Expression of proteins within the nogo receptor complex are altered in the dorsolateral prefrontal cortex in schizophrenia

J Andrews
University of Wollongong, ja393@uowmail.edu.au

K Newell
University of Wollongong, knewell@uow.edu.au

F Fernandez
University of Wollongong, fernande@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/smhpapers

Part of the *Medicine and Health Sciences Commons, and the Social and Behavioral Sciences Commons*

Recommended Citation
Andrews, J; Newell, K; and Fernandez, F, "Expression of proteins within the nogo receptor complex are altered in the dorsolateral prefrontal cortex in schizophrenia" (2013). *Faculty of Science, Medicine and Health - Papers: part A*. 899.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Expression of proteins within the nogo receptor complex are altered in the dorsolateral prefrontal cortex in schizophrenia

Keywords
dorsolateral, prefrontal, altered, schizophrenia, cortex, complex, receptor, nogo, within, proteins, expression

Disciplines
Medicine and Health Sciences | Social and Behavioral Sciences

Publication Details

This conference paper is available at Research Online: https://ro.uow.edu.au/smhpapers/899
Abstract

EXPRESSION OF PROTEINS WITHIN THE NOGO RECEPTOR COMPLEX ARE ALTERED IN THE DORSOLATERAL PREFRONTAL CORTEX IN SCHIZOPHRENIA

Andrews, J., Newell, K., Fernandez, F.

1. Centre for Translational Neuroscience, School of Health Sciences, University of Wollongong, Australia
2. Schizophrenia Research Institute, Sydney, Australia

Purpose: Schizophrenia is a severe neuropsychiatric disorder with an elusive aetiology, thought to result from abnormal brain development. Nogo is an oligodendrocyte bound molecule that signals by binding to its receptor NgR, located on axonal membranes that interacts with its co-receptors p75 or TROY and Lingo-1. Nogo signalling is responsible for CNS myelin regulation and neurite outgrowth during neurodevelopment, and plasticity in the mature brain. This study examined NgR, p75, TROY and Lingo-1 protein levels within the human dorsolateral prefrontal cortex (DLPFC) in schizophrenia.

Methods: Human DLPFC matched case control samples (n=37/group) from the NSW Brain Bank Network were used to assess NgR, p75, TROY and Lingo-1 protein levels by immunoblotting.

Results: NgR protein expression was significantly decreased by 16% (p<0.001) and Lingo-1 protein expression was significantly increased by 12% (p=0.006) in the DLPFC of schizophrenia subjects. Interestingly, neither the third receptor in this trimolecular receptor complex p75, nor its homolog TROY, showed any significant difference in levels of protein expression in schizophrenia subjects compared to controls (p=0.146 and p=0.500 respectively). There was a significant correlation between the protein levels of NgR and Lingo-1 (r=-0.276, p=0.017); between Lingo-1 and p75 (r=0.263; p=0.023) and between NgR and TROY (r=0.329; p=0.004).

Conclusion: This study shows strong evidence for the involvement of NgR/p75/Lingo-1 or NgR/TROY/Lingo-1 complex in schizophrenia, however further studies are required in order to investigate the implications of these proteomic alterations to the aetiology and symptomatology of schizophrenia.