1-1-2014

Comparison of real-time elastography and multiparametric MRI for prostate cancer detection: A whole-mount step-section analysis

Daniel Junker
Medical University Innsbruck

Georg Schafer
Medical University Innsbruck

Conrad Kobel
Medical University Innsbruck, c.kobel@uow.edu.au

Christian Kremser
Medical University Innsbruck

Jasmin Bektic
Medical University Innsbruck

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/buspapers

Part of the Business Commons

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Comparison of real-time elastography and multiparametric MRI for prostate cancer detection: A whole-mount step-section analysis

Abstract
OBJECTIVE. The purpose of this study was to compare prostate cancer detection rate of real-time elastography (RTE) with that of multiparametric MRI to evaluate the advantages and disadvantages of the two methods. SUBJECTS AND METHODS. Thirty-nine patients with biopsy-proven prostate cancer underwent both RTE and multiparametric MRI to localize prostate cancer before radical prostatectomy. RTE was performed to assess prostate tissue elasticity, and hard lesions were considered suspicious for prostate cancer. Multiparametric MRI included T2-weighted MRI, diffusion-weighted MRI (DWI), and contrast-enhanced MRI (CE-MRI) with an endorectal coil at 1.5 T. After radical prostatectomy, whole-mount step sections of the prostate were generated, and the prostate cancer detection rates with both modalities were analyzed for cancer lesions measuring 0.2 cm³ or larger. RESULTS. Histopathologic examination revealed 61 cancer lesions. RTE depicted 39 of 50 cancer lesions (78.0%) in the peripheral zone and 2 of 11 (18.2%) in the transitional zone. Multiparametric MRI depicted 45 of 50 cancer lesions (90.0%) in the peripheral zone and 8 of 11 (72.7%) in the transitional zone. Significant differences between the two modalities were found for the transitional zone and anterior part in prostates with volumes greater than 40 cm³ (p < 0.05). Detection rates for high-risk prostate cancer (Gleason score ≥ 4 and 3) and cancer lesions with volumes greater than 0.5 cm³ were high for both methods (93.8% and 80.5% for RTE, 87.5% and 92.7% for multiparametric MRI). Volumetric measurements of prostate cancer were more reliable with T2-weighted MRI than with RTE (Spearman rank correlation, 0.72 and 0.46). CONCLUSION. RTE and multiparametric MRI depicted high-risk prostate cancer with high sensitivity. However, multiparametric MRI seems to have advantages in tumor volume assessment and for the detection of prostate cancer in the transitional zone and anterior part within prostates larger than 40 cm³. American Roentgen Ray Society.

Keywords
detection, section, whole, analysis, cancer, prostate, mri, multiparametric, elastography, time, real, comparison, mount, step

Disciplines
Business

Publication Details

Authors

This journal article is available at Research Online: https://ro.uow.edu.au/buspapers/850
Genitourinary Imaging • Original Research

Comparison of Real-Time Elastography and Multiparametric MRI for Prostate Cancer Detection: A Whole-Mount Step-Section Analysis

OBJECTIVE. The purpose of this study was to compare prostate cancer detection rate of real-time elastography (RTE) with that of multiparametric MRI to evaluate the advantages and disadvantages of the two methods.

SUBJECTS AND METHODS. Thirty-nine patients with biopsy-proven prostate cancer underwent both RTE and multiparametric MRI to localize prostate cancer before radical prostatectomy. RTE was performed to assess prostate tissue elasticity, and hard lesions were considered suspicious for prostate cancer. Multiparametric MRI included T2-weighted MRI, diffusion-weighted MRI (DWI), and contrast-enhanced MRI (CE-MRI) with an endorectal coil at 1.5 T. After radical prostatectomy, whole-mount step sections of the prostate were generated, and the prostate cancer detection rates with both modalities were analyzed for cancer lesions measuring 0.2 cm³ or larger.

RESULTS. Histopathologic examination revealed 61 cancer lesions. RTE depicted 39 of 50 cancer lesions (78.0%) in the peripheral zone and 2 of 11 (18.2%) in the transitional zone. Multiparametric MRI depicted 45 of 50 cancer lesions (90.0%) in the peripheral zone and 8 of 11 (72.7%) in the transitional zone. Significant differences between the two modalities were found for the transitional zone and anterior part in prostates with volumes greater than 40 cm³ (p < 0.05). Detection rates for high-risk prostate cancer (Gleason score ≥ 4 and 3) and cancer lesions with volumes greater than 0.5 cm³ were high for both methods (93.8% and 80.5% for RTE, 87.5% and 92.7% for multiparametric MRI). Volumetric measurements of prostate cancer were more reliable with T2-weighted MRI than with RTE (Spearman rank correlation, 0.72 and 0.46).

CONCLUSION. RTE and multiparametric MRI depicted high-risk prostate cancer with high sensitivity. However, multiparametric MRI seems to have advantages in tumor volume assessment and for the detection of prostate cancer in the transitional zone and anterior part within prostates larger than 40 cm³.

Keywords: diffusion, elastography, multiparametric MRI, perfusion, prostate cancer

DOI:10.2214/AJR.13.11061

Received April 8, 2013; accepted after revision June 18, 2013.

© American Roentgen Ray Society
tions, which is useful for targeted biopsy [9].

Multiparametric MRI has been introduced to raise the overall diagnostic accuracy in prostate cancer diagnosis by revealing structural and functional tissue information that may help identify prostate cancer [10]. In multiparametric MRI conventional T2-weighted sequences are used to assess structural tissue information, and at least two functional techniques are added, such as diffusion-weighted imaging (DWI) to assess water diffusibility and contrast-enhanced MRI (CE-MRI) to assess contrast dynamics [11].

The aim of this study was to test whether—depending on tumor localization, clinical significance, or prostate volume—either RTE or multiparametric MRI is superior for the detection of prostate cancer. Although solid data from assessments of each modality separately exist in the literature, in this study we evaluated both modalities in the same cohort of patients. We compared diagnostic performance and estimation of tumor volume for RTE and multiparametric MRI in patients with known prostate cancer using prostate whole-mount step section as the standard of reference. To our knowledge, this is only the second study comparing RTE with multiparametric MRI and the fourth comparing RTE with MRI in general [12–14].

Subjects and Methods

Patients

From April 2010 to January 2012, 40 patients (median age, 62 years; range, 48–75 years) participated in this prospective single-center study. The median serum prostate-specific antigen concentration was 5.2 ng/mL (range, 2.1–14 ng/mL); median prostate volume, 31 cm³ (range, 15–130 cm³); and median time between biopsy and imaging, 79 days (range, 40–219 days). A positive vote of the local ethics committee and written informed consent were obtained. All men had biopsy-proven prostate cancer and were scheduled for radical prostatectomy at our institution. Thirty-eight of the 39 patients were informed consent were obtained. All men had biopsy-proven prostate cancer and were scheduled for radical prostatectomy at our institution.

Multiparametric MRI

Multiparametric MR images were interpreted by an experienced reader. MRI was performed with a 1.5-T system (Avanto, Siemens Healthcare) and a six-channel phased-array body coil combined with an endorectal coil. After digital rectal examination the balloon of the endorectal coil was inflated with 50 mL of air. A volume calculation for cancer-suspicious areas was defined by an orientation 90° to the urethra to be comparable to the histopathologic slices. A SPACE 3D sequence was also performed in the coronal plane. The T2-weighted MRI parameters are shown in Table 1. Low-signal-intensity nodules or ill-defined low-signal-intensity areas in the normally high-signal-intensity peripheral zone or low-signal-intensity areas with ill-defined margins in the transitional zone were considered suspicious for prostate cancer [16]. On T2-weighted MR images the reader assigned a score to the findings using a 3-point scale: 1, benign; 2, intermediate; 3, malignant. All volumetric measurements were performed on T2-weighted images, which provide the best anatomic information.

Multiparametric MRI conventional T2-weighted sequences are used to assess structural tissue information, and at least two functional techniques are added, such as diffusion-weighted imaging (DWI) to assess water diffusibility and contrast-enhanced MRI (CE-MRI) to assess contrast dynamics [11].

The aim of this study was to test whether—depending on tumor localization, clinical significance, or prostate volume—either RTE or multiparametric MRI is superior for the detection of prostate cancer. Although solid data from assessments of each modality separately exist in the literature, in this study we evaluated both modalities in the same cohort of patients. We compared diagnostic performance and estimation of tumor volume for RTE and multiparametric MRI in patients with known prostate cancer using prostate whole-mount step section as the standard of reference. To our knowledge, this is only the second study comparing RTE with multiparametric MRI and the fourth comparing RTE with MRI in general [12–14].

Multiparametric MRI

Multiparametric MR images were interpreted by an experienced reader. MRI was performed with a 1.5-T system (Avanto, Siemens Healthcare) and a six-channel phased-array body coil combined with an endorectal coil. After digital rectal examination the balloon of the endorectal coil was inflated with 50 mL of air. A volume calculation for cancer-suspicious areas was defined by an orientation 90° to the urethra to be comparable to the histopathologic slices. A SPACE 3D sequence was also performed in the coronal plane. The T2-weighted MRI parameters are shown in Table 1. Low-signal-intensity nodules or ill-defined low-signal-intensity areas in the normally high-signal-intensity peripheral zone or low-signal-intensity areas with ill-defined margins in the transitional zone were considered suspicious for prostate cancer [16]. On T2-weighted MR images the reader assigned a score to the findings using a 3-point scale: 1, benign; 2, intermediate; 3, malignant. All volumetric measurements were performed on T2-weighted images, which provide the best anatomic information.

Multiparametric MRI

Multiparametric MR images were interpreted by an experienced reader. MRI was performed with a 1.5-T system (Avanto, Siemens Healthcare) and a six-channel phased-array body coil combined with an endorectal coil. After digital rectal examination the balloon of the endorectal coil was inflated with 50 mL of air. A volume calculation for cancer-suspicious areas was defined by an orientation 90° to the urethra to be comparable to the histopathologic slices. A SPACE 3D sequence was also performed in the coronal plane. The T2-weighted MRI parameters are shown in Table 1. Low-signal-intensity nodules or ill-defined low-signal-intensity areas in the normally high-signal-intensity peripheral zone or low-signal-intensity areas with ill-defined margins in the transitional zone were considered suspicious for prostate cancer [16]. On T2-weighted MR images the reader assigned a score to the findings using a 3-point scale: 1, benign; 2, intermediate; 3, malignant. All volumetric measurements were performed on T2-weighted images, which provide the best anatomic information.

TABLE 1: Parameters for Multiparametric MRI

<table>
<thead>
<tr>
<th>Parameter</th>
<th>T2 Weighted</th>
<th>Diffusion Weighted</th>
<th>Dynamic Contrast Enhanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence</td>
<td>Fast spin-echo</td>
<td>Spin-echo echoplanar imaging</td>
<td>T1-weighted 3D FLASH</td>
</tr>
<tr>
<td>TR</td>
<td>3520</td>
<td>2200</td>
<td>2.83</td>
</tr>
<tr>
<td>TE</td>
<td>87</td>
<td>74</td>
<td>1.02</td>
</tr>
<tr>
<td>Flip angle (°)</td>
<td>90</td>
<td>90</td>
<td>9</td>
</tr>
<tr>
<td>FOV (mm²)</td>
<td>180 × 180</td>
<td>210 × 210</td>
<td>380 × 285</td>
</tr>
<tr>
<td>Matrix</td>
<td>25 × 256</td>
<td>128 × 90</td>
<td>256 × 128</td>
</tr>
<tr>
<td>Slice thickness (mm)</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>b value (s/mm²)</td>
<td>50/400/800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acquisition time (min:s)</td>
<td>1:54</td>
<td>0:46</td>
<td>9.48 (60×)</td>
</tr>
</tbody>
</table>

Fig. 1—62-year-old man with prostate cancer. Real-time elastogram shows two hard lesions (calipers, blue) in peripheral zone of prostate. D₁, D₂ = diameters of first lesion. D₃ = long diameter of second lesion.
Elastography and MRI for Prostate Cancer Detection

Diffusion-Weighted MRI

DW images were obtained in axial planes with echoplanar imaging sequences at three b values (50, 400, and 800 s/mm²). Restriction of diffusion was quantified by apparent diffusion coefficient (ADC) value. The DWI parameters are shown in Table 1. On DW images the reader assigned a score to imaging findings using a 3-point scale according to ADC value: 1, benign at ADC > 1200; 2, intermediate at ADC 900–1200; 3, malignant at ADC < 900 [16].

Contrast-Enhanced MRI

Contrast-enhanced MR images were obtained in axial planes with fast 3D T1-weighted volumetric interpolated breath-hold examination (VIBE) gradient-echo sequences every 7 seconds for approximately 10 minutes during continuous injection of gadolinium contrast material (gadoterate meglumine, Dotarem, Guerbet; flow rate, 0.1 mL/s). The CE-MRI parameters are shown in Table 1. Perfusion curves were generated with the Tissue4D program (Siemens Healthcare), which calculates a pharmacokinetic model derived from the Tofts model. Pharmacokinetic variables, including K_{trans} and K_{ep}, were determined [16]. Areas with increased time to peak, increased peak enhancement, and increased washout rate were considered suspicious for prostate cancer. Asymmetric hyperperfusion or hyperperfusion within a focal lesion was considered highly suspicious. On CE-MRI images, the reader assigned a score to imaging findings using a 3-point scale: 1, benign; 2, intermediate; 3, malignant (Fig. 2).

Histopathologic Preparation, Reporting, and Correlation With Imaging Findings

After radical prostatectomy and fixation, the prostatectomy specimens were laminated in 4-mm-thick slices with an orientation of 90° to the urethra. Pathologic analysis was performed by an experienced pathologist, who marked all cancer lesions and reported the Gleason score assigned. A shrinkage factor of 10% was accounted for assessment of tumor volumes. The prostate of each patient was divided into peripheral and transitional zone and into anterior, posterior, right, and left parts. The border between the anterior and posterior parts was defined as the imaginary line through the widest transverse diameter of the prostate. Only cancer lesions with a volume of 0.2 cm³ or more were considered for analysis.

Statistical Analysis and Measurements

For all patients, summary statistics were provided with the appropriate measures of location and measures of variation. Only areas suspicious for prostate cancer with a volume of 0.2 cm³ or greater were considered for statistical analysis. Detection rates including exact 95% CIs were calculated for multiparametric MRI and RTE. The Fisher exact test was used for comparison. The measurements of tumor volumes were compared between histopathologic slices, RTE, and T2-weighted MRI by Spearman rank correlation and exact 95% CIs. All statistical calculations were performed with SPSS software (version 18.0, IBM SPSS), and $p < 0.05$ was considered statistically significant. All findings of subgroup analyses with $p > 0.03$ (anatomic regions of the prostate, prostate volume, tumor volume, and Gleason score) were interpreted as very conservative. Multivariate analysis was performed; all combinations considered relevant are listed in Table 2.

Results

Histologic examination of the 39 patients who underwent prostatectomy revealed 61 cancer lesions with a volume of 0.2 cm³ or great-
er (median, 0.85 cm³; range, 0.2–11.18 cm³), of which 50 (82.0%) were localized in the peripheral zone, 11 (18.0%) in the transitional zone, 20 (32.9%) in the anterior part, and 41 (67.2%) in the posterior part of the prostate. The median Gleason score was 7 (range, 5–10).

Prostate Cancer Detection Rates According to Localization and Prostate Volume

In total, RTE depicted 41 of 61 cancer lesions (67.2%) with a false-positive rate of 25.5%. Multiparametric MRI depicted 53 of 61 lesions (86.9%) with a false-positive rate of 13.1% (p = 0.017) (Table 2). The combined approach of RTE and MRI depicted 56 of 61 cancer lesions (91.8%).

When cancer lesions were located in the posterior parts of the prostate, there was no significant difference in prostate cancer detection rate between RTE (78.0%) and multiparametric MRI (87.8%) (p = 0.379). A significant difference in prostate cancer detection rate was found in the anterior parts with an overall sensitivity of 45.0% for RTE and 85.0% for multiparametric MRI (p = 0.019). This difference was mainly caused by coexistent transitional zone localization or prostate volumes greater than 40 cm³. However, no significant difference between the two imaging modalities was found when anterior cancers were located in the peripheral zone (p = 0.471) or in prostates with volumes less than 40 cm³ (p = 0.371) (Table 2).

Regarding the peripheral zone only, the prostate cancer detection rates for RTE (78.0%) and multiparametric MRI (90.0%) did not differ significantly (p = 0.171).

Prostate Cancer Detection Rates According to Tumor Volumes

Irrespective of tumor volumes, the two modalities had similar detection rates. No significant differences were found. Within each modality and tumor volume range, the detection rates were calculated and presented in Table 2.

Table 2: Prostate Cancer Detection Rates Based on Localization, Tumor Volume, Gleason Score, and Prostate Volume

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Histologic Finding (n)</th>
<th>MRI</th>
<th>Real-Time Elastography</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>61</td>
<td>53</td>
<td>86.9</td>
<td>75.8–94.2</td>
</tr>
<tr>
<td>Tumor localization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior</td>
<td>20</td>
<td>17</td>
<td>85.0</td>
<td>62.1–96.8</td>
</tr>
<tr>
<td>Posterior</td>
<td>41</td>
<td>36</td>
<td>87.8</td>
<td>73.8–95.9</td>
</tr>
<tr>
<td>Transitional zone</td>
<td>11</td>
<td>8</td>
<td>72.7</td>
<td>39.0–94.0</td>
</tr>
<tr>
<td>Peripheral zone</td>
<td>50</td>
<td>45</td>
<td>90.0</td>
<td>78.2–96.7</td>
</tr>
<tr>
<td>anterior and transitional zone</td>
<td>11</td>
<td>8</td>
<td>72.7</td>
<td>39.0–94.0</td>
</tr>
<tr>
<td>anterior and peripheral zone</td>
<td>9</td>
<td>9</td>
<td>100.0</td>
<td>66.3–100</td>
</tr>
<tr>
<td>anterior and prostate volume < 40 cm³</td>
<td>12</td>
<td>10</td>
<td>83.3</td>
<td>51.6–97.9</td>
</tr>
<tr>
<td>anterior and prostate volume > 40 cm³</td>
<td>8</td>
<td>7</td>
<td>87.5</td>
<td>47.3–99.7</td>
</tr>
<tr>
<td>Tumor volume (cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 0.5</td>
<td>20</td>
<td>15</td>
<td>75.0</td>
<td>50.9–91.3</td>
</tr>
<tr>
<td>> 0.5</td>
<td>41</td>
<td>38</td>
<td>92.7</td>
<td>80.1–98.4</td>
</tr>
<tr>
<td>0.5–1</td>
<td>15</td>
<td>15</td>
<td>100.0</td>
<td>78.2–100</td>
</tr>
<tr>
<td>> 1</td>
<td>26</td>
<td>23</td>
<td>88.4</td>
<td>69.8–97.6</td>
</tr>
<tr>
<td>Gleason score</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5–7 (3+4)</td>
<td>45</td>
<td>39</td>
<td>86.7</td>
<td>73.2–94.9</td>
</tr>
<tr>
<td>7 (4+3)</td>
<td>10</td>
<td>8</td>
<td>80.0</td>
<td>44.4–97.5</td>
</tr>
<tr>
<td>8–10</td>
<td>6</td>
<td>6</td>
<td>100.0</td>
<td>54.1–100</td>
</tr>
<tr>
<td>Prostate volume (cm³)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>< 40</td>
<td>42</td>
<td>38</td>
<td>90.5</td>
<td>77.4–97.3</td>
</tr>
<tr>
<td>> 40</td>
<td>19</td>
<td>15</td>
<td>78.9</td>
<td>54.4–93.9</td>
</tr>
</tbody>
</table>

Fig. 3—Graph shows prostate cancer detection rate according to tumor volume. RTE = real-time elastography.
Elastography and MRI for Prostate Cancer Detection

Prostate Cancer Detection According to Gleason Score

For high-risk prostate cancer (Gleason score ≥ 4 + 3), RTE had a detection rate of 93.8% and MRI of 87.5% (p = 1.0). A significant difference between modalities was found for the detection of low-risk prostate cancer (Gleason score ≤ 3 + 4) with detection rates of 57.8% for RTE and 86.7% for MRI (p = 0.004). In contrast to that of multiparametric MRI, the detection rate of RTE within the modality was significantly higher for cancer lesions with a predominant Gleason pattern ≥ 4 than for a pattern ≤ 3 (p = 0.0012 for RTE).

Comparison of Volumetric Measurements

Overall the median cancer volume was 0.82 cm³ (range, 0.21–11.2 cm³). Spearman rank correlation with histopathologic results showed a correlation coefficient of 0.72 (CI, 0.57–0.82) for MRI and 0.46 (CI, 0.24–0.64) for RTE. Because the CIs do not cover the particular correlation coefficient, this difference has to be regarded as significant.

Discussion

In general, imaging of prostate cancer is limited by tumor volume (size) and grade, because cancers with a predominant Gleason pattern of 3 (i.e., Gleason score of 6 with 3 + 3 or of 7 with 3 + 4) are intermixed with normal glands and glands with dilated lumina (sparse tumors) [7, 17, 18]. Delongchamps et al. [16] used a similar multiparametric MRI setting with an endorectal coil at 1.5 T and for prostate cancers with volumes greater than 0.2 cm³ reported a sensitivity of 80% for the peripheral zone and 53% for the transitional zone, which are in concordance with our results. Furthermore, Yerram et al. [19] found that the presence of only low-suspicion lesions at multiparametric MRI can almost exclude the presence of high-risk prostate cancer. Delongchamps et al. [20] did not miss a single case of high-risk prostate cancer in a study of targeted MRI-ultrasound fusion biopsy. These data suggest that clinically significant disease can be detected with high confidence with imaging techniques and that therefore these techniques can be reliable tools for clinicians dealing with prostate cancer diagnosis and therapy. Therefore, the most important issue of this study was to compare RTE and multiparametric MRI regarding their accuracy in detection and characterization of clinically significant disease.

Tumor volume is one important factor for defining significant disease. We found comparably high detection rates for prostate cancers with volumes greater than 0.5 cm³ for both RTE (80.5%) and multiparametric MRI (92.7%) (Fig. 4). In accordance with the studies by Sumura et al. [14] and Roethke et al. [18] dealing with detection rates in relation to tumor volume, in our study both modalities had increasing accuracy for prostate cancer detection with increasing tumor volume. Sumura et al., to our knowledge the first study group to evaluate RTE and MRI in the same patient population, found superiority for RTE in the detection of small cancer lesions compared with T2-weighted MRI and CE-MRI separately. In comparison with their findings, our results suggest that combining T2-weighted MRI, CE-MRI, and DWI increases sensitivity for the detection of small cancer lesions in multiparametric MRI. This may explain...
our observation that the diagnostic accuracy of RTE was more dependent on tumor size than was the accuracy of MRI. This agrees with our observation that Spearman rank correlation was 0.72 for multiparametric MRI and only 0.46 for RTE in comparisons of volume measurements of cancer lesions with the histopathologic findings.

According to our findings, multiparametric MRI seems more reliable for tumor volume assessment. Thus for active surveillance of suspicious lesions and for follow-up examinations to detect tumor growth, MRI seems to be more reliable. This is in line with the findings of Curiel et al. [21], who investigated an ultrasonic elastographic imaging system that may provide a simple and cost-effective solution to monitoring high-intensity focused ultrasound treatments [21]. They assessed the volume of high-intensity focused ultrasound lesions in prostates and found that in general tumor volume was underestimated with elastography in comparison with MRI.

Regarding tumor histology, in the current study comparably high rates of detection of high-risk prostate cancer were found for RTE with (93.8%) and multiparametric MRI (87.5%). The one case of high-risk prostate cancer missed with RTE was located in the transitional zone, and the two cases missed with multiparametric MRI were not visible because of artifacts of the endorectal coil. Pelzer et al. [12], who also compared RTE findings with multiparametric MRI findings for prostate cancer diagnosis, found a reduced rate of detection of low-risk prostate cancer for both methods compared with detection of high-risk prostate cancer. Slightly different from these findings, in our study population with low serum prostate-specific serum concentrations, multiparametric MRI was superior to RTE for visualization of low-risk prostate cancer (86.7% for multiparametric MRI and 57.8% for RTE; p < 0.005). This finding might have occurred because RTE alone can provide information about tissue hardness only. In contrast, multiparametric MRI reveals structural and tissue perfusion information. The usefulness of combining RTE with contrast-enhanced ultrasound has been found in previous studies [6, 22].

Like those of Pelzer et al. [12], our results suggest that multiparametric MRI may have advantages in the detection of transitional zone cancers. The sensitivities were 72.7% for multiparametric MRI and 18.2% for RTE (p < 0.05). MRI also seems superior for visualization of anterior cancers located in prostates with a volume greater than 40 cm³. These results may be explained by cancer localization and the technical limits of RTE: All transitional zone cancers were highly anterior, and when calcifications were simultaneously located in the posterior parts of the transitional zone, there was no possibility of reaching these regions for RTE and ultrasound. In general this is due to hardening artifacts. In addition, investigation of the transitional zone and anterior parts in prostates with benign prostatic hypertrophy is limited for RTE because of stiffness artifacts of the inner gland [23]. However, RTE showed no significant difference in the detection of these tumors compared with multiparametric MRI when anterior cancers were located in prostates with a volume less than 40 cm³ (p = 0.37) or in the peripheral zone only (p = 0.45). This observation was also made for the dorsal parts of the peripheral zone (p = 0.38) in comparisons of the two modalities. Moreover, with one exception all transitional zone cancers were low-risk cancers, and significant differences in prostate cancer detection between RTE and multiparametric MRI in these regions existed only for cancer lesions 0.5 cm³ and smaller. These findings suggest that investigation of the inner gland and of anterior regions of the prostate, although less reliable than MRI, can be accurately performed with RTE in prostates with a volume less than 40 cm³ for detection of high-risk tumors by a skilled investigator.

Our study had several limitations. We did not have data about intraobserver and interobserver variability for the two methods. Second, we focused this study on correlation with histopathologic whole-mount step sections, and because only patients with confirmed cancer undergo radical prostatectomy it was not possible to perform a correlation with negative results. Third, for the same reason, we knew that every patient had prostate cancer, which is a bias. Fourth, there was no direct image-to-image registration for the original datasets. Therefore, we are not ultimately sure whether the identical geographic areas were compared for volumetric analysis. Fifth, in some patients the endorectal coil used for multiparametric MRI caused extinction artifacts in posterior regions of the prostate. Thus two cancer lesions were missed with multiparametric MRI that may have been detected without the endorectal coil. Sixth, MRI was performed in a multiparametric way, whereas ultrasound was performed with RTE alone. A prospective comparison between multiparametric MRI and multiparametric ultrasound (i.e., B-mode, contrast-enhanced ultrasound, and RTE) would be interesting. The final three limitations were the modest sample size, performance of a single evaluation of all individuals (reproductibility is unknown) and single pathologist observer, and the variable time between biopsy and imaging.

Summarizing our results and considering that in contrast to multiparametric MRI, RTE is a cost-effective and noninvasive technique that can be performed under real-time conditions, the integration of the two methods in clinical routine can be achieved as proposed by Heijmink et al. [24]: Because RTE has similar good reliability for the diagnosis of high-risk cancer, it seems sufficient for screening purposes and for initial biopsies, in which RTE-targeted cores can be obtained in addition to systematic cores. Several studies have shown that this combined approach may raise the overall sensitivity in prostate cancer diagnosis [9, 25]. If biopsy results are negative but there is ongoing suspicion of prostate cancer, the limitations of RTE, especially for the detection of transitional zone tumors and anteriorly located tumors in prostates with benign prostatic hypertrophy, should be remembered. These patients then may undergo multiparametric MRI to achieve the high sensitivity of the combined approach as found in this study. If lesions suspicious for being prostate cancer are found at multiparametric MRI, they can be biopsied with multiparametric MRI targeting or with cognitive or technical fusion by means of ultrasound [26–28].

References
Elastography and MRI for Prostate Cancer Detection

