Research and development of a new PET detector module

Michael J. Bailey
University of Wollongong

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Research and Development of a New PET Detector Module

A thesis submitted in fulfilment of the requirements for the award of the degree

Master of Science - Research

from the

UNIVERSITY OF WOLLONGONG

by

Michael J Bailey, Bachelor of Medical Physics (Honours)
Centre for Medical Radiation Physics (CMRP),
Faculty of Engineering,
University of Wollongong
2007
Research and Development of a New PET Detector Module

Michael J. Bailey

Master of Science (Honours)
Centre for Medical Radiation Physics, Department of Engineering Physics, University
of Wollongong, Northfields Ave, Wollongong, NSW, 2522, Australia.

Abstract - A proposed new positron emission detector module was developed and researched with the aim to produce accurate depth of interaction information utilising high yield scintillators optically coupled to Si photodiode arrays with high end low noise readout electronics. The design of the detector module has been simulated using Monte Carlo techniques to model the interaction of scintillation photons within the silicon photodiode arrays. The optimal scintillation crystal was also investigated using code developed at the University of Wollongong.

The design of n-Si pixel photodiode allows for the attachment of a 25x25 mm² scintillator crystal on the p⁺ side of the photodiode. A special boron ion implantation technique will be used to produce a p⁻ layer that is optically coupled to the scintillator crystal. The aim is to enhance the time properties of the detector module in coincidence mode, due to the fast hole collection near the surface of the p⁺ region.

The light collection properties of the proposed detector module was characterised using empirical and monte carlo methods.
Declaration
I declare that the work of this thesis is my own original work and does not exceed 30,000 words.

Michael Bailey

Acknowledgments
I would like to acknowledge the assistance and guidance of Professor Anatoly Rozenfeld during this work. Thanks also to George Takacs and Michael Lerch from the Centre for Medical Radiation Physics at the University of Wollongong for their support and assistance.

Thanks to Mark West & Matthew Williams for keeping me sane during my working hours over the past few years!

Thanks to my Mum and Dad for giving me the love and understanding I have needed to get this far.

Thanks most of all to my wonderful wife, Kerrilyn and beautiful daughter, Eleanor. Your love, inspiration, encouragement and most of all understanding have been the only reason I have been able to complete this project - at last!

“Anything lost can be found again – except for time - TIME WASTED”
Table of Contents

DECLARATION ... 3

ACKNOWLEDGEMENTS .. 3

TABLE OF CONTENTS .. 4

LIST OF EQUATIONS .. 6

LIST OF FIGURES .. 6

1 INTRODUCTION ... 9

1.1 AIM .. 9

1.2 POSITRON EMISSION TOMOGRAPHY (PET) ... 9

1.3 PRINCIPLES OF PET ... 10

1.4 ISOTOPES FOR PET ... 12

1.5 CLINICAL APPLICATION OF POSITRON EMISSION TOMOGRAPHY 13

1.6 PHYSICS OF PET ... 14

1.6.1 Annihilation Interactions ... 14

1.6.2 Annihilation Coincidence Detection (ACD) ... 14

1.7 CURRENT PET DETECTORS ... 15

1.8 PET DETECTOR REQUIREMENTS ... 15

1.9 ADVANCES IN PET ... 16

1.10 LIMITATIONS OF CURRENT PET SYSTEMS .. 16

1.10.1 The Cost of PET systems ... 16

1.10.2 Range of Positron .. 16

1.10.3 Interaction Point within the Scintillation Crystal ... 17

1.10.4 Coincidence Efficiency .. 17

1.10.5 Signal to Noise Ratio ... 18

1.10.6 Dead Time ... 18

1.11 IMPROVED PET IMAGING .. 19

1.12 PROPOSED NEW PET DETECTOR MODULE - UNIVERSITY OF WOLLONGONG 19

2 PET DETECTOR MODULES ... 22

2.1 SEMICONDUCTOR DEVICES ... 22

2.1.1 Application of Semiconductors to Positron Emission Tomography 22

2.2 SEMICONDUCTOR DETECTORS: CHARGE COLLECTION AND MANUFACTURE OF DETECTORS ... 33

2.3 THEORY OF P-N JUNCTIONS .. 34

2.4 THE PHYSICS OF DEPLETION ... 35

2.4.1 Abrupt Junction .. 35

2.4.2 Linearly Graded Junctions .. 39

2.5 DEPLETION CAPACITANCE ... 41

2.6 PHOTODIODES ... 42

2.6.1 Quantum Efficiency .. 42

2.6.2 Response Speed .. 43

2.7 SCINTILLATION CRYSTAL SELECTION AND SURFACE TREATMENTS 44

2.7.1 Scintillator material for use in PET detector modules .. 44

3 SIMULATION OF DEVICES ... 46

3.1 MONTE CARLO SIMULATION THEORY .. 46

3.2 APPLICATION FOR PET DETECTOR MODULE DESIGN .. 47

3.3 PCID .. 47

3.4 SCINT ... 47

3.5 DETECT2000 ... 47

4 DEVICE SIMULATIONS ... 49
4.1 DEVICE CHARACTERIZATION SIMULATION ... 49
4.2 PC1D ... 49
4.3 RESULTS ... 51
4.3.1 SPAD1 simulation ... 51
4.3.2 SPAD2 Simulation ... 56
4.4 DISCUSSION .. 60

5 CRYSTAL SIMULATIONS .. 63
5.1 PET DETECTOR MODULE ASSUMPTIONS FOR SIMULATIONS 63
5.2 CRYSTAL SIMULATION ... 63
5.3 SIMULATION OF SCINTILLATION LIGHT PHOTONS – CMRP MODULE 64
5.3.1 The SCINT Simulation Code .. 65
5.3.2 Detection of scintillation light photons ... 65
5.3.3 Scint2 - Detection of scintillation light photons ... 66
5.4 DISCUSSION .. 72
5.5 DETECT2000 .. 73
5.5.1 Bulk Absorption and Bulk Scattering ... 73
5.5.2 Charge Collected .. 74
5.6 CMRP DETECTOR MODULE .. 74
5.7 WAVELENGTH DEPENDENT COEFFICIENTS IN DETECT 75
5.8 DEPTH OF INTERACTION MEASUREMENTS ... 78
5.9 PHOTON DISTRIBUTION AT DETECT SURFACE FOR DEPTH OF INTERACTION .. 80
5.10 PHOTON DISTRIBUTION AT DETECT SURFACE – CRYSTAL SURFACE FINISH ... 83
5.11 DISCUSSION .. 86

6 DISCUSSION & CONCLUSION ... 87
6.1 DISCUSSION – STRUCTURE FOR Si-PHOTODIODE FOR PET DETECTOR MODULE ... 87
6.2 DISCUSSION - SCINTILLATION CRYSTAL FOR PET DETECTOR MODULE 87
6.3 DISCUSSION – CMRP PET DETECTOR MODULE ... 88
6.4 OTHER AREAS OF RESEARCH AND DEVELOPMENT 88
6.5 OTHER APPLICATIONS FOR THE DEVICES ... 89
6.6 AREAS OF IMPROVEMENTS AND SOURCES OF ERRORS 89
6.7 CONCLUSION ... 89

7 REFERENCES .. 91

APPENDIX A - DESCRIPTION OF SCINT PROGRAM ... 106

APPENDIX B – DEPTH OF INTERACTION PROJECTIONS 108
List of Equations

Equation 1: Positron Interaction .. 10
Equation 2: Position estimator for position of interaction calculated by detector configuration shown in Figure 6 [69] ... 25
Equation 3: Position of interaction [93] .. 28
Equation 4: Energy resolution of Si p-n junction ... 30
Equation 5: Poisson's Equation .. 35
Equation 6: Poisson's Equation for fully depleted free carriers 35
Equation 7: Electric Field in an abrupt junction .. 36
Equation 8: Maximum Electric Field .. 36
Equation 9: Built-in Potential, V_{bi} ... 37
Equation 10: Depletion layer width as a function of V_{bi} 37
Equation 11: Depletion layer width of a one-sided abrupt junction 37
Equation 12: Electric Field of an abrupt junction .. 37
Equation 13: Maximum Electric Field at $x=W$... 37
Equation 14: Electric Field of a one-sided abrupt junction 38
Equation 15: Potential distribution ... 38
Equation 16: Potential distribution as a function of V_{bi} 38
Equation 17: Depletion layer width as a function of applied voltage 38
Equation 18: Poisson's Equation for a Linearly Graded Junction 39
Equation 19: Electric Field distribution for a Linearly Graded Junction 39
Equation 20: Maximum Electric Field .. 39
Equation 21: Built-in potential, V_{bi} ... 40
Equation 22: Depletion Layer Width ... 40
Equation 23: The built in potential as a function of carrier concentration 41
Equation 24: The built in potential as a function of depletion layer width 41
Equation 25: Depletion Capacitance .. 41
Equation 26: Depletion Capacitance for a one-sided abrupt junction 42
Equation 27: Inverse depletion capacitance .. 42
Equation 28: Quantum Efficiency ... 42
Equation 29: ERFC profile function ... 51
Equation 30: ERFC profile function ... 57
Equation 31: Exponential total attenuation length ... 74
Equation 32: Total attenuation lengths as function of bulk absorption & bulk scattering ... 74

List of Figures

Figure 1: PET Scanner .. 10
Figure 2: Particle interaction for PET ... 11
Figure 3: Annihilation coincidence detection sometimes known as electronic collimation (Fig. 20-8 [1]) ... 11
Figure 4: Breast Cancer with Liver Metastases ... 13
Figure 5: Melanoma cancer.. 14
Figure 6: Cross section of Si photodiode for the University of Wollongong PET detector module - SPAD1. [91] ... 20
Figure 7: Cross section of Si photodiode for the University of Wollongong PET detector module - SPAD2. The series of p^+ strips have been introduced to improve the spatial resolution of the charge collection. [91] 21

Figure 8: Proposed PET Detector Module by Moses et al [69] 25

Figure 9: Fabrication Process [55] ... 32

Figure 10: Abrupt Junction which is a special case of $N_A >> N_D$ - a.) 1 Sided Junction Equilibrium, b.) Charge, c.) Electric Field, d.) Potential - V_{bi} [116] ... 36

Figure 11: Linear Junction - a.) 1 Sided Junction Equilibrium, b.) Charge, c.) Electric Field, d.) Potential - V_{bi} [116] ... 40

Figure 12: Quantum efficiency versus wavelength [116] ... 43

Figure 13: Cross section of Si photodiode for the University of Wollongong PET detector module - SPAD1 with the simulation path noted as SIM PATH. [91] ... 50

Figure 14: Cross section of Si photodiode for the University of Wollongong PET detector module - SPAD2 with the simulation path noted as SIM PATH. The series of p^+ strips have been introduced to improve the spatial resolution of the charge collection. [91] ... 50

Figure 15: 25mm2 SPAD1 Device Electric Field vs. Distance from front for increased Bias ... 52

Figure 16: 25mm2 SPAD1 Device – Electric Field vs. Distance from front for increasing Diffusion Lengths - Bias -40V - front end ... 53

Figure 17: 25mm2 SPAD1 Device – 0.5µm Diffusion Length, Bias -40V - Electric Field vs Distance from front for various p type concentrations .. 53

Figure 18: 25mm2 SPAD1 Device - 2.5µm Diffusion Length, Bias -40V - Electric Field vs Distance from front for various p type concentrations .. 54

Figure 19: 25mm2 SPAD1 Device - 5µm Diffusion Length, Bias -40V - Electric Field vs Distance from front for various p type concentrations .. 55

Figure 20: 3mm2 SPAD1 Device - 5µm Diffusion Length, Bias -40V - Electric Field vs Distance from front for various p type concentrations .. 56

Figure 21: 3mm2 SPAD2 Device – Electron Velocities, 5µm Diffusion Length and Reverse Bias -40V .. 57

Figure 22: 3mm2 SPAD2 Device - Hole Velocities, 5µm Diffusion Length and Reverse Bias -40V .. 58

Figure 23: 3mm2 SPAD2 Device - Quantum Efficiency .. 59

Figure 24: 3mm2 SPAD2 Device - Electric Field Distributions – Front End, 5µm Diffusion Length, Reverse Bias -40V .. 60

Figure 25: An example of the distribution of light detected by photodiode array at the array surface modelled by Scint2. [46] .. 66

Figure 26: Scintillation Photons Produced per 511keV Interaction from Table 3 .. 67

Figure 27: The average % of photons detected as a function of Refractive Index .. 68

Figure 28: Various Scintillator materials - number of photons produced per 511kev interaction, number rejected, number lost, number detected by 4 bins, average number detected within each of the 4 maximum bins .. 69

Figure 29: Refractive index of investigated scintillation materials .. 71

Figure 30: Average % Photons Detected at the Photodiode surface .. 71

Figure 31: Iterations for Scint2 Program .. 72
Figure 32: Cross Section of SPAD3 Device used in DETECT 2000 Simulations

Figure 33: LSO Relative Emission Intensity [42]

Figure 34: Relative Spectral Response of SPAD photodiode to Hamamatsu S3590-08 with varying wavelength [91]

Figure 35: Photon collection with varying detector quantum efficiency

Figure 36: Diagram of simulation of Depth of Interaction [131]

Figure 37: Light Output vs. depth of interaction in LSO

Figure 38: Relative Light Output vs. Depth of Photon Interaction within LSO

Figure 39: 0.1mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 40: 2.5mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 41: 2.99mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 42: POLISH Surface - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal with a RANDOM DOI

Figure 43: ROUGH Surface - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal with a RANDOM DOI

Figure 44: PAINT surface - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal with a RANDOM DOI

Figure 45: 0.1mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 46: 0.5mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 47: 1.0mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 48: 1.5mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 49: 2.0mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 50: 2.5mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 51: 2.6mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 52: 2.7mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 53: 2.8mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 54: 2.9mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal

Figure 55: 2.99mm DOI - DETECT plane projection for SPAD coupled with 0.5µm optical grease to a 3mm³ LSO crystal