Learning as a game: exploring cultural differences between teachers and learners using a team learning system

John Gilchrist Findlay
University of Wollongong, jfindlay@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
LEARNING AS A GAME: EXPLORING CULTURAL DIFFERENCES BETWEEN TEACHERS AND LEARNERS USING A TEAM LEARNING SYSTEM

by
JOHN G. FINDLAY
M.B.A. (Southern Cross)
A dissertation submitted for the degree of
Doctor of Philosophy of
The University of Wollongong
2009
DECLARATION

I certify that the substance of this thesis has not previously been submitted for any degree and is not being submitted for any degree.

I certify that any help received in preparing this thesis and all sources used have been acknowledged.

Signed

..
JOHN G. FINDLAY
ACKNOWLEDGEMENTS

This study has many aunts and uncles, not in a genetic sense, but in the social sense. I am particularly appreciative of the assistance of my supervisors, Dr. Helen Hasan for the praise and encouragement and considerable down-to-earth guidance when I was struggling with the language of research and trying to draw many strands together and Dr. Kathryn Crawford who encouraged me to embark on what has been an amazing journey. I must also thank my colleagues of the original Novae Research Group and in particular, Dr. Robert Fitzgerald, with whom I have written many conference and some journal articles and who has read many of my drafts and Michelle Lee, who I hope one day will return to her research and complete what began as an interesting study.

The head teacher Mr. David Triggs, teacher and students of Greensward College in the United Kingdom have been extraordinarily helpful, initially, as the participants in the research and the original collectors of the data and more recently for their patience as we continued to discuss and confirm or reject emerging theories.

For all the people in our Zing network who have been thoughtful listeners or critics especially Dr. Alison Elliott of Charles Darwin University, Dr. Linda Newman of the University of Western Sydney, Dr. Greg Whymark of Central Queensland University, Dr. Lois Holzman and Dr. Carrie Lobman of the East Side Institute, New York; Leonie Dodd and Mary McQuilten of NYC Zing in New York, Ray Buschman of Solving the Impossible, Gosford, Australia and Tomas Rudolf and Monika Kida of Innovatika in Warsaw. Thanks for listening and providing opportunities to present and test out what probably seemed at the time outlandish ideas.

And for my children, Justin, Hamish, Liam, Sarah and Amelia who have listened politely and offered subtle encouragements when I tried to explain how the prototype theory might explain events in our lives, even though they all freely admit they mostly did not have a clue what I was waffling on about.

And a special thanks to Winnie Shea, a gifted, inspired and perceptive facilitator of learning, who started me off on this journey, by giving me a book, with the words “Read this. This is what is happening for the kids.”
The research presented in this thesis aims to investigate the first-time use of a tool for collective knowledge creation in order to explain how cultural differences between teachers and learners in the context of the historical development of tools contributes to student engagement and learning. To this end, a study was conducted at a secondary school in the United Kingdom with 92 teachers and students. The study was exploratory and is presented as a series of case studies, using a mixed method approach including discourse analysis and social network analysis.

The study was interpreted via a complexity-activity framework based on cultural-historical activity theory (activity theory) as propounded by the original theorists (Luria, 1976; Vygotsky, 1978, 1986; Leont’ev, 1978) and more recent researchers (Engestrom, 1987; Miettinen, 1999; Tobach, 1999; Hedegaard, 2005). It is also informed by other theories of development or emergence including complexity theory and co-evolution (Cohen & Stewart, 1994; Kauffman, 1995), innovation theory (Rogers, 1983; Foster, 1987), brain sciences (Schore, 2000; Freeman, 2000; Goldberg, 2001) flow theory (Csikszentmihalyi, 1975) and theories of team development (Tuckman, 1965; Schein, 1988; Losada, 1999). Activity theory holds that humans develop culturally as well as genetically. Humans use language, symbols, gestures, signs and physical and psychological tools to transform themselves and society. Vygotsky showed that children develop in two main ways, via social interactions with adults and through collective play with their peers. Complexity theory offers a complementary explanation of the social, cultural and technological discontinuities and patterns of emergence in cognition and intersubjective relations that are evident in human activity.

The literature review revealed a new pattern of childhood development, in which young people are now learning what it is to be human by interacting with smart socio-cognitive tools and their peers. Many students are bored by their teachers’ use of traditional monological pedagogical methods that maintain strict social control at the expense of learning. Students are frustrated by a lack of access to ICT and do not understand why teachers rarely use computers in the classroom. One in six students leave school unable to read, write and count, ill equipped for a world of work that demands high levels of literacy, numeracy, interpersonal skills and computer literacy for even the most basic jobs. At the same time, there are growing shortfalls for jobs that require complex negotiation and complex thinking skills to create, implement and maintain critical systems and infrastructure.

The main conclusion of the study is that teachers and students are separated by two generations of tool use. This finding is consistent with Vygotsky and Luria’s original but discredited hypothesis of a periodic pattern to human learning and development at both a local and global scale. The teachers employed a centralized control model of tool use in their teaching that has its origins in the Industrial Age (1700-1940) whereas the students were more attuned to a social interactionist model that is Knowledge Age (1990-) centric. The teachers were reluctant users of the tool in the classroom and quickly reverted to the lecture, closed questioning and individual activities as their preferred pedagogy. However, the teachers made frequent use of the tool for their own professional development and community meetings. The students were enthusiastic users of the tool and enjoyed the opportunity to use high level thinking processes, discuss topics and express their own opinions. Some senior students who used the tool to recall memorized information saw little difference between the traditional classroom and the team learning system activities. In the role of the
facilitator, the teachers’ and students’ first performances were a chaotic mix of four speech types; the ideal and minimalist set of facilitator instructions required to coordinate a group, inner speech to guide the sequencing of the motor activity, previously learned speech routines applicable to other contexts and authority speech to maintain control. The facilitators’ performances improved when the speech and motor activities became synchronised with the participant performances and the facilitator’s fear of failure subsided in a shift from right brain to left-brain control. The senior students who were able to facilitate sessions competently after their initial training, were not encouraged to use their new skills in the classroom. All groups, with one exception, reported they were more engaged, enjoyed what they were doing and lost track of time when they participated in the team learning activity, which was consistent with the flow experience (Csikszentmihalyi, 1975). The groups also reported they felt more aware of their surroundings and each other, which may be indicative of a change of state in the group, from a disorganized structure focused on the self to a more aligned structure focused on the group. Questions and contributed concepts acted as catalysts, which sparked more concepts. In some sessions, the students generated avalanches of concepts consistent with team formation. Closed questions generated few responses. Open-ended discussible and high-level questions stimulated the most ideas and the most complex ideas.

The research findings have practical implications for school learning. The study showed that a tool such as the team learning system can scaffold rich questioning, promote high-level thinking and support leadership capacity in students, so that novice facilitators are able to successfully lead a group in complex learning activities after a few hours practice. A new model of learning characterised as “contagious learning” which involves playing “language games” (Wittgenstein, 1999) is proposed. Learners learn how to create and facilitate their own learning experiences and use the autocatalytic aspects of conceptual sets to accelerate the creation, spread and adoption of epidemics of ideas.

New theory developed during the course of the study contributes to the field of social psychology by resolving several of the contradictions in activity theory (Davydov, 1999; Engestrom, 1999). The model focuses on the co-evolutionary relationship between the humans and tools, the automation of speech and motor routines and the ability of learners to deal with novelty and plan ahead. The new complexity-activity theory explains the differences between incremental and transformational change, clarifies the relationship between individual and collective activity, and provides a classification system for types of activity that links the worlds of the material and the ideal.
TABLE OF CONTENTS

Title and abstract ... iv
Table of Contents .. vi
List of Tables ... x
List of Figures ... xi
List of Appendices ... xii

CHAPTER 1
INTRODUCTION

Introduction to the area of the study 1
Context: Differences in tool use by teachers and learners 3
The research question 7
Theoretical models for exploring cultural differences 8
A tentative complexity-activity theoretical model 9
Research method: A series of case studies 10
Reporting the findings of the research 10
Conclusions and recommendations for further research 11

CHAPTER 2
THE WORLD OF TEACHERS AND LEARNERS AND THEIR USE OF TOOLS

Overview of the chapter 13
The rapidly changing world of work 14
Efforts to transform school education in the United Kingdom 20
Young people as consumers and learners using technology 25
Schools and teachers continue to resist change 31
Knowledge creation is now an essential skill 34
The role of higher order thinking and meta-cognitive skills in learning 38
Teamwork and communications skill development at school 42
Limitations to the use of 21st Century technologies in the school classroom 47
The rich world of tools for participation and knowledge creation 54
Group decision support systems for real-time human-to-human interactions 58
The Zing team learning system and its’ history 61
Summary 65

CHAPTER 3
ACTIVITY THEORY: A ‘GENETIC’ LAW OF HUMAN DEVELOPMENT

Overview of the chapter 68
The search for a grand unified theory of human development 70
The cultural transmission and transformation of human knowledge 78
The spectrum of activities that is activity 81
 Work activity 82
 Play activity 84
 School-going activity 87
 Learning activity 89
Novelty, automatic operations and the human brain 91
Change, development and transformation in activity systems 96
How tools evolve in a symbiotic relationship with humans 105
New knowledge and tool creating processes 111
Intersubjective relations and coordination models 115
 Rules and discourse models 119
 Roles and performance 123
Summary 126

CHAPTER 4
COMPLEXITY AND OTHER THEORIES OF DEVELOPMENT

Overview of the chapter 132
Self-organisation as an explanation for transformation 134
The rapid co-evolution of tools with slowly evolving humans 141
Barriers to change, innovation and the tools for transformation 152
The brain as a self-organising system in symbiosis with tools 161
The dynamics of small groups and the subtle role of leadership 169
The role of novelty, play and attention in transformation 177
Summary 183

CHAPTER 5
THE COMPLEXITY-ACTIVITY MODEL AND RESEARCH QUESTION

Overview of the chapter 188
A tentative complexity-activity theoretical model 188
 Self-organisation 189
 Goal-directed activity 190
The research question 193

CHAPTER 6
RESEARCH DESIGN

Overview of the chapter 195
Methodological considerations 197
 Case studies 198
 Mixed methods approach 199
 Other methodological considerations 200
Ethical considerations 201
Selection of the study group 201
Research procedures 203
<table>
<thead>
<tr>
<th>Chapter Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introducing the teacher and student facilitators to the study</td>
<td>204</td>
</tr>
<tr>
<td>Introducing the students to the tool and the study</td>
<td>205</td>
</tr>
<tr>
<td>Data collection</td>
<td>206</td>
</tr>
<tr>
<td>Transcripts of the initial training activity</td>
<td>206</td>
</tr>
<tr>
<td>Transcripts of classroom activities</td>
<td>206</td>
</tr>
<tr>
<td>Transcript of student feedback sessions</td>
<td>206</td>
</tr>
<tr>
<td>Teacher feedback workshop</td>
<td>207</td>
</tr>
<tr>
<td>Pre- and post- session reports</td>
<td>207</td>
</tr>
<tr>
<td>Video record</td>
<td>208</td>
</tr>
<tr>
<td>Survey of the flow experiences</td>
<td>208</td>
</tr>
<tr>
<td>Innovation inventory questionnaire</td>
<td>209</td>
</tr>
<tr>
<td>Student academic ability data</td>
<td>209</td>
</tr>
<tr>
<td>Data Analysis</td>
<td>210</td>
</tr>
<tr>
<td>Analysis of the session transcripts</td>
<td>210</td>
</tr>
<tr>
<td>Analysis of the video transcript</td>
<td>211</td>
</tr>
<tr>
<td>Analysis of participant idea generation</td>
<td>211</td>
</tr>
<tr>
<td>Analysis of concept order</td>
<td>212</td>
</tr>
<tr>
<td>Social network analysis of contributions and concept order</td>
<td>213</td>
</tr>
<tr>
<td>2-mode social network analysis</td>
<td>213</td>
</tr>
<tr>
<td>Directed graphs analysis</td>
<td>214</td>
</tr>
<tr>
<td>Analysis of participant roles as innovators and adopters of concepts</td>
<td>215</td>
</tr>
<tr>
<td>Analysis of participants academic scores and concept order</td>
<td>215</td>
</tr>
<tr>
<td>Analysis of question type, length and elaboration</td>
<td>216</td>
</tr>
<tr>
<td>Group flow analysis</td>
<td>216</td>
</tr>
<tr>
<td>Test to determine if concepts acted as catalysts</td>
<td>217</td>
</tr>
<tr>
<td>Summary</td>
<td>217</td>
</tr>
</tbody>
</table>

CHAPTER 7

STUDENT AND TEACHER PERCEPTIONS OF THE TEAM LEARNING ACTIVITY

Overview of the chapter	220
Head teacher Mr. David and his experiences	222
Head of college Ms. Debbie and her experiences	230
History teacher Mr. James and his experiences	234
Textiles teacher Ms. Zoe and her experiences	241
The Year 12 history students’ experiences	246
The Year 8 textiles students’ experiences	252
The facilitator group experiences	260
The Year 7 textiles students’ experiences	262
The Year 9 history students’ experiences	264
Summary and conclusions	266
CHAPTER 8
THE FACILITATOR PERFORMANCES

Overview of the chapter
The video record of the sessions
The ideal facilitator activity
Analysis of the facilitators’ performances
Benchmark performances by the trainer
Year 8 cloning session with the researcher
Year 12 cloning session with the researcher
The history teacher’s first performance
The history teacher’s second performance
The textiles teacher’s first performance
The student facilitators’ performances
Facilitator speech patterns
Summary and conclusions

CHAPTER 9
THE PARTICIPANTS PERFORMANCES

Overview of the chapter
Participants’ contributions
 Summary of participants’ contributions
 Regularity of participation
 Idea frequency and length by participant
 Age and idea contribution
 Rate of idea contribution
Concept generation, sharing and knowledge building
 Facilitators group social network analysis
 Year 12 history social network analysis
 Year 12 cloning social network analysis
 Year 8 feedback social network analysis
 Year 8 cloning social network analysis
 Year 8 textiles social network analysis
Questions as catalysts for concept generation
 Types of questions and graph types
 Knowledge creation model and graph types
Concepts as catalysts of further concept generation
Concept generation and verbal, mathematical and non-verbal skills
Concept generation and preferences for change and certainty
Question types and idea frequency and elaboration
Teacher and student question crafting abilities
Participant engagement and enjoyment
Summary and conclusions
CHAPTER 10
CONCLUSION AND RECOMMENDATIONS

Overview of the chapter 358
Summary of the major findings 360
Incremental, transformational and regressive change 364
 Transformational change 364
 Incremental change 365
 Regression 366
Transformations in human activity 366
 Individual 366
 Collective 367
 Cultural 368
Autocatalytic mechanisms in activity 368
Learning: A discontinuous or spiral process? 370
Collective objects and individual aspirations 371
Suggestions for further research 376
Implications for teaching and learning 378
Limitations of the study 380
Concluding personal thoughts 381
REFERENCES 384
APPENDICES 431

LIST OF TABLES

Table 6.1: Composition of the study population 202
Table 6.2: Types of data collected by source 203
Table 7.1: Summary of the case studies 221
Table 7.2: Year 12 history comments about their experiences 248
Table 7.3: Year 8 textiles comments about their experiences 254
Table 7.4: Facilitators group comments about their experiences 261
Table 7.5: Year 7 textiles student comments about their experiences 263
Table 7.6: Year 9 history student comments about their experiences 265
Table 7.7: Play, flow, team formation and reflective communication similarities 269
Table 8.1: Duration of the question cycles for the videotaped sessions 272
Table 8.2: Team learning etiquette and facilitator speech 274
Table 8.3: Question cycle times for Year 8 cloning session 279
Table 8.4: Question cycle times for Year 12 cloning session 283
Table 8.5: Question cycle times for the seniors’ session 285
Table 8.6: Question cycle times of the Year 12 history session with Mr. James 289
Table 8.7: Question cycle times for the Year 8 textiles facilitated by Ms. Zoe 297
Table 8.8: Use of personal and collective pronouns by the facilitators 308
Table 9.1: Summary of participants’ contributions 315
Table 9.2: Frequency and length of ideas per participant 319
Table 9.3: Frequency and length of ideas: younger vs. mature participants 320
Table 9.4: Rate of idea generation 320
Table 9.5: Summary of t-tests of means of isolated and connected concepts 344
Table 9.6: Relationship of concept generation with innovation index 347
Table 9.7: Relationship of Bloom’s type to question length and frequency 349

LIST OF FIGURES

Figure 1.1: Groups discuss ideas using the team learning system 5
Figure 2.1: Percentage change in task types 1969-1989 17
Figure 2.2: Gap between required skills and what teachers teach 34
Figure 2.3: The power law of participation model 55
Figure 2.4: User interface of the team learning system: Year 8 feedback 62
Figure 2.5: The team learning system is used in school classrooms 63
Figure 3.1: Modern interpretation of Vygotsky's model of mediated action 72
Figure 3.2: Leont'ev’s triarchic structure of activity 77
Figure 3.3: Structure of human activity 83
Figure 3.4: Contradictions in activity systems 102
Figure 4.1: Formation of a large component by linking nodes and edges 138
Figure 4.2: Period doubling cascade and definition of the Feigenbaum number 139
Figure 4.3: Percentage of population employed in key sectors – 4mya to present. 145
Figure 4.4: S-curve model of innovation 148
Figure 4.5: Sequence of S-curves in tool evolution 150
Figure 4.6: Mediation model 151
Figure 4.7: Language adaptation under selective pressure 167
Figure 4.8: Stages of team development and change of phase 173
Figure 4.9: Modified model of language and tool evolution 184
Figure 5.1: Model of incremental and transformational change in activity 189
Figure 5.2: Joint model of activity where tools are symbiotic extensions 190
Figure 5.3: Tools as exoskeletons: Sigourney Weaver in Aliens 192
Figure 5.4: Revised definition of role in relation to tools 192
Figure 5.5. Analytical tool to explore change in activity systems 193
Figure 6.1: Definition of unique, first, total, maverick and maven concepts 213
Figure 6.2: Example of the coding method for 2-mode graphs 214
Figure 6.3: Example of the coding method for directed graphs 215
Figure 6.4: Research plan, data collection and analysis 218
Figure 6.5: Data analysis and organisation of chapters 219
Figure 7.1: Concept analysis of Mr. David’s responses 224
Figure 7.2: Concept analysis of Ms. Debbie’s responses 230
Figure 7.3: Concept analysis of Mr. James’s responses 235
Figure 7.4: Concept analysis of Ms. Zoe’s responses 242
Figure 7.5: Concept analysis of Year 8 textiles experience of the classroom rules 256
Figure 7.6: Concept analysis of Year 8 textiles view of team learning system rules 257
Figure 7.7: Cultural gap between traditional and team learning system classrooms 266
Figure 8.1: Year 8 session facilitated by the researcher 278
Figure 8.2: The researcher facilitates a session with Year 12 history 282
Figure 8.3: Seniors session facilitated by Mr. James 284
Figure 8.4: Mr. James consulted the manual when he forgot what to do and say 291
Figure 8.5: Year 12 history student body language during a mini lecture 294
Figure 8.6: Ms. Zoe facilitates her first team learning session with Year 8 textiles 296
Figure 8.7: Two students facilitated the first cycle of the seniors’ session 306
Figure 9.1: Frequency of ideas generated per person per discussion cycle 317
Figure 9.2: 2-mode network graphs for the Facilitators group session 322
Figure 9.3: Directed graphs analysis: Small 3-core at question 5 324
Figure 9.4: First concepts vs. connectivity of the members of the facilitator group 324
Figure 9.5: 2-mode network graphs for the Year 12 history session 325
Figure 9.6: Directed graphs analysis: Large 3-core at question 8 328
Figure 9.7: First concepts vs. connectivity of Year 12 history 328
Figure 9.8: 2-mode network graphs for the Year 12 cloning session 329
Figure 9.9: Directed graphs analysis: Large 3-core at question 1 331
Figure 9.10: First concepts vs. connectivity of Year 12 cloning 332
Figure 9.11: 2-mode network graphs for the Year 8 feedback session 333
Figure 9.12: Directed graphs analysis: 3-cores and 4-cores of question 8 337
Figure 9.13: First concepts vs. connectivity of Year 8 feedback 337
Figure 9.14: 2-mode network graphs for the Year 8 cloning session 338
Figure 9.15: 2-mode network graphs for the Year 8 textiles session 341
Figure 9.16: Summary of the network graphs associated with concept generation 343
Figure 9.17: Attempts at constructing open-ended questions 350
Figure 9.18: Changes in the flow state of groups using the team learning system 353
Figure 9.19: Directed graphs of three classroom models 357
Figure 10.1: Cultural gap between the team learning and the traditional classroom 361
Figure 10.2: Revisions to the triarchic model of activity 362
Figure 10.3: Transformational change in Ms. Zoe’s Year 8 textiles classroom 364
Figure 10.4: Incremental change in Mr. James Year 12 history classroom 364
Figure 10.5: Regressive cultural change 366
Figure 10.6: Model of joint activity: Collective subjects and objects 373
Figure 10.7: Classification of activity based on roles and rules 374

LIST OF APPENDICES

I Participant survey form 431
II Feedback questions for Year 8 textiles and Year 12 history students 435
III Feedback questions for teachers 437
IV Reliability statistics for flow before and after 438
V Directed graphs 440
VI Relationship of attitude to learning with concepts 444
VII Independent sample t-tests of isolated concepts and concepts in cliques 446
VIII Session reports: session transcript, video transcript and concept analysis 447
IX Information letter to parents 451