Interactions of metal complexes with DNA

Jihan H. Talib

University of Wollongong, jihan@uow.edu.au

Recommended Citation
http://ro.uow.edu.au/theses/780

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Interactions of Metal Complexes With DNA

A thesis submitted in (partial) fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

University of Wollongong

by

Jihan Talib

Bachelor of Medicinal Chemistry Advanced (Honours)

School of Chemistry

November 2008
DECLARATION

I, Jihan Talib, declare that this thesis, submitted in partial fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Chemistry, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The work has not been submitted for qualification at any other academic institution.

Jihan Talib

4th November 2008
ACKNOWLEDGEMENTS

This thesis would not have been possible without the support, encouragement and guidance from the people listed below, of whom I would like to send them my deepest gratitude and appreciation.

- My supervisors Dr Stephen Ralph and Dr Jennifer Beck, thank you for giving me the opportunity to accomplish this work under your supervision here at the University of Wollongong. Your support and guidance during the course of this project has been a constant source of motivation and inspiration. Your advice has not only helped carry me through my postgraduate research but will always be remembered as I continue my scientific career. Steve your positive energy and enthusiasm encouraged me to continue to persevere especially during the more challenging times. Jenny, thank you for your knowledge and patience. I deeply appreciated your guidance, advice and direction.

- The past and present members of the Mass Spectrometry group. Thank you for your friendships and for contributing to an enjoyable and pleasant working environment. Thankyou to Thitima Urathamakul, Stephen Watt and Raj Gupta for teaching me how to use the instruments and essential lab skills.

- Larry Hick, thank you for knowledge and assistance with the mass spectrometers. I am immensely grateful for your willingness and dedication to help me with the instruments. I will never forget your warm presence and infectious chuckle.

- Dr Janice Aldrich-Wright (School of Science, Food and Horticulture, University of Western Sydney) for the ruthenium and platinum drugs used in this work.

- Dr Joel McKay (School of Molecular and Microbial Biosciences, The University of Sydney, Australia) for providing the transcription factor used in this study.

- David Harman, thank you for your guidance during the synthesis of the organic ligands.

- Jemise, Kate, Louise, Emma, Cameron, and Jess, thank you for your friendships and encouragement.

- David, thank you so much for your patience and understanding. Your inspiration, encouragement, advice and willingness to listen, has helped me enormously through the last stages of this work. I cherish you and all your qualities.

Finally, I would especially like to thank my parents, without your support and love, I would have never been able to achieve this. Every day I remind myself how lucky I am to have you as my parents. I am truly gracious for the life you have given me.
PUBLICATIONS

Talib, J., Green, C. Davis, K. J., Urathamakul, T., Beck, J. L., Aldrich-Wright, J. R and Ralph, S. F. (2008) A Comparison of the Binding of Metal Complexes to Duplex and Quadruplex DNA. Dalton Trans. 8, 1018-1026

ABSTRACT

Electrospray ionisation mass spectrometry (ESI-MS), absorption spectrophotometry and circular dichroism spectroscopy were used to investigate the non-covalent binding interactions of the nickel complexes \([\text{Ni(phen)}_2(L)]\text{Cl}_2\), \((L = \text{phen, dpq, dpqc and dppz})\) with the 16mer oligonucleotide D2, which has the following base sequence: (GCTGCCAAATACCTCC/GGAGGTATTTGGCAGC). In addition, the extent of unwinding of the negatively supercoiled plasmid pUC9 caused by the nickel complexes, and the extent to which they inhibit \textit{in vitro} synthesis of mRNA, were investigated using gel electrophoresis. The results of these studies showed that DNA binding strengthened as the size of the unique ligand was increased. Comparison of each of the above sets of results with those obtained from identical experiments performed using the analogous ruthenium complexes \([\text{Ru(phen)}_2(L)]^{2+}\) \((L = \text{phen, dpq, dpqc, dppz})\) showed that varying the metal ion had a measurable effect on DNA binding affinity, with the nickel complexes generally interacting more weakly with D2 than the corresponding ruthenium complexes.

ESI-MS/MS and in-source collision-induced dissociation experiments were performed using the tetrameric quadruplex DNA molecule Q5 (TTGGGGGT)_4 and antiparallel dimeric quadruplex Q2 (GGGTTTTTGGGG)_2 in order to determine their gas-phase dissociation profiles. It was found that the gas phase stability of the quadruplex DNA was dependent on its charge state, the number of oligonucleotide strands that make up the quadruplex, and the number of consecutive G-tetrads that it contains. ESI-MS and circular dichroism spectroscopy were also used to examine the non-covalent binding interactions of the octahedral nickel and ruthenium complexes stated above, as well as several square planar platinum complexes with Q5. The platinum complexes studied were
[Pt(en)(phen)]^{2+}, [Pt(en)(3,4,7,8-Me_4phen)]^{2+}, [Pt(en)(4,7-Me_2phen)]^{2+} and [Pt(5,6-Me_2phen)(S,S-dach)]^{2+}. The results obtained from these experiments showed that each of the three groups of metal complexes were able to bind to Q5. In contrast to what was found in experiments involving the duplex DNA molecule D2, the presence of the intercalating dppz ligand in the coordination sphere of both the nickel and ruthenium complexes did not greatly increase their binding affinity towards quadruplex DNA. This observation suggests that intercalative binding interactions may not play as important a role in the binding of metal complexes to quadruplex DNA. ESI-MS was used to analyse mixtures containing the organic drug daunomycin, Q5, and either [Ru(phen)_2(dppz)]^{2+} or [Pt(en)(4,7-Me_2phen)]^{2+}, in order to obtain information about the qDNA binding modes of these metal complexes. The affinity of the above two metal complexes towards parallel tetrameric quadruplexes with different lengths was also compared using ESI-MS in an attempt to shed light on whether they bind to the ends of the quadruplexes or in grooves along their lengths.

The optimal conditions required to obtain ESI mass spectra of the non-covalent adduct formed between the DNA binding domain of mouse transcription factor PU.1, and a short 10mer DNA molecule containing its 5'-GGAA-3' consensus sequence, were determined. ESI-MS was then used to probe the extent of inhibition of formation of this non-covalent complex caused by addition of [Ru(phen)_2(dppz)]^{2+} or [Pt(5,6-Me_2phen)(S,S-dach)]^{2+}. Both metal complexes were shown to inhibit binding of the transcription factor to its DNA recognition site, demonstrating the potential of these complexes for transcription therapy.
ABBREVIATIONS

A adenine
AML acute myeloid leukemia
bip biphenyl
Bqdi 1,2-benzoquinone diimine
Bpy bipyridine
C cytosine
CD circular dichroism
CI chemical ionisation
CID collision induced dissociation
CT-DNA calf thymus DNA
Dach 1,2-diaminocyclohexane
DCM dichloromethane
DMB 4,4’-dimethyl-2,2’-bipyridine
DNA deoxyribonucleic acid
dppm 1,2-bis(diphenylphosphino)methane
dppz dipyrido[3,2-a:2',3'-c]phenazine
dpq dipyrido[3,2-d-2',3'-f]quinoxaline
dpqc dipyrido[3,2-a:2',3'-c](6,7,8,9-tetrahydrophenazine)
dsDNA double-stranded DNA
DTC diethylthiocarbocyanide
EDTA ethylenediaminetetraacetic acid
EGR1 early growth response factor 1
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI</td>
<td>electron ionisation</td>
</tr>
<tr>
<td>en</td>
<td>(1,2-diaminoethane)</td>
</tr>
<tr>
<td>ESI</td>
<td>electrospray ionisation</td>
</tr>
<tr>
<td>FAB</td>
<td>fast atom bombardment</td>
</tr>
<tr>
<td>FD</td>
<td>field desorption</td>
</tr>
<tr>
<td>FDA</td>
<td>food and drug administration</td>
</tr>
<tr>
<td>G</td>
<td>guanine</td>
</tr>
<tr>
<td>GSH</td>
<td>glutathione</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>HAT</td>
<td>1,4,5,8,9,12-hexaazatriphenylene</td>
</tr>
<tr>
<td>HIF-1</td>
<td>hypoxia inducible factor 1α</td>
</tr>
<tr>
<td>IκB</td>
<td>inhibitor of κB</td>
</tr>
<tr>
<td>ICD</td>
<td>induced circular dichroism</td>
</tr>
<tr>
<td>MALDI</td>
<td>matrix assisted laser desorption ionisation</td>
</tr>
<tr>
<td>MGP</td>
<td>4-(guanidylmethyl)-1-10-phenanthroline</td>
</tr>
<tr>
<td>MOPS</td>
<td>3-(N-morpholino)propanesulfonic acid</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>m/z</td>
<td>mass-to-charge</td>
</tr>
<tr>
<td>NF-κB</td>
<td>nuclear factor-κB</td>
</tr>
<tr>
<td>NH₄OAc</td>
<td>ammonium acetate</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>PD</td>
<td>plasma desorption</td>
</tr>
<tr>
<td>phi</td>
<td>9,10-phenanthrenequinone diimine</td>
</tr>
<tr>
<td>phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Q-TOF</td>
<td>quadrupole time-of-flight</td>
</tr>
<tr>
<td>qDNA</td>
<td>quadruplex DNA</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>R,R-Me₂trien</td>
<td>2R,9R-diamino-4,7-diazadecane</td>
</tr>
<tr>
<td>Sp1</td>
<td>Specificity Protein 1</td>
</tr>
<tr>
<td>Stat3</td>
<td>Signal transducer and activator of transcription</td>
</tr>
<tr>
<td>T</td>
<td>thymine</td>
</tr>
<tr>
<td>TBACl</td>
<td>tetrabutylammonium chloride</td>
</tr>
<tr>
<td>terpy</td>
<td>2,2:6’2”-terpyridine</td>
</tr>
<tr>
<td>TFOs</td>
<td>triplex forming oligonucleotides</td>
</tr>
<tr>
<td>TMPyP₄</td>
<td>[tetra(N-methyl-4-pyridyl-porphine)]</td>
</tr>
<tr>
<td>tpphz</td>
<td>tetrapyridophenazine</td>
</tr>
<tr>
<td>yAP-1</td>
<td>yeast Activator Protein 1</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

DECLARATION ________________________________ i

ACKNOWLEDGEMENTS _________________________ ii

PUBLICATIONS ______________________________ iii

ABSTRACT _________________________________ iv

ABBREVIATIONS ____________________________ vi

TABLE OF CONTENTS __________________________ ix

LIST OF FIGURES ____________________________ xiv

LIST OF TABLES ______________________________ xx

Chapter 1 General Introduction ____________________________ 1

1.1 DNA as a Drug Target for Metal Complexes _________________ 1

1.2 Double-Stranded DNA ________________________________ 4

1.3 Quadruplex DNA ________________________________ 9

1.4 Non-covalent Binding of Small Molecules to B-DNA ________ 15

1.4.1 Electrostatic Interactions ____________________________ 15

1.4.2 Groove Binding ________________________________ 16

1.4.3 Intercalation ________________________________ 21

1.5 Non-covalent Binding of Transition Metal Complexes to B-DNA _____ 23
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6</td>
<td>Non-covalent Binding to G-quadruplex DNA</td>
<td>31</td>
</tr>
<tr>
<td>1.7</td>
<td>Interactions of Transition Metal Complexes with G-Quadruplex DNA</td>
<td>33</td>
</tr>
<tr>
<td>1.8</td>
<td>Techniques used to Investigate Binding of Metal Complexes to DNA</td>
<td>35</td>
</tr>
<tr>
<td>1.8.1</td>
<td>Circular Dichroism Spectroscopy</td>
<td>36</td>
</tr>
<tr>
<td>1.8.2</td>
<td>Absorption Spectral Studies</td>
<td>38</td>
</tr>
<tr>
<td>1.8.3</td>
<td>Gel Electrophoresis</td>
<td>39</td>
</tr>
<tr>
<td>1.9</td>
<td>Electrospray Ionisation Mass Spectrometry of Small Molecule Binding Interactions with B-DNA</td>
<td>41</td>
</tr>
<tr>
<td>1.10</td>
<td>Electrospray Ionisation Mass Spectrometry of Small Molecule Binding Interactions with G-quadruplex DNA</td>
<td>47</td>
</tr>
<tr>
<td>1.11</td>
<td>Transcription of DNA</td>
<td>49</td>
</tr>
<tr>
<td>1.11.1</td>
<td>Transcription Factors</td>
<td>50</td>
</tr>
<tr>
<td>1.11.2</td>
<td>Transcription Therapy</td>
<td>52</td>
</tr>
<tr>
<td>1.12</td>
<td>Thesis Synopsis</td>
<td>55</td>
</tr>
</tbody>
</table>

Chapter 2 Materials and Methods

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Materials</td>
<td>57</td>
</tr>
<tr>
<td>2.2</td>
<td>Synthesis of Nickel Complexes</td>
<td>59</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Synthesis of Phendione</td>
<td>59</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Synthesis of Quinoxaline and Phenazine Ligands</td>
<td>60</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Synthesis of [Ni(phen)$_2$(H$_2$O)Cl]$Cl\cdot$H$_2$O.CH$_3$CN</td>
<td>61</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Synthesis of [Ni(phen)$_3$]Cl$_2$</td>
<td>61</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Synthesis of [Ni(phen)$_2$(L)]Cl$_2$, L = dppz, dpqc and dpq</td>
<td>62</td>
</tr>
</tbody>
</table>
2.2.6 Synthesis of $[M(\text{phen})_3](\text{ClO}_4)_2 \ M = \text{Fe}^{2+} \ or \ \text{Zn}^{2+}$

2.3 Oligonucleotides

2.3.1 Purification of Single Stranded Oligonucleotides

2.3.2 Preparation of 16mer dsDNA and qDNA

2.4 Reactions of Oligonucleotides with Metal Complexes

2.4.1 ESI-MS Experiments

2.4.2 CD Experiments: Titration of DNA with Metal Complexes

2.4.3 Absorption Spectrophotometry

2.4.4 Gel electrophoresis: Gel Mobility Shift Assays

2.5 Inhibition of Transcription Factor Binding to DNA

2.6 Transcription inhibition assays

Chapter 3 Analysing the Effect of the Metal Ion on Non-covalent Binding of Metal Complexes to DNA

3.1 Scope of this Chapter

3.2 Synthesis of Nickel Complexes

3.3 ESI-MS Studies of the Binding Interactions of Nickel Complexes with dsDNA

3.4 Circular Dichroism Studies of the Binding Interactions of Nickel Complexes With D2

3.5 Absorption Spectrophotometric Studies Of the Binding Interactions of Nickel Complexes with D2
Chapter 3 Gel Electrophoresis Studies of the Binding Interactions of Nickel and Ruthenium Complexes with Plasmid DNA

3.6 Gel Electrophoresis Studies of the Binding Interactions of Nickel and Ruthenium Complexes with Plasmid DNA 96

3.7 Transcription Inhibition Assays 101

3.8 Conclusions 106

Chapter 4 Investigation of the Binding of Metal Complexes to Quadruplex DNA

4.1 Scope of this Chapter 109

4.2 Conditions for Obtaining ESI-Mass Spectra of Quadruplex DNA 112

4.3 Tandem Mass Spectrometry Studies Using Q5 and Q2 115

4.3.1 Studies performed using Q5 115

4.3.2 Studies performed using Q2 121

4.3.3 Effect of increasing cone voltage (in-source CID) 125

4.4 ESI-MS Studies of the Binding Interactions of Metal Complexes with qDNA 127

4.4.1 Ruthenium Complexes and Q5 127

4.4.2 Nickel Complexes and Q5 132

4.4.3 Platinum Complexes with dsDNA and qDNA 136

4.4.4 Competition Between Daunomycin and Metal Complexes for Q5 143

4.4.5 Binding of Metal Complexes to Tetrameric Quadruplexes of Different Lengths 149

4.5 CD Studies of the Binding Interactions of Metal Complexes with qDNA 154

4.5.1 CD Studies of the Binding of Ruthenium Complexes to Q5 154

4.5.2 CD Studies of the Binding of Nickel Complexes to Q5 157
Chapter 4 Studies of the Binding of Platinum Complexes to Biological Targets

4.5.3 CD studies of the Binding of Platinum Complexes to Q5 159
4.5.4 CD Studies of the Binding of Platinum Complexes to D2 162

4.6 Conclusions .. 165

Chapter 5 Inhibition of DNA Transcription Using Metal Complexes 169

5.1 Scope of this Chapter ... 169
5.2 NanoESI-MS Mass Spectra of Transcription factor PU.1 171
5.3 NanoESI-MS of PU.1-DBD/dsDNA Complex ... 173
5.4 NanoESI Mass Spectra of Metal Complexes with P3 178
5.5 Effect of Metal Complexes on the Binding of a Transcription Factor to DNA ... 182

5.2 Conclusions ... 188

REFERENCES ... 190
LIST OF FIGURES

Figure 1.1: Structures of some platinum complexes known to bind to DNA. __________ 3
Figure 1.2: A single polymer chain of DNA. _________________________________ 4
Figure 1.3: The double helical structure of DNA. ____________________________ 6
Figure 1.4: A-DNA, B-DNA, and Z-DNA. _________________________________ 7
Figure 1.5: Structure of a G-tetrad. ______________________________________ 10
Figure 1.6: Different conformers for G-quadruplex DNA. ____________________ 11
Figure 1.7: Proposed model for the anti-parallel G-quadruplex DNA structure formed from the human telomere DNA sequence d(TTAGGGTTAGGG). ____________ 12
Figure 1.8: Examples of DNA minor groove binders. _________________________ 17
Figure 1.9: Crystal structure of netropsin binding to the minor groove of d(CGCAAATTTGCG). ________________________________ 18
Figure 1.10: Derivatives of the minor groove binder distamycin which have shown greater therapeutic potential. _________________________________ 20
Figure 1.11: Structures of some analogues of Hoechst 33258. _______________ 21
Figure 1.12: Examples of classical intercalators. ____________________________ 23
Figure 1.13: Structures of some transition metal complexes used in early studies of non-covalent binding to DNA. ____________________________ 25
Figure 1.14: Examples of octahedral metallointercalators. ____________________ 26
Figure 1.15: Crystal structure of Δ−α-[Rh[(R,R)-Me2trien](phi)]3+ to the DNA sequence 5′-TGCA-3′_______________________________ 28
Figure 1.16: Structure of a synthetic restriction enzyme based on the complex [Rh(phi)2(bpy)]3+. _________________________________ 30
Figure 1.17: Examples of G-quadruplex DNA binding molecules. 32

Figure 1.18: Structure of the nickel(II) complexes studied by Reed and co-workers. 34

Figure 1.19: Structures of dinuclear ruthenium(II) complexes shown to bind selectivity to G-quadruplex DNA. 36

Figure 1.20: Gel electropherogram of plasmid DNA in the presence of different amounts of
$[(η^6\text{-bip})\text{RuCl(Et-en)}]^2+$. 40

Figure 1.21: A schematic representation of ion formation in ESI. 43

Figure 1.22: Schematic illustration of the general flow of genetic information within a prokaryotic cell and a eukaryotic cell. 49

Figure 3.1: Structures of metal complexes used in this study. 74

Figure 3.2: Positive ion ESI mass spectra of $[\text{Ni(phen)}_2\text{Cl}_2]$. 76

Figure 3.3: Positive ion ESI mass spectra of $[\text{Ni(phen)(dppz)}_2]^{2+}$. 77

Figure 3.4: Negative ion ESI mass spectra of solutions containing different $[\text{Ni(phen)}_2(\text{dppz})]^{2+}$:D2 ratios. 80

Figure 3.5: Negative ion ESI mass spectra of solutions containing a 6:1 ratio of nickel complex and duplex D2. 83

Figure 3.6: Relative abundances of non-covalent complexes present in solutions containing a 6:1 ratio of different nickel complexes and D2. 84

Figure 3.7: Circular dichroism spectra recorded over the wavelength range 220 – 320 nm for solutions containing different ratios of nickel complexes and D2. 88

Figure 3.8: Circular dichroism spectra recorded over the wavelength range 200 – 600 nm for solutions containing either D2 alone, or a 10:1 ratio of $[\text{Ni(phen)}_2(\text{dpqc})]^{2+}$ and D2. 91
Figure 3.9: Visible absorption spectra of nickel complexes in the presence of increasing volumes of D2. 93

Figure 3.10: Saturation curve for the binding of [Ni(phen)$_2$(dppz)]$^{2+}$ to D2 and binding isotherm derived using absorption spectrophotometric titration data for [Ni(phen)$_2$(dppz)]$^{2+}$. 94

Figure 3.11: Gel electropherograms of the products obtained from reaction of pUC9 negatively supercoiled plasmid DNA with varying amounts of nickel complexes. 98

Figure 3.12: Gel electropherograms of the products obtained from reaction of pUC9 negatively supercoiled plasmid DNA with varying amounts of ruthenium complexes. 100

Figure 3.13: Ethidium bromide stained agarose gel (1%) of transcribed mRNA in the presence of nickel complexes and ruthenium complexes. 102

Figure 3.14: Ethidium bromide stained agarose gel (1%) of transcribed mRNA in the presence of increasing concentrations of different nickel complexes. 103

Figure 3.15: Ethidium bromide stained agarose gel (1%) of transcribed mRNA in the presence of increasing concentrations of different ruthenium complexes. 105

Figure 4.1: Structures of metal complexes used in studies with qDNA. 111

Figure 4.2: Negative ion ESI mass spectra of Q5 and Q2. 113

Figure 4.3: Negative ion MS/MS of [Q5 + 4NH$_4^+$ - 9H]$^{5-}$ at different collision energies. 117

Figure 4.4: Negative ion MS/MS spectra of [Q5 + 4NH$_4^+$ - 8H]$^+$. 119

Figure 4.5: Effect of increasing collision energy on the relative abundance of the Q5 ions in MS/MS experiments. 120

Figure 4.6: Negative ion ESI-MS/MS spectra of Q2 ions. 124
Figure 4.7: Effect of increasing cone voltage on negative ion ESI mass spectra of Q5 and Q2. 126

Figure 4.8: Negative ion ESI mass spectra of free Q5 and solutions containing different ratios of [Ru(phen)$_2$(dppz)]$^{2+}$ and Q5. 128

Figure 4.9: Negative ion ESI mass spectra of free Q5 and solutions containing a 40:1 ratio of different ruthenium complexes and Q5. 130

Figure 4.10: Negative ion ESI mass spectra of solutions containing a 10:1 ratio of [Ni(phen)$_2$(dpq)]$^{2+}$ and Q5; and a 10:1 ratio of [Ni(phen)$_2$(dpq$_c$)]$^{2+}$ and Q5. 133

Figure 4.11: Negative ion MS/MS spectra of [Q5 + 4NH$_4^+$ + [Ru(phen)$_3$]$^{2+}$ - 11H]$^{5-}$ and [Q5 + 4NH$_4^+$ + 2[Ni(phen)$_2$]$^{2+}$ - 8H]$^{5-}$ at different collision energies. 135

Figure 4.12: Negative ion ESI mass spectrum of a solution containing a 40:1 ratio of [Fe(phen)$_3$]$^{2+}$ and D2. 136

Figure 4.13: Negative ion ESI mass spectra of free D2 and solutions containing a 6:1 ratio of different platinum complexes and D2. 139

Figure 4.14: Negative ion ESI mass spectra of free Q5 and solutions containing 40:1 ratios of different platinum complexes and Q5. 141

Figure 4.15: Relative abundances of non-covalent complexes present in solutions containing a 10:1 ratio of either [Pt(en)(4,7-Me$_2$phen)]$^{2+}$ or [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$, and either Q5 or D2. 142

Figure 4.16: Crystal structure showing two d(TGGGGT)$_4$ quadruplexes are stacked at their 5'-ends. 144
Figure 4.17: Negative ion ESI mass spectra of solutions containing Q5 and: (a) 30 equivalents of daunomycin; (b) 30 equivalents of daunomycin and 6 equivalents of [Ru(phen)$_2$(dppz)]$^{2+}$. 146

Figure 4.18: Negative ion ESI mass spectra of solutions containing Q5 and: (a) 30 equivalents of daunomycin; 30 equivalents of daunomycin and 10 equivalents of [Pt(en)(4,7-Me$_2$phen)]$^{2+}$. 149

Figure 4.19: Negative ion ESI mass spectra of Q4 and Q7. 151

Figure 4.20: Relative abundances (as judged from ESI mass spectra) of different non-covalent complexes present in solutions containing Q4, Q5 or Q7 and 10-equivalents of daunomycin, [Pt(en)(4,7-Me$_2$phen)]$^{2+}$ or [Ru(phen)$_2$(dppz)]$^{2+}$. 153

Figure 4.21: Circular dichroism spectra of solutions containing different ratios of ruthenium complexes and Q5. 155

Figure 4.22: Circular dichroism spectra of solutions containing different ratios of nickel(II) complexes and Q5. 158

Figure 4.23: Circular dichroism spectra of solutions containing different ratios of platinum complexes and Q5. 160

Figure 4.24: Circular dichroism spectrum of a 150 mM NH$_4$OAc, pH 7 solution containing [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$. 161

Figure 4.25: Circular dichroism spectra of solutions containing different ratios of platinum complexes and D2. 163

Figure 5.1: Positive ion nanoESI mass spectrum of PU.1-DBD in 400 mM NH$_4$OAc, pH 7.2. 172
Figure 5.2: Positive ion nanoESI mass spectra of reaction mixtures containing equimolar amounts of PU.1-DBD and P2. 176

Figure 5.3: Positive ion nanoESI mass spectra of solutions containing a 1:1 ratio of PU.1-DBD and P1, P2 and P3. 177

Figure 5.4: Negative ion nanoESI mass spectra of solutions containing P3 with either [Ru(phen)$_2$(dppz)]$^{2+}$ or [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$. 180

Figure 5.5: Positive ion nanoESI mass spectra of solutions containing P3 with either [Ru(phen)$_2$(dppz)]$^{2+}$ or [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$. 181

Figure 5.6: Positive ion nanoESI mass spectra (transformed to a mass scale using MassLynx software™) of solutions containing PU.1-DBD and either [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$ or [Ru(phen)$_2$(dppz)]$^{2+}$. 184

Figure 5.7: Relative abundances of various components present in solutions containing different ratios of the transcription factor PU.1-DBD, the dsDNA molecules P3, and either [Pt(5,6-Me$_2$phen)(S,S-dach)]$^{2+}$ or [Ru(phen)$_2$(dppz)]$^{2+}$. 186
LIST OF TABLES

Table 1.1 Examples of clinically used drugs whose mechanisms of action involve interference with DNA chemistry. ________________ 2

Table 1.2 Transcription factors associated with cancer development. ____________ 52

Table 2.1 Metal complexes that were used in this study. ________________ 57

Table 2.2 Base sequences of the dsDNA and qDNA molecules used in this study. __ 64

Table 2.3 ESI-MS conditions used for the analysis of duplex and quadruplex DNA. __ 66

Table 2.4 ESI-MS conditions used for the analysis of reaction mixtures containing PU.1-DBD, P3 and metal complexes. ________________ 70

Table 2.5 Reagents used in transcription inhibition assays. ________________ 71

Table 3.1 Assignments for ions observed in ESI mass spectra of solutions containing nickel complexes and D2. ________________ 81

Table 3.2 Comparison of the effects of related nickel(II) and ruthenium(II) complexes on the CD spectrum of D2. ________________ 90

Table 3.3 Comparison of binding constants determined spectrophotometrically for binding of related ruthenium(II) and nickel(II) complexes to D2. ____________ 96

Table 3.4 Comparison of M_{50\% inh} values, the concentration of metal complex required for 50% inhibition of DNA transcription, for related ruthenium(II) and nickel(II) complexes. ________________ 106

Table 4.1 Summary of E_{1/2} values for precursor ions formed from Q5 and Q2. ____ 123

Table 4.2 Differences between the maximum ellipticity observed for the positive CD band at 265 nm in the spectrum of free Q5, and the ellipticity observed at the same
wavelength in the spectrum of solutions containing a 40:1 ratio of various metal complexes and Q5.

Table 4.3 Comparison of $\Delta \varepsilon$ values for platinum complexes with qDNA and dsDNA 164

Table 5.1 DNA/Protein complexes detected by ESI-MS. 175