Low-velocity pneumatic transportation of bulk solids

Bo Mi

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
LOW-VELOCITY PNEUMATIC TRANSPORTATION
OF BULK SOLIDS

A thesis submitted in fulfilment of the requirements
for the award of the degree of

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

BO MI
B.Sc. (USTB), M.Sc. (USTB)

Department of Mechanical Engineering
1994
DECLARATION

This is to certify that the work presented in this thesis was carried out by the author in the Department of Mechanical Engineering at the University of Wollongong and has not been submitted for a degree to any other university or institution.

Bo Mi
ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr P. W. Wypych, Senior Lecturer in the Department of Mechanical Engineering at the University of Wollongong, for his supervision, generous assistance and encouragement during the period of this study. I am indebted to Professor P. C. Arnold, Dr A. Mclean, Mr O. Kennedy, Dr Z. Gu and Dr R. Pan, the staff of the Bulk Materials Handling group, for their constructive suggestions in the development of the theory.

I gratefully acknowledge the financial support of the University of Wollongong under the Postgraduate Research Award scheme and the financial contribution by the Bulk Materials Handling and Physical Processing research program.

Acknowledgment also is made of the assistance given by other staff of the department, especially that of Mrs R. Hamlet and Mrs B. Butler, who completed many of the administrative tasks associated with this project. My thanks are extended to the technical staff in the Workshop and Bulk Solids Handling Laboratory with whose help and expertise the experimental apparatus was constructed. In particular, I would like to express my gratitude to Mr D. Cook, Mr I. Frew, Mrs W. Halford, Mr I. McColm and Mr S. Dunster.

Finally, special acknowledgment is made to my dear wife Yao Feng and my parents for their unfailing help and encouragement.
Low-velocity pneumatic conveying is being used increasingly in industry to transport a wide range of bulk solids due to reasons of low power consumption and low product damage, etc. However, investigations into this type of conveying still are at an elementary stage. For example, the existing procedures to estimate pipeline pressure drop during low-velocity pneumatic conveying still are inaccurate and inefficient. For this reason, this thesis aims at developing a pressure prediction model that is a function of the physical properties of the material, pipeline configuration and conveying condition.

During low-velocity pneumatic conveying, particles are conveyed usually in the form of slugs. This thesis studies initially the pressure drop across a single particle slug and the stress state and distribution in the slug through theoretical analysis.

To obtain detailed information on low-velocity pneumatic conveying, a test rig is set up and four types of coarse granular material are conveyed in the rig. Major parameters such as mass flow-rate of air and solids, pipeline pressure, slug velocity and wall pressure, etc. are measured over a wide range of low-velocity conveying conditions.

Based on the experimental results and a dimensional analysis, the relationship between the slug velocity and superficial air velocity is established in terms of the physical properties of the material and pipe size. Also by using particulate mechanics, a semi-empirical correlation is developed to determine the stress transmission coefficient for the slugs flowing in the pipe with rigid and parallel walls. A model then is developed to predict the overall horizontal pipeline pressure drop of low-velocity pneumatic conveying.
This model is used to predict the pneumatic conveying characteristics and static air pressure distribution for different test rig pipelines and materials. Good agreement is obtained between the predicted and experimental results. Based on the developed model, a method for determining the economical operating point in low-velocity pneumatic conveying is presented.

Additional experimental results from the conveying of semolina show that the performance of fine powders is quite different in low velocity. Based on these experimental results, an appropriate modification to the model is made so that it can be applied to the prediction of pressure drop in low-velocity pneumatic conveying of fine powders.
TABLE OF CONTENTS

ACKNOWLEDGMENTS i

SUMMARY ii

TABLE OF CONTENTS iv

LIST OF FIGURES ix

LIST OF TABLES xvii

NOMENCLATURE xix

CHAPTER

1 INTRODUCTION 1

2 LITERATURE SURVEY 7

2.1 Introduction 8

2.2 Suitability of Bulk Material 8

2.3 Performance of Low-Velocity Pneumatic Conveying 15

2.3.1 Flow Pattern 15

2.3.2 Pipeline Pressure Drop 17

2.3.2.1 Pressure Drop in Horizontal Flow 17

2.3.2.2 Pressure Drop in Vertical Flow 24

2.3.2.3 Pressure Drop Around Bends 26

2.4 Design of Low-Velocity Conveying System 27

3 THEORY ON LOW VELOCITY PNEUMATIC CONVEYING 32

3.1 Introduction 33

3.2 Flow Pattern and Formation of Particle Slugs 33

3.3 State of Particle Slug 35

3.4 Pressure Gradient of Horizontal Slug 39

3.4.1 Stresses Acting on Moving Slug 40

3.4.2 Force Balance and Pressure Gradient of Horizontal Slug 44
3.5 Axial Stress and Transmission Radial Stress
 3.5.1 Distribution of Axial Stress
 3.5.2 Average Axial Stress

3.6 Stress on Front and Back Surface of Slug

4 TEST FACILITY AND PROCEDURES

4.1 Introduction

4.2 General Arrangement of Main Test Rig
 4.2.1 Material Feeders
 4.2.1.1 High Pressure Rotary Valve
 4.2.1.2 Blow Tank
 4.2.2 Feed Hopper and Receiving Silo
 4.2.3 Conveying Pipeline

4.3 Air Supply and Control
 4.3.1 Air Supply
 4.3.2 Air Flow Control

4.4 Experimental Instrumentation and Technique
 4.4.1 Mass Flow-Rate of Solids
 4.4.2 Mass Flow-Rate of Air
 4.4.3 Static Air Pressure
 4.4.4 Wall Pressure
 4.4.5 Stationary Bed Thickness
 4.4.6 Slug Velocity

4.5 Data Acquisition and Processing Systems
 4.5.1 Hewlett Packard 3044A System
 4.5.2 PC Based Quick Data Acquisition System
 4.5.3 Data Processing

4.6 Test Procedures
 4.6.1 System Check
4.6.2 Calibration
 4.6.2.1 Load Cell Calibration
 4.6.2.2 Pressure Transducer Calibration

4.6.3 Test Programs

5 TEST MATERIAL AND PROPERTIES
 5.1 Introduction
 5.2 Particle Size and Distribution
 5.3 Density Analysis and Measurement
 5.3.1 Particle Density
 5.3.2 Bulk Density
 5.3.3 Bulk Voidage
 5.4 Flow Properties of Bulk Material
 5.4.1 Internal and Effective Friction Angle
 5.4.2 Wall Friction Angle
 5.5 Test Material

6 VELOCITY OF PARTICLE SLUG
 6.1 Introduction
 6.2 Definitions of Velocity
 6.2.1 Velocities for Fluid Medium
 6.2.2 Velocities for Particulate Medium
 6.3 Experimental Determination of Slug Velocity
 6.3.1 Principle and Method of Slug Velocity Measurement
 6.3.2 Calculation of Cross Correlation Function
 6.3.3 Resolution of Velocity
 6.4 Experimental Results of Slug Velocity
 6.4.1 Presentation of Results vs Mass Flow-Rate of Air
 6.4.2 Presentation of Results vs Mass Flow-Rate of Solids
 6.4.3 Presentation of Results vs Superficial Air Velocity
6.5 Empirical Correlation for Slug Velocity 127
6.5.1 Linear Model of Slug Velocity 127
6.5.2 Regression Slope for Linear Model 128
6.5.3 Dimensional Analysis 130
6.5.4 Minimum Air Velocity 131

7 WALL PRESSURE AND STRESS TRANSMISSION COEFFICIENT 136
7.1 Introduction 137
7.2 Wall Pressure Measurement 139
7.2.1 Method of Wall Pressure Measurement 139
7.2.2 Installation of Transducers 140
7.2.3 Test Procedures and Special Requirements 142
7.2.3.1 Re-calibration of Transducers 142
7.2.3.2 Check Test 142
7.2.3.3 Improvement of Phase Difference of Signals 145
7.2.4 Data Processing 147
7.3 Experimental Results 147
7.4 Strength of Particulate Medium 155
7.5 Stress Transmission Coefficient 159
7.5.1 Stress Transmission Coefficient in Pipe 159
7.5.2 Discussion on Stress Transmission Coefficient 162
7.6 Correlation of Static Internal Friction Angle 166

8 TOTAL HORIZONTAL PIPELINE PRESSURE DROP 171
8.1 Introduction 172
8.2 Geometrical Parameters of Low-Velocity Pneumatic Conveying 173
8.2.1 Air Gap Length 174
8.2.2 Slug Length 186
8.2.3 Stationary Bed Thickness 189
8.2.3.1 Measurement of Stationary Bed Thickness 190
<table>
<thead>
<tr>
<th>Chapter/Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.3.2</td>
<td>Results of Stationary Bed Thickness</td>
<td>192</td>
</tr>
<tr>
<td>8.3</td>
<td>Pneumatic Conveying Characteristics</td>
<td>195</td>
</tr>
<tr>
<td>8.4</td>
<td>Effect of Bends on Pressure Drop</td>
<td>201</td>
</tr>
<tr>
<td>8.5</td>
<td>Correlation of Horizontal Pipeline Pressure Drop</td>
<td>206</td>
</tr>
<tr>
<td>8.6</td>
<td>Comparison of Experimental and Predicted Results</td>
<td>208</td>
</tr>
<tr>
<td>9</td>
<td>PRACTICAL APPLICATIONS</td>
<td>213</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>214</td>
</tr>
<tr>
<td>9.2</td>
<td>Prediction of Pneumatic Conveying Characteristics</td>
<td>214</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Test Materials</td>
<td>215</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Test Rigs</td>
<td>216</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Test Results</td>
<td>219</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Predicted Pneumatic Conveying Characteristics</td>
<td>220</td>
</tr>
<tr>
<td>9.3</td>
<td>Prediction of Pipeline Pressure Distribution</td>
<td>227</td>
</tr>
<tr>
<td>9.4</td>
<td>Determination of Economical Operating Point</td>
<td>231</td>
</tr>
<tr>
<td>9.5</td>
<td>Application of Model to Fine Powders</td>
<td>235</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Test Material and Properties</td>
<td>236</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Test Results</td>
<td>237</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Modification of Model and Predicted Results</td>
<td>239</td>
</tr>
<tr>
<td>10</td>
<td>CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK</td>
<td>241</td>
</tr>
<tr>
<td>10.1</td>
<td>Conclusions</td>
<td>242</td>
</tr>
<tr>
<td>10.2</td>
<td>Suggestions for Further Work</td>
<td>245</td>
</tr>
<tr>
<td>11</td>
<td>REFERENCES</td>
<td>247</td>
</tr>
<tr>
<td></td>
<td>APPENDICES</td>
<td>262</td>
</tr>
<tr>
<td>A</td>
<td>EXPERIMENTAL DATA OF MAIN TESTS</td>
<td>263</td>
</tr>
<tr>
<td>B</td>
<td>LOCATIONS OF PRESSURE TRANSDUCERS</td>
<td>276</td>
</tr>
<tr>
<td>C</td>
<td>COMPUTER PROGRAMME FOR PRESSURE DROP PREDICTION</td>
<td>277</td>
</tr>
<tr>
<td>D</td>
<td>WALL PRESSURE DISTRIBUTION IN VERTICAL SLUG-FLOW</td>
<td>279</td>
</tr>
<tr>
<td>E</td>
<td>PUBLICATIONS WHILE PHD CANDIDATE</td>
<td>280</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Phase diagram of pneumatic conveying</td>
<td>2</td>
</tr>
<tr>
<td>1.2</td>
<td>Flow patterns of pneumatic conveying in horizontal pipe</td>
<td>3</td>
</tr>
<tr>
<td>2.1</td>
<td>Dixon's slugging diagram for a 100 mm diameter pipe [28]</td>
<td>10</td>
</tr>
<tr>
<td>2.2</td>
<td>Pressure gradient vs permeability factor [78]</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Pressure gradient vs term accounting for de-aeration factor and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>particle density [78]</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Schematic graph of measuring pipe from Legel and Schwedes [71]</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Dissipated energy versus air flow-rate from Daoud et al. [23]</td>
<td>30</td>
</tr>
<tr>
<td>3.1</td>
<td>Flow pattern of horizontal low-velocity pneumatic conveying</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Particle in air stream</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Formation process of slug</td>
<td>35</td>
</tr>
<tr>
<td>3.4</td>
<td>Fluidisation rig and schematic illustration of aggregative fluidisation</td>
<td>36</td>
</tr>
<tr>
<td>3.5</td>
<td>Pressure gradient of bed versus superficial air velocity</td>
<td>37</td>
</tr>
<tr>
<td>3.6</td>
<td>Forces and stresses acting on a horizontal particle slug</td>
<td>41</td>
</tr>
<tr>
<td>3.7</td>
<td>Total wall pressure and its components</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>Cross section of a slug</td>
<td>43</td>
</tr>
<tr>
<td>3.9</td>
<td>Pressure to maintain movement of a particle slug in a pipe [17]</td>
<td>45</td>
</tr>
<tr>
<td>3.10</td>
<td>Distribution curve of axial stress of a moving slug</td>
<td>47</td>
</tr>
<tr>
<td>3.11</td>
<td>Stresses acting on the frontal surface of a slug</td>
<td>50</td>
</tr>
<tr>
<td>4.1</td>
<td>Schematic layout of low-velocity pneumatic conveying test rig</td>
<td>53</td>
</tr>
<tr>
<td>4.2</td>
<td>Feed devices and receiving silo</td>
<td>54</td>
</tr>
<tr>
<td>4.3</td>
<td>ZGR-250 high pressure rotary valve</td>
<td>55</td>
</tr>
<tr>
<td>4.4</td>
<td>Air leakage curves of ZGR-250 rotary valve</td>
<td>57</td>
</tr>
</tbody>
</table>
4.5 Configuration of 0.9 m³ low-velocity blow tank feeder
4.6 Details of 96 m x 105 mm ID test rig pipeline
4.7 General arrangement of compressed air supply
4.8 Sonic nozzles
4.9 Orifice plate device
4.10 Exploded view of typical air pressure tapping location
4.11 Wall pressure measuring assembly
4.12 Data acquisition systems
4.13 Typical graphic outputs from "HPPLT"
4.14 Linear relationship between physical phenomena and electrical signal
4.15 Calibration of load cells
4.16 Calibration line of a pressure transducer
4.17 Range of low-velocity pneumatic conveying for a given mₚ
5.1 Regular and irregular shaped particles
5.2 Particle size distribution
5.3 Schematic of stereo pycnometer
5.4 Different arrangement of particles [120]
5.5 Jenike shearing test [121]
5.6 Mohr circle and yield locus of cohesive material
5.7 Jenike direct shear tester
5.8 Typical measured yield locus
5.9 Arrangement for wall yield locus test
5.10 Wall yield locus
5.11 Wall yield locus for polystyrene chips
6.1 Slug flowing in a horizontal pipe
6.2 Time history records
6.3 Typical cross-correlation plot
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Correlated signals taken by two neighbouring sensors</td>
<td>110</td>
</tr>
<tr>
<td>6.5</td>
<td>Discrete sequences sampled from continuous time signals</td>
<td>111</td>
</tr>
<tr>
<td>6.6</td>
<td>Discrete cross correlation function</td>
<td>114</td>
</tr>
<tr>
<td>6.7</td>
<td>Discrete cross correlation function with the peak value not at sampling point</td>
<td>115</td>
</tr>
<tr>
<td>6.8</td>
<td>Graph of an actual cross correlation function, obtained from the experiment where (m_f = 0.0498 \text{ kgs}\text{^{-1}}) and (m_s = 0.840 \text{ kgs}\text{^{-1}})</td>
<td>118</td>
</tr>
<tr>
<td>6.9</td>
<td>Slug velocity vs mass flow-rate of air for white plastic pellets</td>
<td>119</td>
</tr>
<tr>
<td>6.10</td>
<td>Slug velocity vs mass flow-rate of air for black plastic pellets</td>
<td>119</td>
</tr>
<tr>
<td>6.11</td>
<td>Slug velocity vs mass flow-rate of air for wheat</td>
<td>120</td>
</tr>
<tr>
<td>6.12</td>
<td>Slug velocity vs mass flow-rate of air for barley</td>
<td>120</td>
</tr>
<tr>
<td>6.13</td>
<td>Slug velocity vs mass flow-rate of solids for white plastic pellets, carried out in the 105 mm ID mild steel pipeline</td>
<td>122</td>
</tr>
<tr>
<td>6.14</td>
<td>Slug velocity vs mass flow-rate of solids for black plastic pellets, carried out in the 105 mm ID mild steel pipeline</td>
<td>123</td>
</tr>
<tr>
<td>6.15</td>
<td>Slug velocity vs mass flow-rate of solids for wheat, carried out in the 105 mm ID mild steel pipeline</td>
<td>123</td>
</tr>
<tr>
<td>6.16</td>
<td>Slug velocity vs mass flow-rate of solids for barley, carried out in the 105 mm ID mild steel pipeline</td>
<td>124</td>
</tr>
<tr>
<td>6.17</td>
<td>Slug velocity vs superficial air velocity for white plastic pellets, carried out in the 105 mm ID mild steel pipeline</td>
<td>125</td>
</tr>
<tr>
<td>6.18</td>
<td>Slug velocity vs superficial air velocity for black plastic pellets, carried out in the 105 mm ID mild steel pipeline</td>
<td>125</td>
</tr>
<tr>
<td>6.19</td>
<td>Slug velocity vs superficial air velocity for wheat, carried out in the 105 mm ID mild steel pipeline</td>
<td>126</td>
</tr>
<tr>
<td>6.20</td>
<td>Slug velocity vs superficial air velocity for barley, carried out in the 105 mm ID mild steel pipeline</td>
<td>126</td>
</tr>
<tr>
<td>6.21</td>
<td>Goodness of fit of K correlation</td>
<td>129</td>
</tr>
</tbody>
</table>
6.22 Idealised slug with acting forces at initial motion

7.1 Pressures acting on the sensitive surfaces of transducers

7.2 Location requirement of pressure transducers

7.3 Type-B transducer installed flush with pipe wall

7.4 Typical graphs of the pressures and processed results from check tests

7.5 Phase difference of signals

7.6 Plots of wall pressure and air pressure for black plastic pellets, $m_f = 0.0643 \text{ kgs}^{-1}$, $m_s = 0.849 \text{ kgs}^{-1}$

7.7 Plots of wall pressure and air pressure for black plastic pellets, $m_f = 0.0498 \text{ kgs}^{-1}$, $m_s = 0.840 \text{ kgs}^{-1}$

7.8 Wall pressure versus mass flow-rate of air for white plastic pellets

7.9 Wall pressure versus mass flow-rate of air for black plastic pellets

7.10 Wall pressure versus mass flow-rate of air for wheat

7.11 Wall pressure versus mass flow-rate of air for barley

7.12 Stresses acting on a particle slug

7.13 Stresses on element P in particulate medium and Mohr circle representation

7.14 Possible state of stress at element P represented by a series of Mohr circles

7.15 Possible states of stress at element P in passive stress state

7.16 Particles flowing in a vertical pipe

7.17 Diagram of strength

7.18 Particles moving in a silo

7.19 Variation trend of stress transmission coefficient in active case

7.20 Possible Mohr circles representing the stress state of a particle slug

7.21 Goodness of fit
8.1 Geometrical parameters of slug-flow
8.2 Various positions of slugs during low-velocity pneumatic conveying
8.3 Time history records of static air and wall pressures
8.4 Plot of air gap length versus mass flow-rate of air for white plastic pellets
8.5 Plot of air gap length versus mass flow-rate of solids for white plastic pellets
8.6 Plot of air gap length versus mass flow-rate of air for black plastic pellets
8.7 Plot of air gap length versus mass flow-rate of solids for black plastic pellets
8.8 Plot of air gap length versus mass flow-rate of air for wheat
8.9 Plot of air gap length versus mass flow-rate of solids for wheat
8.10 Plot of air gap length versus mass flow-rate of air for barley
8.11 Plot of air gap length versus mass flow-rate of solids for barley
8.12 Cross section of stationary bed
8.13 Measurement of stationary bed thickness with a camera
8.14 A typical photograph of the stationary bed of barley for the experiment of $m_s = 1.32 \text{ kgs}^{-1}$, $m_f = 0.088 \text{ kgs}^{-1}$, conducted in the 96 m long pipeline
8.15 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for white plastic pellets
8.16 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for black plastic pellets
8.17 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for wheat
8.18 Cross-sectional area ratio of stationary bed to pipe versus slug velocity for barley
8.19 General form of steady state pneumatic conveying characteristics for a given material and pipeline
8.20 Experimental conveying characteristics of black plastic pellets conveyed in the 52 m long pipeline
8.21 Experimental conveying characteristics of wheat conveyed in the 52 m long pipeline
8.22 Pressure distribution along a horizontal pipe for white plastic pellets
8.23 Pressure distribution along a horizontal pipe for black plastic pellets
8.24 Pressure distribution along a horizontal pipe for wheat
8.25 Pressure distribution along a horizontal pipe for barley
8.26 Arrangement of transducers for the investigation into bend effect
8.27 Comparison of pressure gradient for black plastic pellets
8.28 Comparison of pressure gradient for white plastic pellets
8.29 Slug flowing through pipeline with a bend and the corresponding idealised pressure wave form
8.30 Predicted conveying characteristics of white plastic pellets in the horizontal pipe $L_{th} = 36$ m and $D = 0.105$ m, showing the curves of constant m_s
8.31 Predicted conveying characteristics of white plastic pellets in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant m_s
8.32 Predicted conveying characteristics of black plastic pellets in the horizontal pipe $L_{th} = 36$ m and $D = 0.105$ m, showing the curves of constant m_s
8.33 Predicted conveying characteristics of black plastic pellets in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant m_s

8.34 Predicted conveying characteristics of wheat in the horizontal pipe $L_{th} = 36$ m and $D = 0.105$ m, showing the curves of constant m_s

8.35 Predicted conveying characteristics of wheat in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant m_s

8.36 Predicted conveying characteristics of barley in the horizontal pipe $L_{th} = 36$ m and $D = 0.105$ m, showing the curves of constant m_s

8.37 Predicted conveying characteristics of barley in the horizontal pipe $L_{th} = 78$ m and $D = 0.105$ m, showing the curves of constant m_s

9.1 Pneumatic conveying test rig with 80.5 mm ID pipeline

9.2 Procedure for determining pneumatic conveying characteristics

9.3 Relationship between slug velocity and superficial air velocity

9.4 Predicted PCC of the horizontal pipeline of Rig 1 for conveying polystyrene chips, $L_{th} = 78$ m, $D = 105$ mm

9.5 Predicted PCC of the horizontal pipeline of Rigs 2 and 3 for conveying polystyrene chips, $L_{th} = 40$ m, $D = 156$ mm

9.6 Predicted PCC of the horizontal pipeline of Rig 4 for conveying black plastic pellets, $L_{th} = 116$ m, $D = 80.5$ mm

9.7 Predicted pressure drop compared with experimental pressure drop obtained on Rig 1 for polystyrene chips

9.8 Predicted pressure drop compared with experimental pressure drop obtained on Rigs 2 and 3 for polystyrene chips
9.9 Predicted pressure drop compared with experimental pressure drop obtained on Rig 4 for black plastic pellets 226
9.10 Pipeline pressure distribution for white plastic pellets and D = 105 mm 228
9.11 Pipeline pressure distribution for black plastic pellets and D = 105 mm 228
9.12 Pipeline pressure distribution for wheat and D = 105 mm 229
9.13 Pipeline pressure distribution for barley and D = 105 mm 229
9.14 Variation of pressure gradient 230
9.15 Economical operating curve of white plastic pellets shown on PCC graph for 36 m horizontal pipeline 233
9.16 Economical operating curve of black plastic pellets shown on PCC graph for 36 m horizontal pipeline 233
9.17 Economical operating curve of wheat shown on PCC graph for 78 m horizontal pipeline 234
9.18 Economical operating curve of barley shown on PCC graph for 36 m horizontal pipeline 234
9.19 Particle size distribution of semolina 236
9.20 Semolina shown in Dixon's slugging diagram 237
9.21 Low-velocity pneumatic conveying characteristics of 105 mm ID, 52 m mild steel pipeline for semolina 238
9.22 Plot of slug velocity versus superficial air velocity for semolina 239
9.23 Predicted pneumatic conveying characteristics of semolina and 36 m horizontal pipeline by using modified model 240
B.1 Schematic layout of 96 m long pipeline and transducer locations 276
D.1 A particle slug in a vertical pipe 279
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Physical properties of test material</td>
<td>100</td>
</tr>
<tr>
<td>6.1</td>
<td>K, U_{amin} and γ^2 for lines of various test materials</td>
<td>127</td>
</tr>
<tr>
<td>6.2</td>
<td>Optimal coefficient</td>
<td>129</td>
</tr>
<tr>
<td>7.1</td>
<td>Experimental wall pressure and stress transmission coefficient for wheat</td>
<td>154</td>
</tr>
<tr>
<td>7.2</td>
<td>Stress transmission coefficient λ for different test materials</td>
<td>155</td>
</tr>
<tr>
<td>7.3</td>
<td>Static internal friction angles for test materials</td>
<td>168</td>
</tr>
<tr>
<td>7.4</td>
<td>Coefficient of best fit</td>
<td>169</td>
</tr>
<tr>
<td>9.1</td>
<td>Conveying pipelines</td>
<td>217</td>
</tr>
<tr>
<td>9.2</td>
<td>Steady-state dense-phase results for black plastic pellets</td>
<td>219</td>
</tr>
<tr>
<td>9.3</td>
<td>Steady-state dense-phase results for polystyrene chips</td>
<td>220</td>
</tr>
<tr>
<td>9.4</td>
<td>Economical superficial air velocity</td>
<td>232</td>
</tr>
<tr>
<td>A.1</td>
<td>Experimental values of major parameters for conveying white plastic pellets in 52 m long pipeline</td>
<td>264</td>
</tr>
<tr>
<td>A.2</td>
<td>Experimental values of major parameters for conveying white plastic pellets in 96 m long pipeline</td>
<td>265</td>
</tr>
<tr>
<td>A.3</td>
<td>Experimental values of major parameters for conveying black plastic pellets in 96 m long pipeline</td>
<td>266</td>
</tr>
<tr>
<td>A.4</td>
<td>Experimental values of major parameters for conveying black plastic pellets in 52 m long pipeline</td>
<td>267</td>
</tr>
<tr>
<td>A.5</td>
<td>Experimental values of major parameters for conveying wheat in 52 m long pipeline</td>
<td>268</td>
</tr>
<tr>
<td>A.6</td>
<td>Experimental values of major parameters for conveying wheat in 96 m long pipeline</td>
<td>269</td>
</tr>
</tbody>
</table>
A.7 Experimental values of major parameters for conveying barley in 96 m long pipeline

A.8 Experimental values of major parameters for conveying barley in 52 m long pipeline

A.9 Experimental values of pressure along 96 m long pipeline for white plastic pellets

A.10 Experimental values of pressure along 96 m long pipeline for black plastic pellets

A.11 Experimental values of pressure along 96 m long pipeline for wheat

A.12 Experimental values of pressure along 96 m long pipeline for barley

B.1 Pressure transducer locations (distance from end of pipeline)
NOMENCLATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cross sectional area of pipe (m2)</td>
</tr>
<tr>
<td>A_c</td>
<td>Cross sectional area of the shear ring of a Jenike shearing tester</td>
</tr>
<tr>
<td>A_f</td>
<td>De-aeration factor (mbar. sm$^{-1}$)</td>
</tr>
<tr>
<td>A_{st}</td>
<td>Cross sectional area of stationary bed, m2</td>
</tr>
<tr>
<td>a, b</td>
<td>Ergun constant</td>
</tr>
<tr>
<td>C</td>
<td>Integration constant in Equation (3.10)</td>
</tr>
<tr>
<td>c</td>
<td>Interparticle cohesion</td>
</tr>
<tr>
<td>c_d</td>
<td>Coefficient in Equation (6.29)</td>
</tr>
<tr>
<td>c_w</td>
<td>Particle-wall cohesion</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of pipe (m)</td>
</tr>
<tr>
<td>d</td>
<td>Particle diameter (mm)</td>
</tr>
<tr>
<td>F_d</td>
<td>Drag force of fluid (N)</td>
</tr>
<tr>
<td>F_b</td>
<td>Buoyant force (N)</td>
</tr>
<tr>
<td>F_{r}, F_s</td>
<td>Friction forces for particles (N)</td>
</tr>
<tr>
<td>F_r</td>
<td>Froude number of material, $Fr = U_r^2/gD$</td>
</tr>
<tr>
<td>$F_{r,F}$</td>
<td>Variable in Equation (2.10)</td>
</tr>
<tr>
<td>F_w</td>
<td>Gravity force (N)</td>
</tr>
<tr>
<td>f</td>
<td>Sampling frequency (Hz)</td>
</tr>
<tr>
<td>f_K</td>
<td>Constant in Equation (6.23)</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration due to gravity (m\cdots$^{-2}$)</td>
</tr>
<tr>
<td>H_b</td>
<td>Height of fixed bed (m)</td>
</tr>
<tr>
<td>h_c</td>
<td>Critical depth of the shearing flow at transition (m)</td>
</tr>
<tr>
<td>h_s</td>
<td>Stationary bed thickness (mm)</td>
</tr>
<tr>
<td>ID</td>
<td>Internal diameter of pipe (m)</td>
</tr>
</tbody>
</table>
K Slope in Equation (6.25)
k Constant in Equation (6.35) and (6.36)
k_1 Constant in Equation (6.1)
L Distance of two neighbouring pressure transducers (m)
L_h Length of horizontal pipe (m)
L_t Total pipeline length (m)
L_{th} Total horizontal pipeline length (m)
L_v Vertical pipeline length (m)
l_A Distance between a test point and pipe end (m)
l_d Distance between two neighbouring slugs (m)
l_g Air gap length (m)
l_s Single slug length (m)
M Total mass of the moving solids in a pipe (kg)
m Mass of particles (kg)
m_f Mass flow-rate of air (kgs$^{-1}$)
m_{fl} Rotary valve air leakage (kgs$^{-1}$)
m_{ft} Total supplied mass flow-rate of air (kgs$^{-1}$)
m_s Mass flow-rate of solids (kgs$^{-1}$)
m_{st} Mass of particles collected by a slug per unit time (kgs$^{-1}$)
m^* Mass flow ratio
NB Number of bends
N_s Number of the pressure peaks in a certain period of time
n Number of test materials
n_b Number of the particles contained in the back area of a slug
n_f Number of the particles contained in the front area of a slug
n_i Number of the particles having velocity u_{pi}, $i = 1, \ldots, n$
n_m Number of the particles contained in the middle area of a slug
n_p Numbers of the particles of a given mass
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_i</td>
<td>Air pressure at different points along a pipe (Pag), $i = 1, \ldots, n$</td>
</tr>
<tr>
<td>P_B</td>
<td>Air pressure during a slug flowing through a bend (Pag)</td>
</tr>
<tr>
<td>P_S</td>
<td>Air pressure during a slug flowing in a straight pipe (Pag)</td>
</tr>
<tr>
<td>P_{f1}, P_{f2}</td>
<td>Pressure force (N)</td>
</tr>
<tr>
<td>P_n</td>
<td>Nominal power</td>
</tr>
<tr>
<td>P_u</td>
<td>Dissipated energy (J/kgm)</td>
</tr>
<tr>
<td>p</td>
<td>Interstitial air pressure (Pag)</td>
</tr>
<tr>
<td>p_2, p_3</td>
<td>Pressure in Equation (5.2) (Psig)</td>
</tr>
<tr>
<td>p_f</td>
<td>Permeability factor (m^3kg^{-1})</td>
</tr>
<tr>
<td>Q_g</td>
<td>Air flow rate (m^3s^{-1})</td>
</tr>
<tr>
<td>Q_w</td>
<td>Shearing force acting on a slug (N)</td>
</tr>
<tr>
<td>R</td>
<td>Radius of pipe (m)</td>
</tr>
<tr>
<td>R_b</td>
<td>Radius of Bend (m)</td>
</tr>
<tr>
<td>Re</td>
<td>Reynold’s number</td>
</tr>
<tr>
<td>R_f</td>
<td>Friction force between the sliding slug and pipe wall (N)</td>
</tr>
<tr>
<td>R_{s1}, R_{s2}</td>
<td>Resistant forces (N)</td>
</tr>
<tr>
<td>R_{xy}</td>
<td>Cross correlation function</td>
</tr>
<tr>
<td>\hat{R}_{xy}</td>
<td>Estimation of R_{xy}</td>
</tr>
<tr>
<td>r</td>
<td>Radius of Mohr circle</td>
</tr>
<tr>
<td>S, S', S'', S'''</td>
<td>Shearing forces in Jenike shearing test</td>
</tr>
<tr>
<td>S_v</td>
<td>Specific surface (i.e. particle surface per unit particle volume) (m^{-1})</td>
</tr>
<tr>
<td>S_{xy}</td>
<td>Cross spectral density</td>
</tr>
<tr>
<td>\hat{S}_{xy}</td>
<td>Estimation of S_{xy}</td>
</tr>
<tr>
<td>T</td>
<td>Time range of a signal record (s)</td>
</tr>
<tr>
<td>T_s</td>
<td>Sampling time interval (s)</td>
</tr>
<tr>
<td>t_i</td>
<td>Different times (s), $i = 0, 1, \ldots, n$</td>
</tr>
<tr>
<td>t_{f1}, t_{l1}</td>
<td>Time of the first and last slug occurring in a pressure record (s)</td>
</tr>
<tr>
<td>t_p</td>
<td>Closing time of a solenoid valve (s)</td>
</tr>
</tbody>
</table>
Low-Velocity Pneumatic Transportation of Bulk Solids

- t_s: Time taken by the slug to travel across a pipeline (s)
- t_T: Opening and closing time of a solenoid valve (s)
- U_a: Superficial air velocity (ms$^{-1}$)
- U_{amin}: Minimum superficial air velocity (ms$^{-1}$)
- U_{mf}: Incipient fluidisation air velocity (ms$^{-1}$)
- U_{ra}: Mean air velocity (ms$^{-1}$)
- U_p: Superficial particle velocity (ms$^{-1}$)
- U_{pb}: Particle velocity in the back area of a slug (ms$^{-1}$)
- U_{pf}: Particle velocity in the front area of a slug (ms$^{-1}$)
- U_{pm}: Particle velocity in the middle area of a slug (ms$^{-1}$)
- U_{pst}: Particle velocity in stationary bed (ms$^{-1}$)
- U_s: Slug velocity (ms$^{-1}$)
- U_{sb}: Velocity of the back surface of a slug (ms$^{-1}$)
- U_{sf}: Velocity of the front surface of a slug (ms$^{-1}$)
- U_{sp}: Slip velocity (ms$^{-1}$)
- U_t: Single particle terminal velocity (ms$^{-1}$)
- u_{pi}: Velocity of each particle contained in a slug (ms$^{-1}$), $i = 0, 1, ..., n$
- V, V', V'', V''': Normal forces in Jenike shearing test
- V_1, V_2: Principle forces
- V_a: Added cell volume of a stereo pycnometer (cm3)
- V_c: Sealed sample cell volume of a stereo pycnometer (cm3)
- V_p: Powder sample volume (cm3)
- V_s: Total volume of the moving solids in a pipe
- X: Variable in Figure 2.3
- x, y, z: Co-ordinates
- $x_1, ..., x_5$: Coefficients in Equations (6.26) and (7.19)
- $x(t), y(t), z(t)$: Time history records
- α: Cross sectional area ratio of stationary bed to pipe
\(\alpha_b \) \hspace{1cm} \text{Incline angle of bend with respect to the horizontal (°)}

\(\beta \) \hspace{1cm} \text{Coefficient in Equation (6.36)}

\(\beta_b \) \hspace{1cm} \text{Incline angle of the back surface of a slug (°)}

\(\beta_f \) \hspace{1cm} \text{Incline angle of the front surface of a slug (°)}

\(\delta \) \hspace{1cm} \text{Effective internal friction angle (°)}

\(\Delta \theta = \theta_1 - \theta_2 \) \hspace{1cm} \text{Radian of bend in Equation (2.15) (°)}

\(\Delta p \) \hspace{1cm} \text{Pressure drop across a single slug (Pa)}

\(\Delta p_i \) \hspace{1cm} \text{Pipeline pressure drops at different locations (Pa), } i = 1, \ldots, n

\(\Delta p_t \) \hspace{1cm} \text{Total pipeline pressure drop (Pa)}

\(\Delta p_{th} \) \hspace{1cm} \text{Total horizontal pipeline pressure drop (Pa)}

\(\Delta t \) \hspace{1cm} \text{Interval time (s)}

\(\varepsilon \) \hspace{1cm} \text{Bulk voidage}

\(\phi \) \hspace{1cm} \text{Internal friction angle (°)}

\(\phi_s \) \hspace{1cm} \text{Static internal friction angle (°)}

\(\phi_w \) \hspace{1cm} \text{Wall friction angle (°)}

\(\gamma \) \hspace{1cm} \text{Coefficient of correlation}

\(\gamma_b \) \hspace{1cm} \text{Bulk specific weight with respect to water at 4 °C}

\(\gamma_s \) \hspace{1cm} \text{Particle specific weight with respect to water at 4 °C}

\(\eta \) \hspace{1cm} \text{Dynamic viscosity of fluid, Nsm}^{-2}

\(\lambda \) \hspace{1cm} \text{Stress transmission coefficient}

\(\lambda_A \) \hspace{1cm} \text{Stress transmission coefficient at active failure}

\(\lambda_{\min}, \lambda_{\max} \) \hspace{1cm} \text{Minimum and maximum stress transmission coefficient}

\(\lambda_o \) \hspace{1cm} \text{Static stress transmission coefficient}

\(\lambda_{omin}, \lambda_{omax} \) \hspace{1cm} \text{Minimum and maximum static stress transmission coefficient}

\(\lambda_p \) \hspace{1cm} \text{Stress transmission coefficient at passive failure}

\(\mu \) \hspace{1cm} \text{Coefficient of internal friction}

\(\mu_w \) \hspace{1cm} \text{Coefficient of wall friction}

\(\theta \) \hspace{1cm} \text{Angle in Figure (3.8) (°)}
\(\theta_s \)
Angle in Figure (8.12) \(^\circ\)

\(\rho_a \)
Air density \((\text{kgm}^{-3})\)

\(\rho_b \)
Bulk density \((\text{kgm}^{-3})\)

\(\rho_{bst} \)
Bulk density of stationary bed \((\text{kgm}^{-3})\)

\(\rho_s \)
Particle density \((\text{kgm}^{-3})\)

\(\sigma \)
Normal stress \((\text{Pa})\)

\(\sigma_1, \sigma_2 \)
Principle stresses \((\text{Pa})\)

\(\sigma_b \)
Stress on the back face of a slug \((\text{Pa})\)

\(\sigma_f \)
Stress on the front face of a slug \((\text{Pa})\)

\(\sigma_r \)
Radial stress \((\text{Pa})\)

\(\sigma_g \)
Gravity pressure \((\text{Pa})\)

\(\sigma_n \)
Normal stress coordinate

\(\sigma_{tw} \)
Total wall pressure \((\text{Pa})\)

\(\sigma_{w} \)
Wall pressure \((\text{Pa})\)

\(\sigma_{w_{am}} \)
Average wall pressure \((\text{Pa})\)

\(\sigma_x, \sigma_y, \sigma_z \)
Normal stresses in \(x, y, z\) direction \((\text{Pa})\)

\(\sigma_{xm} \)
Average stress in \(x\) direction

\(\tau \)
Shearing stress \((\text{Pa})\)

\(\tau_d \)
Time delay between two signals \((\text{s})\)

\(\tau_p \)
Specific time delay for the peak value of cross-correlation function \((\text{s})\)

\(\tau_n \)
Shearing stress coordinate

\(\tau_{tw} \)
Total shear stress at a wall \((\text{Pa})\)

\(\tau_{xy}, \tau_{xz}, \tau_{yz} \)
Shear stresses at the planes perpendicular to \(x, y, z\) coordinates

\(\omega \)
Angle defined in Figure 7.17 \(^\circ\)