phanerozoic 

orogens contain distinctive arrays of both basement rocks and cover sequences (not deformed prior to the 

orogeny) that have eased interpretation of their tectonothermal evolution that, nowadays, is understood via 

plate tectonics involving lithospheric motions.  This causes juxtaposition of tectono-stratigraphic terranes of 

unrelated rocks as described by Coney et al. (1980). 

In the Nuuk region of southern West Greenland, Friend et al. (1987, 1988) recognised that the 

Archaean orthogneiss complex is divided into tectono-stratigraphic terranes bounded by (commonly folded) 

amphibolite facies Archaean mylonites (Fig. 1). These terranes have different early histories prior to tectonic 

juxtaposition along the mylonites later in the Archaean (Friend et al. 1987, 1988; Nutman et al. 1989). This 

simple insight enabled understanding of the gneiss complexes to be viewed in a more modern perspective 

(Table 1).  Thus McGregor et al. (1991) proposed that the region presented a deeply eroded (only basement 

rocks present) Archaean continent-continent collision zone, and produced the first tentative sketches of how 

the proposed collision zone might have evolved from c. 2800 to 2550 Ma. This understanding of Archaean 

gneiss complexes has been paralleled by a new understanding of Archaean (lower metamorphic grade) 

granite-greenstone terranes via plate tectonic principals. Several granite greenstone terrains have now provided 

well-documented evidence of tectonic assembly of different portions, for example in Barberton (e.g. Lowe et 

al. 1999), and the Superior Province (e.g. Calvert & Ludden 1998; Percival 2001).  Greenstone-granite terranes 

have been proposed as representing higher crustal levels than the gneiss complexes (e.g. Tarney et al. 1976; 

Percival et al. 2001 and refs. therein). Thus granite-greenstone terranes and gneiss complexes probably 

represent nothing else but different exposure levels through Archaean crust, rather than having formed by 

entirely different mechanisms.  

Using the simple observation that Nuuk region Archaean gneiss complex is divided into mylonite- 

bounded terranes of unrelated rocks (Fig. 1, Table 1), we have up to now, tried to accommodate the 

tectonothermal evolution of the region using only the four terranes first identified in the south and west, the 
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Færingehavn, Tasiusarsuaq, Tre Brødre and Akia terranes of Friend et al. (1987, 1988).  This basic 

interpretation has been independently verified in the south by a detailed integrated structural and U-Pb mineral 

dating study (Fig. 1; Crowley, 2002).  In this paper we abandon the approach of using only four terranes for the 

region, and recognise that additional terranes are present, starting here with the introduction of the Isukasia and 

Kapisilik terranes in the north and east (Fig. 1).  This is a further application of the simple insight of recognition 

of assembly of unrelated terranes to create increasingly accurate regional geological syntheses.  A parallel 

would be at the advent of plate tectonics regarding the European Alps as containing a single simple collision, 

rather than as now realised that it contains several collisional events, that were also superimposed on older 

tectonothermal events within the involved blocks of basement rocks.  

Other Precambrian high-grade gneiss complexes are now also recognised to consist of individual 

tectono-stratigraphic terranes that were sequentially assembled during ancient orogenies throughout the 

Archaean and Proterozoic.  For example, a similar scenario of terrane assembly is proposed for the Narryer 

Gneiss Complex in Western Australia (Nutman et al. 1993), and in NW Scotland the Lewisian Gneiss 

Complex has been shown to have been assembled between c. 2400 and 1670 Ma (Friend & Kinny 2001; Love 

et al. 2004).  Additionally, the southern part of the West Greenland craton would also appear to be made up of 

terranes that were assembled in the Neoarchaean (Friend & Nutman 2001) and a similar model has recently 

been proposed for southern India (e.g. Radhakrishna et al. 2003). 

 

Interpretations of crustal evolution in the Nuuk region 

McGregor (1973, 1979) demonstrated that the “grey gneisses” of the Archaean high-grade gneiss 

complex of southern West Greenland were derived from plutonic rocks of predominantly tonalitic 

composition, rather than being granitised quartzo-feldspathic sediments as previously thought (Table 1). Based 

on regional Pb-Pb and Rb/Sr isochron suites (Black et al. 1971; Moorbath et al. 1972; Taylor et al. 1980) 

recognised two main pulses of juvenile crust (tonalite) formation, the Palaeoarchaean Amîtsoq gneisses (the 

dominant component of what we now term the Itsaq Gneiss Complex – Nutman et al., 1996) and the mid to 

Neoarchaean Nûk gneisses (Table 1). These were considered to be followed by a single Meso-Neoarchaean 

peak granulite-amphibolite facies metamorphic event (Wells 1976, 1979) and finally by a pulse of crustal 

melting at c. 2550 Ma represented by the Qôrqut granite (Brown et al. 1981).  These findings permitted the first 
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modern tectonic interpretations of Archaean gneiss complexes, with consideration of processes operating in 

the Phanerozoic such as horizontal lithospheric motions (e.g. Talbot 1973; Bridgwater et al. 1974). Greater 

complexity in the Nuuk region geology was revealed by further geological studies (e.g., McGregor et al. 1983) 

combined with more zircon dating (e.g. Baadsgaard & McGregor 1981). Increasingly, the model of two pulses 

of juvenile crust formation followed by a single regional granulite-amphibolite facies metamorphism and 

finally intrusion of the Qôrqut granite could no longer accommodate the accumulating data. 

In the south and west of the region, Friend et al. (1987, 1988) recognised the Færingehavn, Tre Brødre, 

Tasiusarsuaq and Akia tectono-stratigraphic terranes (Fig. 1b) separated from each other by deformed, 

amphibolite facies Archaean mylonites (mostly <5 m wide).  Each of these terranes is dominated by their own 

suite of juvenile crust tonalitic rocks and they display early structures and metamorphism unique to that terrane 

(Friend et al. 1988; Nutman et al. 1989).  Later in the Archaean these terranes were tectonically juxtaposed 

with each other (Table 1). Afterwards, the terranes and their mylonitic boundaries experienced the same 

superimposed later metamorphic and structural history, and were cut by late granites.  This simple insight 

accommodated all accumulated data from the region. The region was then viewed as containing a 

continent-continent collision (McGregor et al. 1991), probably coinciding with major regional metamorphism 

at c. 2700 Ma (Friend et al. 1996). The terrane model was tested in the south of the region by Crowley (2002). 

He also found evidence for terranes with different protolith ages and early metamorphic histories that were 

later tectonically juxtaposed and deformed together. 

The mylonites bounding the different terranes in high-grade gneiss complexes are hard to recognise 

because (a) they are typically narrow (<5 m), commonly folded in later events and metamorphosed, and (b) the 

gneisses on either side can appear similar in the field even though they can be very different in age and early 

histories (see data in Friend et al. 1987, 1988; Nutman et al. 1989; McGregor et al. 1991).  Additionally, 

because of subsequent polyphase deformation and metamorphism mylonites have recrystallised and mostly do 

not preserve kinematic indicators relating to movements during terrane assembly (e.g. Friend et al. 1987; 

Crowley 2002).  Locally, granitoid sheets cut the Neoarchaean mylonites or were incorporated into them as 

lithons during some of the latest movements.  Dating these sheets and lithons provides some constraints on the 

timing of mylonite development, for example as used to constrain Palaeoarchaean mylonites (Nutman et al. 

2002).  However, because granitoid lithons do not occur in all mylonites, recording early crustal evolution and 
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growth via terrane assembly largely depends on accurate dating of the protolith components and the 

metamorphic events on either side of the mylonites bounding terranes. 

The Nuuk region (almost the area of Switzerland) is mostly covered by GEUS (Geological Survey of 

Denmark and Greenland) 1:100,000 scale maps, produced before tectono-stratigraphic terrane assembly was 

recognised in the region.  Although our interpretations can diverge considerably from these maps, they still 

represent an indispensable resource for work in the region.  Consequently, our terrane assembly models for the 

whole region which grew out of detailed work in the south and west (Table 1; Friend et al. 1987, 1988 and 

onwards), have largely been based on combining interpretations of this regional mapping with an expanding 

coverage of our own key locality remapping and our U-Pb zircon dating (e.g. Friend et al. 1996; Nutman et al. 

2002).  Inevitably, therefore, there is more U-Pb zircon dating and remapping in some parts of the region than 

others. 

Our regional syntheses from the late 1980s until now have tried to extrapolate the four first recognised 

terranes across the whole region, including the least known eastern part (Friend et al. 1988, 1996; Nutman et 

al. 1989; McGregor et al. 1991).  However, with new zircon data from the north and east of the region we now 

abandon trying to account for the region’s evolution with the assembly of just four tectono-stratigraphic 

terranes, and instead recognise that more terranes are present, creating a more complex geological evolution. 

As our first improvement to the terrane model, in this paper we introduce the Isukasia and the Kapisilik 

terranes as two new tectonic entities in the north and east of the region. 

 

Nuuk region terrane geology – new jigsaw pieces in the north and east 

The first mapping of the inner Godthåbsfjord to Isukasia area (Fig. 1) identified tracts of 

Palaeoarchaean gneisses and assigned the rest of the gneisses to the Meso-Neoarchaean Nûk gneisses, 

conforming to the geology throughout the region (Allaart et al. 1976; Chadwick 1985; McGregor et al. 1986).  

Robertson (1986) and Brewer (1985) reported whole rock Rb-Sr and Pb-Pb geochronology from the inner 

Godthåbsfjord and concluded that Mesoarchaean gneisses and numerous generations of Neoarchaean granites 

were present.  However due to open system behaviour (plus probably difficulty in grouping similar looking 

rocks of several ages for making isochron suites) definitive ages (with low MSWD and small uncertainties) 

could not be obtained, particularly for the older generations of rocks.  However, in their general conclusions, 
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our zircon work reported here indicates that these workers were correct in surmising that Mesoarchaean 

gneisses and abundant later Archaean granites are present in inner Godthåbsfjord.   

Following erection of the terrane model in the south and west of the region, we undertook 

reconnaissance studies in inner Godthåbsfjord, but still without zircon dating coverage.  This work involved 

extrapolation of terranes from the coastal areas to the southwest (e.g. Friend et al. 1987, 1988). From this, all of 

the Palaeoarchaean rocks were assigned to the Færingehavn terrane (≥3600 Ma) whilst later Archaean gneisses 

and associated supracrustal rocks in tectonic contact with Palaeoarchaean rocks were simply assigned 

(erroneously) to the Tre Brødre terrane (2835-2825 Ma) – based on zircon dating of sample G87/242 (Fig. 1c) 

and another east of the head of Kangersuneq.  In the absence of zircon dating, rocks of intermediate age of c. 

3000 Ma were regarded as being confined to the Akia terrane, west of the Ivinnguit and Ataneq Faults (e.g. 

Nutman et al. 1989; McGregor et al. 1991).  This paper describes the Kapisilik terrane, an entity of c. 3000 Ma 

rocks east of the Ivinnguit fault (including the Ivisârtoq supracrustal belt), plus distinguishes the region’s 

northernmost Palaeoarchaean rocks (including the Isua supracrustal belt) as the Isukasia terrane, distinct from 

the Færingehavn terrane to the southwest. 

 

Kapisilik terrane 

The name Kapisilik terrane is used for tectonically-bounded units of c. 3000 Ma rocks east of the 

Ivinnguit fault (Fig. 1b, c).  The Kapisilik terrane contains tonalitic to granitic orthogneisses plus supracrustal 

units dominated by amphibolites, the largest of which is the Ivisârtoq supracrustal belt, and associated 

anorthositic rocks (Fig. 1c).  Presently, only amphibolite facies metamorphism has been found in the rocks 

assigned to the Kapisilik terrane. The Kapisilik terrane is named after the locality of that name (near the village 

Kapisillit) where the first c. 3000 Ma zircon date was obtained east of the Ivinnguit fault, from inner 

Godthåbsfjord (Fig. 1b). However, we do not regard this as a “type locality” displaying the full diversity of 

rocks and events within all parts of Kapisilik terrane.  

Between Kapisillit and Kangersuneq there is a dome of gneisses, the Nivko antiform (NA, Fig. 1c), 

containing granitoid rocks and diatexites bounded by units of supracrustal rocks containing quartz-cordierite 

gneisses.  Strain is concentrated at the boundaries with some silicification, suggesting a tectonic boundary.  

Therefore, in the absence of any geochronological data we interpret these supracrustal rocks as belonging to a 
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different terrane, structurally above the Kapisilik terrane. Within this dome the orthogneisses have been widely 

subjected to in situ anatexis and the emplacement associated granite sheets.  Sample G87/223 is from an area of 

diatexite granite from at the head of Kapisillit fjord (Fig. 1c) with small, irregular clots of biotite set in 

leucosome.  It provided a complex population of zircons that have cores mantled by distinct high-U 

overgrowths. These latter are characterised by low Th/U (≥0.12; Table 2). A weighted mean 207Pb/206Pb date 

for the four most concordant analyses (seen in CL images to lie in single domains) yields a poorly defined date 

of 2598 ±29 Ma (MSWD = 5.5 - dates are quoted at 95% confidence limits; Fig. 2). It is concluded that these 

high-U zircon domains crystallised from a granitic liquid generated during a high-grade metamorphic event, 

but were then isotopically disturbed in younger events.  We interpret these overgrowths as denoting the in situ 

melting event occurred at c. 2600 Ma.  Nine analyses of the abundant cores of lower U zircon gave 207Pb/206Pb 

dates ranging between 3070 and 2920 Ma (Table 2, Fig. 2). Five analyses gave a well-constrained weighted 

mean 207Pb/206Pb date of 2973 ±9 Ma (MSWD = 0.24) suggesting a 2970-2980 Ma component was important 

in the gneiss.  The dates up to c. 3070 Ma suggest somewhat older components might have been present in the 

gneiss as well. 

The Ivisârtoq supracrustal belt (Fig. 1c) is one of the region’s largest bodies of mixed 

mafic-ultramafic and metasedimentary rocks and retains remnants of pillow- and agglomeratic-structured 

rocks showing it was derived from ultramafic and tholeiitic flows (e.g. Hall et al. 1987).  Early isoclinal folds 

in the belt, folded tectonic contacts with Palaeoarchaean rocks to the north, and superimposed large sheath 

folds indicate a complex structural evolution (Hall & Friend 1983; Chadwick 1985, 1990) – although these 

authors begged to differ in their interpretations. With the new data presented below some of these differences 

may be understood and resolved.  

The mafic to ultramafic rocks that dominate the Ivisartoq supracrustal belt are unsuitable for zircon 

geochronology.  However, a laterally continuous unit of sulphide-rich felsic schist from the southern arm of 

the belt (sample GGU200892) interpreted as having a volcano-sedimentary origin was chosen for analysis, on 

the basis that primary igneous (volcanic) zircons might be found.  This yielded fine-scale, oscillatory-zoned 

prisms and fragments (Fig. 3) that closely resemble igneous grains, with no rounded detrital zircons observed.  

They are interpreted as representing a juvenile volcanic component that is locally derived.  These grains gave a 

unimodal age distribution, with all twenty-three analyses undertaken giving a weighted mean 207Pb/206Pb date 
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of 3075 ±15 Ma (MSWD = 0.58; Fig. 2c).  This age is interpreted as a volcanic component in the Ivisârtoq belt 

and so provides a minimum time of deposition of at least part of the belt.  The unusually high Th/U ratios of 

these zircons is a feature that has been noted in some other felsic volcanic units in association with komatiitic 

sequences (R.A. Armstrong, pers. comm. 2003). 

The Ivisârtoq supracrustal belt partly surrounds a “dome” (CID; Chadwick 1990) of granitic rocks and 

migmatites (Fig. 1c, d) that are invasive into it (e.g. Hall & Friend 1983).  A weakly deformed granite (sample 

GGU200499) within this dome yielded rather high-U, oscillatory-zoned, igneous zircons, with some grains 

displaying non-zoned low Th/U tips or shells.  Multiple age determinations on individual oscillatory-zoned 

prisms (4 analyses on grain 10 and 2 analyses on grain 11) indicate that the spread of ages between 2800 and 

3000 Ma (Table 2; Fig. 2d) can be interpreted to be due to ancient loss of radiogenic Pb.  Applying this 

lead-loss model, 7 analyses interpreted as dating the least disturbed domains of igneous zircon yield a weighted 

mean 207Pb/206Pb date of 2961 ±11 Ma (MSWD =0.33), which is interpreted as the age of intrusion of the 

granite.  Because granites of the dome intrude the supracrustal belt, c. 2961 Ma is a further (minimum) age 

constraint on this portion of the belt.  Two analyses of high U, low Th/U grain tips yielded 207Pb/206Pb dates of 

c. 2700 Ma, probably reflecting tectono-thermal activity at that time. 

Mafic-ultramafic metavolcanic rocks of the southern limb of the Ivisârtoq supracrustal belt are 

truncated on their south by an amphibolite facies mylonite up to 2m thick.  South of this mylonite there are 

layered leucogabbroic to anorthositic rocks that are heavily broken up by tonalitic to granodioritic gneisses, 

only metamorphosed to amphibolite facies (Fig. 1c).  Sample G03/71 of granodiorite intruded into anorthosites 

yielded prismatic, oscillatory-zoned zircons. In CL images many of the zircons display bright (low-U) 

oscillatory zoned middles mantled by dark (high U) oscillatory zoned edges, with apparently no break or 

discordance between them.  This is confirmed by obtaining identical dates from both types of zircon, which is 

interpreted to be of igneous origin. Very few possible inherited cores of older zircon are apparent in the CL 

images. Particularly the high U zircon domains show patchy discordant recrystallisation domains. Fourteen 

SHRIMP dates were obtained on thirteen zircons. Both high and low U oscillatory zircon gave 207Pb/206Pb 

dates of ca. 2960 Ma, with a spread to younger dates (minimum 2880 Ma), with younger dates more prevalent 

from the higher U domains, suggesting some ancient loss of radiogenic Pb (Table 2, Fig. 2e).  Accepting this 

interpretation, sites with the older dates are least disturbed and give a weighted mean 207Pb/206Pb date of 
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2963±8 Ma (MSWD = 0.92, n = 9).  This is interpreted as the intrusion of gneiss G03/71.  This gives the 

minimum age for the gabbro-anorthosite complex it intrudes.  The age of G03/71 of 2963±8 Ma agrees well 

with the date of 2963±12 Ma for granite 200499 from the Central Ivisârtoq Dome (CID) to the north (Fig. 1c). 

Thus the mylonite along the southern side of the Ivisârtoq supracrustal belt is a post 2960 Ma structure 

dissecting the Kapisilik terrane. 

Regional 1:100,000 scale GEUS mapping (Chadwick and Coe 1988) shows that the Ivisârtoq belt 

continues northwestwards in an attenuated form across Ujarassuit  Nunaat (Fig. 1c).  On Ujarassuit Nunaat 

(Fig. 1c) these supracrustal rocks are intruded on their southern side by deformed granitoids, represented here 

by homogeneous granodiorite G91/92 and migmatite G93/88.  G91/92 yielded simple, oscillatory-zoned 

prismatic zircons (Fig. 3b), with nine out of ten analyses giving a weighted mean 207Pb/206Pb date of 3070±9 

Ma (MSWD=0.94) (Fig. 2f).  This date is interpreted as the age of intrusion into the adjacent supracrustal belt.  

G93/88 is a banded gneiss that has been examined only by reconnaissance dating.  The zircons yielded a 

bimodal age distribution, with lower U, oscillatory-zoned zircon giving older 207Pb/206Pb dates (3075-3040 

Ma) and higher U overgrowths and discrete sub-equant grains giving younger dates (2700-2600 Ma).  The rock 

is interpreted as a c. 3070 Ma granitoid that was veined by new material and metamorphosed between 

2700-2600 Ma (Fig. 2g).  These mid-/Neoarchaean rocks continue further north and westwards across 

Ujarassuit Nunaat (Fig. 1c), as shown by granodiorite G91/83 with a zircon date of 2972±12 Ma, a rock that 

was previously assigned to the eastern fringe of the Akia terrane (e.g. Garde et al. 2000).   

There is presently a gap in our new field and U-Pb zircon dating programmes between the head of 

Kapisillit fjord and Kangersuneq and the Ivisaartoq and Ujarassuit Nunaat areas, but we include the c. 3000 Ma 

rocks from both these areas within the Kapisilik terrane.  The Kapisilik terrane is in tectonic contact with early 

Archaaean rocks (Isukasia terrane) to the north (Fig. 1b-d).  On Ujarassuit Nunaat, in the vicinity of sample 

locality G93/88 (Fig. 1c), we have undertaken a transect over this boundary.  Northerly Palaeoarchaean 

gneisses are juxtaposed against Kapisilik terrane supracrustal rocks that are interpreted as a westerly 

continuation of the Ivisârtoq supracrustal belt, as concluded by Chadwick (1990).  At this locality the 

supracrustal rocks are <100 m wide.  Approaching this boundary from the north, strain rapidly increases in the 

Palaeoarchaean rocks over a distance of about 50 metres with increasing intensity of the fabric.  The last 5-10 

metres are blasto-mylonites with varying degrees of recrystallisation forming a sharp contact with the 
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supracrustal rocks that also are highly strained. The supracrustal rocks are intruded on their south side by 

gneisses with ages of c. 3070 Ma, represented by G91/92 and G93/88 (above). Strain decreases southwards in 

these gneisses.  Similar relationships are seen on northwestern Ujarassuit Nunaat, in the vicinity of sample 

G91/73 (dated by Gaarde et al. 2001), except that the tectonic boundary between the Isukasia and Kapisilik 

terranes has swung around to a north-south orientation. Likewise, on northeastern Ivisaartoq, the contact of the 

Ivisârtoq supracrustal belt rocks and Palaeoarchaean gneisses to the north is a mylonite and hence tectonic (e.g. 

Hall & Friend 1979; Chadwick 1990).  There is a strain gradient in the gneisses approaching this mylonite and 

the last c. 1 m of the gneisses and nearest supracrustal rocks are highly silicified.   

 

Tre Brødre terrane rocks on western Ivisaartoq 

To the west of the Ivisârtoq supracrustal belt, on Ujarassuit Pavaat, amphibolite facies banded 

granodioritic gneisses are in tectonic contact with supracrustal rocks. Samples G87/242 and G91/69 of these 

granodioritic gneisses from the same unit have been dated (Fig. 1c). Sample G87/242 consisted of only 

granodiorite, whereas sample G91/69 is a (concordant) pegmatite layer, with some of the host granodiorite 

adhering to it. G91/69 was divided into granodiorite and pegmatite prior to undertaking mineral separations. 

Dating of prismatic igneous zircon from G87/242 and a zircon from the small amount of G91/69 granodiorite 

yielded 207Pb/206Pb dates of 2781-2847 Ma (Table 2; Fig. 2h). Seven zircon sites from G97/242 gave a 

weighted mean 207Pb/206Pb date of 2801±7 Ma (MSWD=0.96), interpreted as giving the age of intrusion of the 

granodiorite. The pegmatite portion of G91/69 yielded metamict very high Th+U zircons, plus monazites. 

These metamict zircons yielded 207Pb/206Pb dates between 2700 and 2600 Ma, with few agreeing within error. 

Monazites also were obtained from the small amount of granodiorite adhering to the pegmatite (monazite is 

rare in the gneisses of the Nuuk region) and from the pegmatite itself (Table 2; Fig. 2h).  An older generation of 

monazites from the granodiorite gave a date of 2712 ±5 Ma, whereas some monazites from the granodiorite 

plus all those encountered in the pegmatite gave a date of 2626 ±3 Ma.  The monazite dating indicates a 

minimum of two thermal events that were superimposed onto the c. 2800 Ma granodiorite.   

This age of c. 2800 Ma is closest to c. 2825 Ma ages that have been obtained for 8 SHRIMP-dated 

amphibolite facies Ikkattoq gneisses of the Tre Brødre terrane from the southwest of Nuuk region where 

tectonostratigraphic terrane assembly was first recognised (e.g. Friend et al. 1996; Crowley 2002 and our 
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unpublished data).  The results from G87/242 and G91/69 suggest that in places the Kapisilik terrane appears 

to be in tectonic contact with northerly parts of the Tre Brødre terrane.  We consider it most likely that the Tre 

Brødre terrane (and associated Færingehavn terrane) are now structurally above the Kapisilik terrane (Fig. 1d).  

In turn, on Ujarassuit Nunaat and northern Ivisaartoq, the northern limit of the Kapisilik terrane is structurally 

above the Palaeoarchaean rocks to the north, now termed the Isukasia terrane (Fig. 1c, d). 

 

The Palaeoarchaean Isukasia terrane: c. 2960 Ma tectonothermal events and distinction from the 

Færingehavn terrane  

Upon completion of reconnaissance geological mapping across the whole region (GGU 1983), all of 

the Palaeoarchaean rocks were considered to form essentially a single unit, continuous for c. 200 km from 

south of Nuuk to the Isua supracrustal belt area by the Inland Ice in the northeast.  With the advent of the 

terrane model these Palaeoarchaean rocks were assigned to a single Neoarchaean (mylonite-bounded) tectonic 

entity – the Færingehavn terrane (Friend et al. 1988; McGregor et al. 1991; Nutman et al. 1996). The 

continuity of the Færingehavn terrane was tentatively questioned by Friend et al. (1996), who depicted that a 

tectonic slice of younger rocks on Ujarassuit Nunaat divided the Palaeoarchaean rocks into two portions 

(Friend et al. 1996).  Because there was then no supporting zircon geochronology for this, we reverted to the 

general interpretation of continuity in Nutman et al. (1999, 2000).  However, with our new field observations 

and zircon geochronology, we consider that the Palaeoarchaean rocks do reside in two Neoarchaean tectonic 

entities – the Isukasia terrane from Ujarassuit Nunaat north to the Isukasia area (were the Isua supracrustal belt 

is) and the Færingehavn terrane for southerly Palaeoarchaean rocks (Fig. 1b).  From zircon dating, the Isukasia 

terrane is dominated by c. 3800 and 3700 Ma tonalites, c. 3650 Ma granite (sensu stricto) intrusive sheets and 

c. 3700 and 3800 Ma supracrustal, ultramafic and gabbroic rocks (Michard Vitrac et al. 1977; Baadsgaard et 

al. 1984; Compston et al. 1986; Nutman et al. 1996, 1997, 1999, 2000, 2002; Friend et al. 2002; Crowley et al. 

2002; Crowley 2003).  Thus there is ample information on the age of the Isukasia terrane's rocks and in this 

paper we concentrate on its later Archaean history.  

In the northern end of the Isukasia terrane c. 3500 Ma (White et al. 2000; Nutman et al. 2004) 

Ameralik dykes are preserved as strongly discordant bodies, cross-cutting structures and lithological 

boundaries in their country rocks. In this area of lower late strain, cross cutting relations between successive 
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generations of Palaeoarchaean granitic rocks is widely preserved (e.g. Bridgwater & McGregor 1974; Nutman 

& Bridgwater 1986; Crowely et al. 2002) and volcanic and sedimentary structures are locally well preserved in 

the Isua supracrustal belt (e.g. Nutman et al. 1984; Komiya et al. 1999). Southwards, later Archaean strain 

increases, bringing the mid Archaean Ameralik dykes into concordance with banding of the Palaeoarchaean 

rocks to make complex banded gneisses (Bridgwater & McGregor 1974; Nutman et al. 1996).  This later 

Archaean strain continues to increase to the mylonite that marks the boundary between the Isukasia and 

Kapisilik terrane on Ujarassuit Nunaat (Fig. 1).  In this southern more strongly deformed part of the Isukasia 

terrane the Palaeoarchaean rocks show some growth of metamorphic zircon between 3000-2940 Ma (Fig. 2a 

and Table 2).  Thus nine analyses on high U, low Th/U overgrowths on c. 3800 Ma zircon from gneiss G91/80 

gave 207Pb/206Pb dates between 3010±14 Ma and 2931±14 Ma (2σ) giving a pooled age of 2977±16 Ma 

(MSWD=18).  Although statistically a disappointing result, these data still indicate zircon overgrowth 

development between 3000-2900 Ma.  Also Palaeoarchaean paragneiss G93/54 (Nutman et al. 2002) shows 

high U, low Th/U rims with dates of <3000 Ma.  Of these two main groups are apparent, with weighted mean 

207Pb/206Pb dates of 2961±11 Ma (n=4, MSWD=1.07) and 2682±4 Ma (n=6, MSWD=0.81). Some other rocks 

also show growth of zircon at c. 2680 Ma – with the northern most example occurring in the Isua supracrustal 

belt (Nutman & Collerson 1991 – relevant data for the sample 81-0318 is reproduced in Table 2).  Monazites in 

some Palaeoarchaean granite sheets also record an event at c. 2680 Ma (Fig. 2a and Table 2). Therefore U-Pb 

geochronology records two important thermal events.  The first by 2950 Ma provides some link with the 

Kapisilik terrane, where there is clear evidence for tectono-thermal activity at that time – the dates of 2961 ±11 

Ma from granite GGU200499 and 2963 ±8 Ma from granodiorite G03/71 in the east (Table 2) and 2972 ±12 

Ma granodiorite G91/83 in the west Garde et al. (2001).  This data is interpreted to indicate that these rocks 

might have been already in proximity by 2950 Ma and were undergoing contemporaneous metamorphism.  

The name Færingehavn terrane is now limited to the Palaeoarchaean rocks to the south of and 

structurally above the Kapisilik terrane.  We consider this division is justified because from over a thousand 

SHRIMP zircon U-Pb analyses on approximately fifty rocks, the Færingehavn terrane appears to be devoid of 

c. 2960 Ma metamorphic overprints (data in Nutman et al. 2002 and references therein).  This c. 2960 Ma 

metamorphism distinguishes the Isukasia and Færingehavn terranes as separate mid- to Neoarchaean 

tectono-metamorphic entities.  
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Discussion 

A c. 2960 Ma terrane assembly event in the northern part of the Nuuk region 

The Isukasia and Kapisilik terranes already appear to have been in proximity by c. 2960 Ma because 

they share a common thermal event – reflected by metamorphism and granite emplacement respectively (Fig. 

2).  Therefore, it seems probable that a composite crustal block was developed prior to the generation of the c. 

2825 Ma Ikkattoq gneisses of the Tre Brødre terrane and their post 2800 Ma juxtaposition with Kapisilik 

terrane. However, it is uncertain whether the mylonite zone now between the Kapisilik and Isukasia terranes is 

a c. 2960 Ma structure modified in later vents, or whether it is a younger (c. 2700 Ma?) structure, that has 

excised an earlier, original relationship between the two terranes. Using a Phanerozoic perspective, we would 

liken the early, c. 2960 Ma, assembly event in inner Godthåbsfjord to finding Caledonian or Hercynian 

tectonothermal activity hidden within the basement of the Alpine orogen.  Subsequently the Tre Brødre terrane 

was juxtaposed along the southern part of this block in a younger assembly event by c. 2700 Ma (see Friend et 

al. 1996).  Neither our account of this c. 2960 Ma event, nor work such as Hanmer et al. (2002 – see below), 

can justify questioning the validity of previously identified c. 2700 Ma terrane assembly events (e.g., Friend et 

al. 1996; Crowley 2002). 

 

2800-2700 Ma terrane assembly superimposed on c. 2950 amalgamation of the Isukasia and Kapisilik 

terranes 

The c. 2700 Ma events that juxtaposed the Tre Brødre terrane dominated by c. 2825 Ma rocks against 

a variety of other units with different ages (e.g. Friend et al. 1988, 1996; Crowley 2002), have always been 

regarded as part of a sequence of events – originally on the basis of field relations but increasingly being 

supported by zircon geochronology. The likely presence of tectonically truncated Ikkattoq gneisses of the Tre 

Brødre terrane on western Ivisaartoq is strong evidence that post-2825 Ma terrane assembly also occurred 

within the Ivisaartoq area. This is evidence for continuity with the c. 2700 Ma terrane assembly events known 

in the southern part of the region (McGregor et al. 1991; Friend et al. 1996; Crowley 2002).  In Ivisaartoq and 

Ujarassuit Nunaat, these events must have been superimposed on the earlier amalgamation by c. 2960 Ma of 

the Isukasia and Kapisilik terranes (above).  Neoarchaean (c. 2680 Ma) metamorphic zircon overgrowths and 
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metamorphic monazites occur in the southern part of the Isukasia terrane and there are rare occurrences of c. 

2680 Ma zircon growth as far north as the Isua supracrustal belt (Fig. 2a, Table 2, and in Nutman & Collerson 

1991; Hanmer et al. 2002).  Additionally, occurrences of c. 2700 Ma zircon growth occur in the Kapisilik 

terrane, for example, two reconnaissance analyses of rims in GGU200499 from Ivisaartoq (Table 2).  

 

New terrane jigsaw pieces and structural interpretations 

The new elements to the terrane jigsaw puzzle − the Palaeoarchaean Isukasia terrane now separated 

from the Færingehavn terrane, and the Mesoarchaean Kapisilik terrane − have arisen from work in parts of the 

inner Godthåbsfjord area, where previously there was no published zircon geochronology and where the 

geological constraints coming from lithological mapping undertaken prior to recognition of terrane assembly 

in the Nuuk region. Previously, there was a divergence in structural interpretations (c.f. Hall & Friend 1979; 

Chadwick 1990).  With the new zircon geochronology and recognition of more tectonic boundaries that mark 

the edges of terranes, it can be demonstrated that early folds internal to terranes are truncated at the mylonitic 

boundaries, and therefore much of the structural ambiguity disappears (Fig. 1d).  The solution is that there are 

two main periods of deformation, one pre- the mylonitic boundaries and restricted to individual terranes and 

the other post-terrane assembly and occurring across all terranes.   

In a pegmatite (sample S37) within Palaeoarchaean gneisses in the northwestern edge of the Isukasia 

terrane, near the Isua supracrustal belt, Hanmer et al. (2002) found a minority of 2948±8 Ma low Th/U zircons 

and overgrowths with abundant Palaeoarchaean higher Th/U zircons, and a further generation of zircon growth 

at c. 2682 Ma. They chose to interpret the low Th/U 2948 Ma zircon as giving the intrusive age of the 

pegmatite. We have also found the growth of zircon at this time in the southern edge of the Isukasia terrane – 

Fig. 2, Table 2. Hanmer et al. (2002) linked their few young dates (2948 Ma) from the pegmatite zircons with 

intrusion of the 2980–2990 Ma Tasersuaq tonalite (Garde et al. 1986, 2001) in the Akia terrane to the west. 

Hanmer et al.  then concluded that the Isukasia terrane was stitched to the Akia terrane by the time the 

Tasersuaq tonalite was intruded, and used this interpretation to question our timing of c. 2700 Ma for major 

terrane assembly events throughout the region (≤2700 Ma assembly has been confirmed by Crowley 2002).  
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Hanmer et al’s interpretation did not address important structural features well-established from 

regional mapping. In the north near the Isua supracrustal belt where they undertook their study, the Ataneq 

Fault forms a sharp boundary between the Palaeoarchaean rocks of the Isukasia terrane (hanging wall) to the 

east and the Mesoarchaean Akia terrane to the west (foot wall).  The Ataneq Fault is a latest Archaean to 

Palaeoproterozoic uppermost greenschist facies mylonite (e.g. Park 1986; Chadwick & Coe 1988).  However, 

for >150 km from the islands south of Nuuk to the head of Godthåbsfjord (e.g. Friend et al. 1988) the eastern 

edge of the Akia terrane (Fig. 1b) is delineated by the Ivinnguit Fault, a post-2825 Ma Ikkattoq gneiss mylonite 

(e.g. McGregor et al. 1991). The relationship between the Ivinnguit and Ataneq faults is presently unclear, 

with the possibility that parts of them are temporally related and so needs re-investigation. However, there is 

clearly a major post-2850 Ma Ikkattoq gneiss late tectonic break between the Akia terrane and all the other 

terranes to the east. In Hanmer et al.’s (2002) study area at the western edge of the Isua supracrustal belt, the 

importance of the Ataneq Fault was not accounted for, when they suggested that the Akia terrane’s c. 2980 Ma 

Tasersuaq tonalite intruded Palaeoarchaean rocks near the Isua supracrustal belt. 

We agree with Hamner et al. (2002) that the Isukasia terrane has seen a c. 2950 Ma event, but we 

would link this with assembly with the Kapisilik terrane to the south, rather than the Akia terrane to the west, 

with the relationship between the Akia and Kapisilik terranes being presently unkown.  Further field and 

geochronological studies are required to establish whether the younger components of the 3220-2970 Ma Akia 

terrane and the Kapisilik terrane are parts of the same entity, dislocated from each other by latest Archaean 

(2700-2500 Ma) major displacements over the Ataneq/Ivinnguit faults or whether they are unrelated, but 

contain some rocks of similar ages.  

 

Two terranes of Palaeoarchaean rocks 

The discovery of the Kapisilik terrane implies that the Palaeoarchaean rocks of the region, previously 

entirely embraced within the Færingehavn terrane (Friend et al. 1988 onwards), are divided into two later 

Archaean tectonic entities – the Færingehavn and Isukasia terranes. The Færingehavn terrane is restricted to 

the southern part of the region and contains rocks that are between 3850-3600 Ma and underwent 

Palaeoarchaean granulite facies metamorphism in most parts by c. 3600 Ma.  They were then subject to several 

Neoarchaean metamorphisms dating from after 2800 Ma, but with no apparent record of c. 2960 Ma 
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metamorphism.  The Isukasia terrane is north of the Kapisilik terrane on Ujarassuit Nunaat and consists of 

3810-3600 Ma gneisses that have never experienced Palaeoarchaean granulite facies metamorphism and 

subsequently underwent both c. 2960 Ma and c. 2700 Ma metamorphisms.  

The division of the Palaeoarchaean rocks of the Nuuk region into two Neoarchaean tectonic entities is 

compatible with some previously noted differences in their Palaeoarchaean histories, notably metamorphism 

(Griffin et al. 1980; Nutman et al. 1996). Despite these early differences, both the Isukasia and Færingehavn 

terrane are cut by the Ameralik dykes, the earliest of which in both terranes have yielded dates of 3450–3500 

Ma (Nutman et al. 2004).  We interpret the Færingehavn and Isukasia terranes as fragments derived from a 

more extensive complex of Palaeoarchaean crust, that were rifted apart from 3500 Ma onwards with intrusion 

of the Ameralik dykes. Later these were juxtaposed with younger terranes of the Nuuk region in several 

Neoarchaean events. Other disporia from this rifted Palaeoarchaean complex could be the Aasivik terrane 

(Rosing et al. 2001) and the Qarliit Tasersuat assemblage (Nutman et al. in press) both further north in 

Greenland and the Uivak gneiss complex of northern Labrador (e.g. Collerson & Bridgwater 1976; Schiøtte et 

al. 1989). 

 

Present and abandoned terrane terminology 

Deformed late, grey gneiss sheets cut the Palaeoarchaean rocks of the Færingehavn terrane (e.g., 

McGregor et al. 1983, 1991). In the early days of the terrane assembly interpretation, few of these sheets had 

been dated.  Therefore, based on lithological similarities, McGregor et al. (1991) considered these sheets 

included not only c. 2700 Ma intrusions but also intrusions coeval with the c. 2825 Ma Ikkattoq gneisses from 

the neighbouring Tre Brødre terrane.  If this were the case there would be some linkage to the Færingehavn and 

Tre Brødre terranes, prior to their present tectonic relationship. To reflect this interpretation, McGregor et al. 

(1991) introduced the term Akulleq terrane, with the Færingehavn and Tre Brødre terrane as sub-terranes 

within it. Further dating of the grey gneiss sheets has indicated that they were intruded at 2720 Ma or later, with 

no c. 2825 Ma sheets (equivalent in age to the Ikkattoq gneisses of the Tre Brødre terrane) having been found 

(Friend et al. 1996; Nutman and Friend unpublished zircon dating).  This extra dating has failed to justify 

retention of the term Akulleq terrane, because no (early) linkage has been found between the Færingehavn and 
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the Tre Brødre terranes.  Therefore in recent papers we have dropped the term Akulleq terrane, and have 

reverted to solely using Færingehavn and Tre Brødre terranes. 

Presently we have recognised and named six tectonothermal terranes, which are dominated by their 

own suites of quartzo-feldspathic gneisses and supracrustal and mafic rock inclusions.  In addition, combined 

further mapping and zircon geochronology in the south of the region (Nutman & Friend 2002; Friend & 

Nutman 2004) has recognised an as yet unnamed thin, discontinuous panel of c. 2835 Ma supracrustal rocks 

which is located between the Færingehavn and Tre Brødre terranes. This includes the units of “Malene” 

supracrustal rocks against the Palaeoarchaean rocks of the Færingehavn terrane, first described by McGregor 

(1973), Bridgwater et al. (1974) and Chadwick & Nutman (1979).  

The structure of southeastern part of the Nuuk region now remains the least known (Fig. 1). As 

remapping and zircon geochronology progresses there we expect: 

 (a) discover that the area comprises intercalations of Færingehavn, Kapisilik, Tasiusarssuaq and Tre Brødre 

terranes (Fig. 1), with the Tasiusarsuaq terrane forming klippes extending further north than portrayed in 

syntheses from our 1980s reconnaissance studies (e.g., Friend et al. 1988, 1996; Nutman et al. 1989; 

McGregor et al. 1991); 

(b) find evidence for yet more terranes different from the first four originally recognised and defined in the 

region’s coastal southwest part (Fig. 1b; Friend et al. 1988). 

 

 “Plate tectonics” and interpretation of Archaean gneiss complexes 

In the Phanerozoic there are combinations of evidence that lead to the conclusion that plate tectonics 

operates.  In Archaean high-grade complexes it is more difficult to find analogous parts for all of the modern 

system, largely because of the size of the areas involved (Archaean gneiss complexes are preserved fragments 

of once much more continuous orogens) and level of exposure (only deep crustal levels are preserved for 

study).  However, by analogy with Phanerozoic orogens, the initial phases of TTG present in all terranes can be 

regarded as crustal accretion in the proximity of the Archaean equivalents of subduction zones, whilst the 

movement and assembly of individual terranes with different accretionary histories is the parallel of modern 

collisional orogeny, including some major strike slip movements partitioning the orogen, adding further 



14/05/04 draft  Newslice 18 

complexity.  These are interpreted as key evidence for the operation of some form of early Precambrian plate 

tectonics expressed in gneiss complexes. 

 

Conclusions 

The new geochronology plus our reconnaissance structural observations reveals that in the inner 

Godthåbsfjord area there is a mylonite-bounded panel containing major belts of supracrustal rocks some with a 

volcanic age of c. 3070 Ma, invaded by c. 3070-2960 Ma orthogneisses.  These rocks are grouped together and 

are named the Kapisilik terrane.  The recognition of the Kapisilik terrane implies that the Palaeoarchaean rocks 

of the region, previously entirely embraced within the Færingehavn terrane (e.g. Friend et al. 1988 onwards), is 

divided into two entities. Assembly of the terranes appears to have taken place in at least two episodes, the 

Isukasia terrane was first intercalated with the Kapisilik terrane and subsequently this composite block was 

juxtaposed with the composite Færingehavn and Tre Brødre terranes.  These findings represent a revision to 

our terrane model, and is to be expected when more of the Nuuk region is re-examined in detail with U-Pb 

zircon geochronology and new mapping, reducing reliance on interpreting the original regional mapping 

undertaken two to three decades ago.  These new findings are adding complexity to the terrane model, with 

evidence for more terranes beyond the first four we recognised in the 1980s, plus a more protracted history of 

terrane assembly, with events at c. 2950 and c. 2700 Ma being important ones. 
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List of Figures: 

Fig. 1.  Sketch maps of the terranes of the Nuuk region and their disposition.  (a) Location of the Nuuk region 

in the Archaean craton in West Greenland.  (b) Representation of the terranes as presently recognised in the 

Nuuk region.  The previous extrapolation of Tre Bødre terrane in inner Godthåbsfjord is now uncertain with 

further areas of Kapisilik terrane anticipated.  (c) Sketch map of Inner Godthåbsfjord showing the position 

of the newly identified Kapisilik and the Isukasia terranes in relation to the other terranes presently 

recognised in the area.  Locations of geochronological samples studied, identified by sample numbers, are 

indicated.  (d) Sketch section at sea level (SL) along the line AB depicted in (b).  Note that that only the 

Færingehavn and Tre Bødre terranes appear to be affected by migmatisation – dashes.  Ages together with 

uncertainties are quoted at 95% confidence.  Other ages quoted without sample numbers are not discussed 

here but are given in order to indicate the possible extent of certain units.  Abbreviations: AF, Ataneq Fault; 

CID, Central Ivisaartoq dome; IF, Ivinnguit Fault, KA, Kangerssuaq antiform; NA, Nivko antiform.  The 

structures CID and KA are adopted from Chadwick (1990). 

 

Fig. 2.  SHRIMP U-Pb zircon dating of diatexite G87/223 from the head of Kapisillit fjord (Fig.1).   Because 

most analyses are concordant within error, 207Pb/206Pb ages for the individual analyses (after correction for 

generally very small amounts of common Pb) are shown. The 207Pb/206Pb ages are displayed as histograms 

(20 Myr bins) in the foreground with the cumulative relative probability shown in the background. 

 

Fig. 3.  Representative cathodoluminescence images of dated zircons from (a) GGU200892, a felsic schist 

within the Ivisârtoq supracrustal belt and (b) G91/92, meta-granodiorite from Ujarassuit Nunaat.  

Uncertainties on the ages are quoted at 2σ. 

 

Fig. 4. Summary of SHRIMP U-Pb zircon and monazite dating from the Ivisaartoq and Ujarassuit Nunaat 

areas of inner Godthåbsfjord.  See Table 2 and the appendix for complete data, discussion of analytical 

method and calculation method for the pooled ages (given at 95% confidence).  Sample sites are shown, 

located by sample numbers, on Figure 1.  Diagram constructed in the same way as Fig. 2.   (a) Composite 

diagram of analyses of Neoarchaean metamorphic zircon overgrowths and metamorphic monazites from 
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the Isukasia terrane.  (b-g) Results from the Kapisilik terrane, which is separated from the Isukasia terrane 

to the north by folded Neoarchaean mylonites (Fig. 1). (b) diatexite G87/223 from the head of Kapisillit 

Kangerllua. (c) Granite GGU200499, intruding the Ivisârtoq supracrustal belt. (c) Felsic 

volcano-sedimentary rock GGU200892 (d) Granite GGU200499, intruding the Ivisârtoq supracrustal belt. 

(e) Sample G03/71 is a deformed granodiorite intruding the gabbro-anorthosite complex on the southern 

side of the of the Ivisârtoq supracrustal belt.  This gabbro-anorthosite complex is separated from the 

supracrustal belt by a Neoarchaean mylonite.  (f) G91/92 Sample G91/92 is a homogeneous granitoid 

intruding the southern side of the northern continuation of the Ivisârtoq supracrustal unit on southern 

Ujarassuit Nunaat.  This supracrustal unit is then separated from the Isukasia terrane to the north by folded, 

late Archaean mylonites.  (g) G93/88 is a banded gneiss that also cuts the same supracrustal unit, but has 

only been examined in reconnaissance fashion.  (h) An example of Ikkattoq gneiss.  Samples G87/242 and 

G91/69, from the same unit form the most northerly dated occurrence of the Tre Brødre terrane, on the 

western the coast of Ivisaartoq. These rocks (and associated Palaeoarchaean rocks of the Færingehavn 

terrane in Godthåbsfjord) are separated from the Kapisilik terrane to the north by late Archaean mylonites 

(Fig. 1). 
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SHRIMP U-Pb zircon analytical method  

 

All new U-Pb zircon and monazite SHRIMP data relevant to the paper are given in Table 1.  Some data for 

Isukasia terrane rocks have previously been published elsewhere, and this is indicated in the Table.  Zircon and 

monazite concentrates were hand-picked using a binocular microscope, to produce a varied assortment of least 

metamict, least damaged grains for analysis. Together with chips of standard zircon and monazite, these were 

cast into epoxy resin discs and polished.  Assessment of grains and choice of sites for analysis were based on 

transmitted/reflected light microscopy and (also for zircons) cathodoluminescence (CL) imaging. 

U-Pb zircon isotopic data used in this study were obtained from the Australian National University 

(ANU) SHRIMP I, II and RG instruments.  The zircon analytical procedures are given by Compston et al. 

(1984), Stern (1998) and Williams (1998).  For zircon, the U concentration of unknowns was calibrated against 

fragments of the single crystal SL13 standard (572 Ma, 238 ppm U).  Due to differential yield of metal versus 

oxide species and different efficiencies of ionisation between elements during sputtering, inter-element ratios 

are calibrated with a standard, where the ratios are known by isotope dilution thermal ionisation mass 

spectrometry (IDTIMS).  Thus 206Pb/238U ratios have an error component (typically 1.5 to 2.0%) from 

calibration of the measurements using the standard zircons as explained fully by Compston et al. (1984), 

Claoué-Long et al. (1995), Stern (1998) and Williams (1998).  For Pb/U, zircon unknowns were calibrated 

against the 417 Ma Temora standard (I.S. Williams, personal communication 2001), AS3 (Paces and Miller, 

1993) or SL13 (for samples analysed in the early 1990s). Monazite unknowns were calibrated against 

monazites from Thompson mine, Canada. Several isotope dilution thermal ionisation analyses of these give an 

average U content of 2100 ppm and a mean 207Pb/206Pb age of 1767±0.3 Ma, but a slightly dispersion of 

206Pb/238U ages, giving both slightly normal to reverse discordant points (C. Roddick, pers. comm., 1995). 

Quoted errors on isotopic ratios also take into account non-linear fluctuations in ion count rates above 

that expected from counting statistics alone (Stern 1998; Williams 1998). This is particularly important for old, 

damaged, high U+Th zircons (e.g. samples in samples such as GGU200499), where damage has resulted in 

post-crystallisation heterogeneity of species on the sub-micron scale.  Reliance on only counting statistics in 

measurements of such targets would result in considerable under-estimation of analytical error. 
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The decay constants and present-day 238U/235U value given by Steiger & Jäger (1977) were used to 

calculate dates. The reported dates are derived from 207Pb/206Pb ratios, following correction for common Pb 

using measured 204Pb and use of Cumming & Richards (1975) model Pb compositions.  For monazites 

(measured on SHRIMP 1) there is a small isobaric interference under the 204Pb peak.  In the Archaean 

monazites with large amounts of accumulated radiogenic Pb reported here, this has caused at the most a 2 Ma 

(c. 0.1%) systematic underestimate in the dates. Ages of intrusion presented in this paper are weighted mean 

207Pb/206Pb dates (95% confidence, with analyses inverse variance weighted).  Weighted means were 

calculated on subgroups of analyses of sites with the same morphology and microstructure (e.g., particularly 

those with micron-scale oscillatory zoning).  The weighted mean dates were calculated in the program 

Isoplot/Ex of Ludwig (1997). 
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Fig. 3. 
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