Policies and politics of changing the food label

Heather Yeatman
University of Wollongong, hyeatman@uow.edu.au

Michael Moore
Public Health Association of Australia, mmoore@phaa.net.au

Follow this and additional works at: https://ro.uow.edu.au/sspapers

Part of the Education Commons, and the Social and Behavioral Sciences Commons

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Policies and politics of changing the food label

Abstract
This is a poster abstract from the 5th Asia-Pacific Conference on Public Health hosted by the Korean Public Health Association on April 10-11, 2014.

Keywords
politics, policies, label, food, changing

Disciplines
Education | Social and Behavioral Sciences

Publication Details

This conference paper is available at Research Online: https://ro.uow.edu.au/sspapers/809
Microbiological Evaluation of Indoor Air in the Kitchens of Food Courts and Cafeterias

Jong-Gyu KIM1, Jong-Yeong PARK1, Jong-Soon KIM1

1Department of Public Health, Namyang University, Republic of Korea; 2Department of Industrial and Management Engineering, Namyang University, Republic of Korea

Background: There has been a growing interest in indoor microbial studies in recent years. Most adults eat foods more than once a week at restaurants, food courts, and cafeterias, where they are exposed to indoor environmental factors (Gaseous) that influence their health and physical condition. The purpose of this study was to determine the airborne bacteria and fungal levels in the kitchens of food courts/cafeterias in a city of Korea.

Methods: Air samples were taken from nine kitchens of food courts/cafeteria. Merck Air Sampler Max 100 was used for sampling and sampling was made between 10:00 AM and 2:00 PM. The filters were incubated at 37°C for 7 days. The results were analyzed using standard plate count method.

Results: The levels of total aerobic bacteria measured were 10^3-10^5 CFU/mL. The levels of fungi were 10^2-10^4 CFU/mL. Staphylococcus aureus was not detected in all the kitchens. The levels of fungi were found to be significantly lower across the kitchens. MRSA was not detected in any of the kitchens.

Conclusions: These results indicate that the kitchens could be exposed to risk of high microbial contamination, posing a potential health risk to the indoor air quality in the kitchens, more frequent ventilation is necessary.

Keywords: indoor air of kitchens, bacteria, fungi

Parabens, Its Fates and Effects in the Body

Paecki KIM1, Youngmin OH1, Kyunghee JO1, Younggil KIM2, SungKyeun KIM1, Beakwan KIM1, Seonghee HWANG2

1Occupational & Environmental Health, Yeungin University, Republic of Korea; 2Environmental Health and Safety, EUI University, Republic of Korea

Background: Parabens are esters of para-hydroxybenzoic acid, used as a preservatives since 1930s, have been widely used in the food, pharmaceuticals and cosmetics. Four esters are commonly used: methyl-, ethyl-, propyl- and butyl parabens. They are present in many food products, such as fruits and vegetables, spices, herbs, spices, andcolours. Acute and chronic effects of parabens have been associated with some adverse effects, including endocrine disruption potential.

Methods: Parabens, methyl-, ethyl- propyl- and butyl were used in this experiment. 20 mg/kg/dose, 7 weeks old Sprague-Dawley were used and administered via oral or venous vessel. Urine and blood samples were collected 0, 0.5, 1, 2, 4, 8, 12 hours after administration, and samples were analyzed using HPLC-MS/MS. Parent compounds and metabolites were hydroxylation and conjugation assessed.

Results: The test animals were 92.0-107.0% precision, recovery 1-4-9.7% and LOD were 1.0-5.0 ng/mL. Oral exposed parabens were detected in the blood within 30 minutes and stayed during test time intervals. Injected parabens were detected in the serum and stayed during test time intervals. Injected parabens were not detected in the urine within 30 minutes and stayed during test time intervals. Oral exposed parabens were detected in the urine within 30 minutes and stayed during test time intervals. Oral exposed parabens were not detected in the serum within 30 minutes and stayed during test time intervals. Injected parabens were detected in the urine within 30 minutes and stayed during test time intervals.

Conclusions: Oral exposed parabens were absorbed within 30 minutes and eliminated 0.5-2 hours. Injected parabens were excreted 0.5-2 hours within 60 minutes.

Keywords: parabens, metabolites, rat