Advanced anode materials for sodium ion batteries

Xiu Li
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

Recommended Citation
Advanced anode materials for sodium ion batteries

Xiu Li

This thesis is presented as part of the requirements for the Award of the Degree of Doctor of Philosophy
University of Wollongong

Otc. 2019
CERTIFICATION

I, Xiu Li, declare that this paper submitted in the request for the award of Doctor of Philosophy, in the Institute for Superconducting & Electronic Materials (ISEM), Faculty of Engineering, University of Wollongong, NSW, Australia, is original and finished by myself unless otherwise referenced or acknowledged. This paper has never been submitted to any other academic institution for higher education.

Xiu Li

Oct. 2019
ACKNOWLEDGEMENTS

Firstly, I want to express my heartiest gratitude to my supervisor, Dr Xun Xu, for his financial support, and professional and kindly supervision during my PhD period. I also want to give sincere thanks to my co-supervisors, Professor Shi-xue Dou and Shu-lei Chou, for their invaluable encouragement to pursue my PhD degree. Furthermore, I am deeply grateful to Prof. Hua-kun Liu, for her care about my study and life during my whole PhD period.

Moreover, I would like to give grateful thanks to Prof. An-min Cao and Prof. Rui Wen from Institute of Chemistry, the Chinese Academy of Science (CAS), and Prof. Libao Chen from Central South University for their supports to carry out some experiments. Special thanks should be given to Dr. Tania Silver for critical reading of manuscripts, and also Dr. Yunxiao Wang, Dr. Fang Li, Dr. Haipeng Guo, Dr. Weihong Lai, Dr. Yuejiao Chen and Dr. Yutao Li for discussion on the relationship between electrochemical performance and the structures and compositions of materials.

Furthermore, I wish to express my thanks to Miss. Chen Wu, Mr. Chao Cui, Mr. Qingwang Lian, Miss. Yuehua Wei, Mr. Weiwei Ning, Mr. Lin Zhou, Mr. Weiyi Lu, Mr. Tao Liu, Mr. Hao Yang, Dr. Xincheng Hu, Dr. Yonggang Sun, Miss. Yueli Hu and Miss Suting Weng for their kindly help during my PhD research. They have given me much help and enjoyment in my studies and in my life.
Finally, I would like to give deep thanks to my family, especially to my parents, my husband, my lovely son and my sisters. They have given me great encouragement to study hard for a bright future.

This work is supported by the Australian Research Council Discovery Project (DP160102627).
ABSTRACT

Sodium-ion batteries (SIBs) have received extensive attention as promising, cost-effective energy storage devices for the large-scale energy storage due to the abundance and low cost of sodium resources in the earth’s crust (2.83% for Na vs. 0.0065% for Li), and the similar working mechanism with lithium-ion batteries. Nevertheless, the severe volumetric expansion of most reported anodes during the sodiation/desodiation processes affects the cycling stability of SIBs due to the larger radius of sodium ion than that of lithium ion. Moreover, the reported anodes usually show limited specific capacity, which also inhibits the commercial application of SIBs. Therefore, designing high-performance anode materials is urgently needed and remains a major challenge for SIBs. In this thesis, the mesoporous sulfur and nitrogen co-doped carbon (S/N-C) nanofibers are firstly designed as the anode materials for SIBs based on the doping effect on improving the capacity. Then, WS$_2$ nanosheets embedded in the lotus rhizome-like heteroatom-doped carbon nanofibers with abundant hierarchical tubes inside are designed for further improving the capacity. Last, the Fe$_7$S$_8$ modified sulfur, nitrogen-doped carbon (S/N-C) nanofibers are prepared to improve the capacity and cycling stability of SIBs.

The mesoporous S/N-C nanofibers doped with amounts of N and S atoms (S/N-C) are fabricated by electrospinning technique. The contents of N and S in the S/N-C are 12.59% and 27.95%, respectively. Owing to the high contents of N and S in the
S/N-C, the electrode delivered a high reversible capacity of 552.5 and 355.3 mA h g⁻¹ at 0.1 and 5 A g⁻¹, respectively. The excellent performance is attributed to the introduction of N and S in carbon nanofibers. It increases the active sites for Na⁺ storage and facilitate Na⁺ transfer, which is confirmed by in-situ Raman spectra and density functional theory (DFT) calculations. Moreover, the mesoporous S/N-C nanofibers can be wetted by the liquid electrolyte, which also facilitates the Na⁺ transport for increasing the rate performance. These indicate the as-synthesized S/N-C is a promising anode material for SIBs.

Layered WS₂ exhibits larger layer spacing with weak van der Waals interaction and higher electrical conductivity. Benefiting from its structural characteristics and conductive nature, the WS₂ anode material exhibits high rate capability; however, the long-term cycling performance of WS₂ as anode for SIBs is not satisfactory. In order to improve its property, the WS₂ nanosheets are embedded into lotus rhizome-like heteroatom-doped carbon nanofibers with abundant hierarchical tubes inside, to obtain the WS₂@S/N-C. The as-synthesized WS₂@S/N-C nanofibers exhibite a discharge capacity of 381 mA h g⁻¹ at 0.1 A g⁻¹, excellent rate capacity of 108 mA h g⁻¹ at 30 A g⁻¹, and a superior cycling lifespan of 1000 cycles at 5 A g⁻¹ with the capacity of 175 mA h g⁻¹, which is ascribed to the synergistic effects of WS₂ nanosheets with larger interlayer spacing, and the stable lotus rhizome-like S/N-C nanofiber frameworks to alleviate the mechanical stress. In addition, the WS₂@S/N-C electrode shows an obvious pseudocapacitance property at 1 mV s⁻¹ with a capacitive
contribution of 86.5%. DFT calculations demonstrated that WS$_2$@S/N-C electrode was favorable for Na storage due to the effect of S/N-C on WS$_2$. The design strategy for synthesizing WS$_2$@S/N-C is expected to prepare other electrode materials for rechargeable batteries.

Graphite is a low-cost material; however, it could not accommodate sodium ion effectively in carbonate-based electrolytes. Therefore, low-cost anode materials are highly desired. Iron sulfides are attractive due to the rich stoichiometries and high capacity. Nevertheless, they usually exhibit poor cycling performance due to the large volume change during cycling process. Therefore, the Fe$_7$S$_8$@S/N-C nanofibers are synthesized through electrospinning/sulfurization processes with easily synthesized Fe$_2$O$_3$ particles as the precursor. The as-synthesized Fe$_7$S$_8$@S/N-C nanofibers sustain a reversible capacity of 347 mA h g$^{-1}$ after 150 cycles at 1 A g$^{-1}$ and a high rate capacity of 220 mA h g$^{-1}$ at 5 A g$^{-1}$. The excellent performance is attributed to its structural characteristics with high-capacity, low-cost Fe$_7$S$_8$ particles and high-conductivity of S/N-C nanofibers.
TABLE OF CONTENTS

CERTIFICATION.. I

ACKNOWLEDGEMENTS... II

ABSTRACT.. IV

TABLE OF CONTENTS.. VII

LIST OF FIGURES.. XI

LIST OF TABLES.. XVII

LIST OF ABBREVIATIONS.. XVIII

LIST OF SYMBOLS.. XXI

LIST OF ORGANIZATIONS.. XXII

1 Chapter 1 Introduction... 1

1.1. Research Background.. 1

1.2. The Problem Statement.. 2

1.3. Objectives of the Research.. 2

1.4. Thesis Outline... 3

2 Chapter 2 Literature Review... 6

2.1 Mechanism of Sodium-ion Batteries.. 7

2.2 Cathode Materials.. 8

2.3 Electrolyte Systems... 9

2.4 Anode Materials.. 10

2.4.1. Carbon-based anode materials.. 11
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.2</td>
<td>Alloying anodes</td>
<td>18</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Metal oxides</td>
<td>28</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Metal sulfides</td>
<td>40</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Metal selenides</td>
<td>56</td>
</tr>
<tr>
<td>2.4.6</td>
<td>Metal phosphides</td>
<td>65</td>
</tr>
<tr>
<td>3</td>
<td>Chapter 3 Experimental Procedure</td>
<td>70</td>
</tr>
<tr>
<td>3.1</td>
<td>Chemicals and Materials</td>
<td>71</td>
</tr>
<tr>
<td>3.2</td>
<td>Materials Preparation</td>
<td>73</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Electrospinning method</td>
<td>73</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Hydrothermal method</td>
<td>75</td>
</tr>
<tr>
<td>3.3</td>
<td>Characterization Techniques</td>
<td>76</td>
</tr>
<tr>
<td>3.3.1</td>
<td>X-ray diffraction</td>
<td>76</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Raman spectroscopy</td>
<td>77</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Fourier transform infrared spectroscopy</td>
<td>78</td>
</tr>
<tr>
<td>3.3.4</td>
<td>X-ray photoelectron spectroscopy</td>
<td>78</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Thermogravimetric analysis</td>
<td>79</td>
</tr>
<tr>
<td>3.3.6</td>
<td>BET measurement</td>
<td>79</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Scanning electron microscopy</td>
<td>80</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Transmission electron microscopy</td>
<td>81</td>
</tr>
<tr>
<td>3.4</td>
<td>Electrode Preparation and Coin-cell Assembly</td>
<td>82</td>
</tr>
<tr>
<td>3.5</td>
<td>Electrochemical Measurements</td>
<td>83</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Cyclic voltammetry tests</td>
<td>83</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Galvanostatic charge-discharge</td>
<td>84</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Electrochemical impedance spectroscopy</td>
<td>84</td>
</tr>
<tr>
<td>3.6</td>
<td>Calculation Methods</td>
<td>85</td>
</tr>
</tbody>
</table>
Chapter 4 S/N-doped High-Capacity Mesoporous Carbon Anode for Na-ion Batteries

4.1 Introduction ... 86
4.2 Experimental Section .. 88
4.3 Results and Discussion .. 90
 4.3.1 Structure and morphology ... 90
 4.3.2 Electrochemical characterization .. 95
 4.3.3 Theoretical calculations ... 101
 4.3.4 In situ Raman analysis ... 102
4.4 Conclusion ... 103

Chapter 5 Lotus Rhizome-like S/N-C for Strengthening WS₂ with Superior Sodium Storage

5.1 Introduction ... 105
5.2 Experimental Section ... 108
5.3 Results and Discussion ... 112
 5.3.1 Structure and morphology ... 112
 5.3.2 Electrochemical performance .. 120
 5.3.3 Theoretical calculations ... 128
5.4 Conclusion ... 130

Chapter 6 S/N-doped Carbon Nanofibers Affording Fe₇S₈ Particles with Superior Sodium Storage

6.1 Introduction ... 132
6.2 Experimental Section ... 134
6.3 Results and Discussion ... 136
LIST OF FIGURES

Figure 2.1 Schematic illustration of a sodium-ion battery.1 .. 8
Figure 2.2 Chemical compositions of the organic electrolytes for SIBs.17 10
Figure 2.3 Schematic illustration of sodium storage in (a) graphite, (b) graphite oxide, and (c) expanded graphite.20 .. 12
Figure 2.4 Proposed scheme of Na storage in natural graphite with different electrolyte systems.22 .. 13
Figure 2.5 Schematic illustrations of graphite and HC accommodating sodium.29 16
Figure 2.6 Proposed formation scheme for HC at different temperatures.32 17
Figure 2.7 (a) Schematic illustration of the synthesis process for Sn@N-C nanofibers; (b) photograph of the integrated precursor and electrode; (c) scanning electron microscope (SEM) image and (d) element mapping of Sn@N-C nanofibers.42 20
Figure 2.8 (a) Schematic illustration of the chemical dealloying process to produce the porous Sb structure; (b) Al\textsubscript{30}Sb\textsubscript{70} and its dealloyed products; (f-i) Al\textsubscript{20}Sb\textsubscript{80} and its dealloyed products.51 .. 22
Figure 2.9 Schematic illustrations of (a) the synthesis of 3D interconnected NiSb hollow nanospheres; and (b) the sodiation/desodiation of 3D interconnected NiSb hollow nanospheres.54 .. 23
Figure 2.10 Schematic illustration of the synthesis of Sb/graphene composite.55 24
Figure 2.11 Synthesis process for red P/carbon nanotube composite.73 27
Figure 2.12 (a) Schematic illustration of the preparation of highly ordered 3D Ni-TiO\textsubscript{2} nanoarrays using the AAO templating technique. SEM images of (b and e) the AAO template, (c and f) Ni nanopillar arrays, and (d and g) 3D Ni-TiO\textsubscript{2} nanoarrays.81 .. 29
Figure 2.13 Schematic diagram of Na storage in Nb\textsubscript{2}O\textsubscript{5}.84 ... 31
Figure 2.14 (a) Schematic illustration of the synthesis of S-Nb\textsubscript{2}O\textsubscript{5}@S-rGO; (b) the Na+/e transportation process in Nb\textsubscript{2}O\textsubscript{5}/rGO composite; (c) the hollow
nanosphere/graphene structure can buffer the volume expansion during the sodiation/desodiation processes.86 Figure 2.15 Schematic illustration of the synthesis of hollow carbon@NiO composite.103 Figure 2.16 The synthesis process for CuO@C nanofibers.107 Figure 2.17 The synthesis process for MoS\textsubscript{2}@SnO\textsubscript{2}@C.112 Figure 2.18 Schematic diagram of the characteristics of the alloying reaction and conversion reaction.113 Figure 2.19 Schematic illustration of charge transfer in Bi\textsubscript{2}S\textsubscript{3}-Bi\textsubscript{2}O\textsubscript{3} heterostructures.117 Figure 2.20 (a-d) Synthesis of the 3D MoS\textsubscript{2}-graphene-MoS\textsubscript{2} structure; (e) Mechanism of MoS\textsubscript{2} growth on both sides of the 3D graphene. (f) Photograph of the lightweight, free-standing MoS\textsubscript{2}-graphene foam.127 Figure 2.21 Synthesis of MoS\textsubscript{2}@HfO\textsubscript{2} nanosheets.128 Figure 2.22 Synthesis of WS\textsubscript{2}/CNT-rGO aerogel.132 Figure 2.23 Synthesis of of FeS/C fibers.146 Figure 2.24 Synthesis of Co\textsubscript{9}S\textsubscript{8}@C hollow microspheres.164 Figure 2.25 Synthesis of NiS@C nanofibers.177 Figure 2.26 (a) SEM image; (b) TEM image; (c) scanning TEM (STEM) image; (d) high resolution TEM (HRTEM) image of multi-shell Sb\textsubscript{2}S\textsubscript{3}.198 Figure 2.27 Synthesis of Bi\textsubscript{2}S\textsubscript{3}/rGO composite.207 Figure 2.28 (a and c) Charge–discharge profiles; (b and d) In situ XRD patterns at different charge-discharge states of MoSe\textsubscript{2}@C/N,P-rGO; (e) Schematic illustration of the proposed energy storage mechanism of MoSe\textsubscript{2}@C/rGO at different stages.217 Figure 2.29 Synthesis process for FeSe\textsubscript{2} hollow nanocubes.229 Figure 2.30 Synthesis route for SnSe/NC.246 Figure 2.31 Two-step synthesis of Bi\textsubscript{2}Se\textsubscript{3}/C.252 Figure 2.32 (a and b) Synthesis and reversible reactions with Na+ ions of the composite and bare CuP\textsubscript{2}.263
Figure 3.1 Outline of the experimental procedures and characterization techniques used in this thesis. 70
Figure 3.2 Schematic diagram of the electrospinning device. 74
Figure 3.3 Hydrothermal autoclave (left) with a cross-sectional view (right). 75
Figure 3.4 Fundamental principles of XRD. 77
Figure 3.5 Stacking sequence of components of a coin cell. 82
Figure 4.1 (a) XRD patterns and (b) Raman spectra of sulfur, N-C and S/N-C samples. 90
Figure 4.2 (a) XPS spectra of N-C and S/N-C samples; high-resolution XPS spectra of (b) C 1s, (c) N 1s, and (d) S 2p for the S/N-C sample; high-resolution XPS spectra of (e) C 1s, and (f) N 1s for the N-C sample. 91
Figure 4.3 FT-IR spectra of the N-C and S/N-C samples. 93
Figure 4.4 (a and b) SEM images of S/N-C nanofibers and N-C nanofibers; (c) high-magnification SEM image of S/N-C nanofibers; (d) low-magnification and (e) high-magnification TEM images of S/N-C nanofibers; (f) element mapping of the part of a S/N-C nanofiber. 94
Figure 4.5 Nitrogen adsorption/desorption isotherms of N-C and S/N-C nanofibers. 95
Figure 4.6 Electrochemical performance of N-C and S/N-C electrodes. (a-b) The first three CV curves at 0.1 mV s⁻¹; (c-d) The charge-discharge profiles at 0.1 A g⁻¹; (e) Cycling performance at 0.1 A g⁻¹; (f) Rate capability at various current densities; (g) Long cycling performance of S/N-C at 5 A g⁻¹. 96
Figure 4.7 Nyquist plots of EIS data for N-C and S/N-C nanofiber electrodes. The inset is the equivalent circuit diagram. 98
Figure 4.8 CV curves of (a) N-C and (d) S/N-C electrodes at different scan rates; linear fitting of peak current dependence (normalized by ν¹/²) on the square root of the scan rate (ν¹/²) for the (b) N-C and (e) S/N-C electrodes; capacitive and diffusive contributions to the current density of (c) N-C and (f) S/N-C electrodes at 1.0 mV s⁻¹; percentage of the capacitive contribution to the current density of the (g) N-C and (h) S/N-C electrodes at different scan rates. 99
Figure 4.9 Optimized structure and charge density difference of (a) N-C, (b) S1/N-C, and (c) S2/N-C; (d) Na+ diffusion energy and the related migration path for (e) N-C, (f) S1/N-C, and (g) S2/N-C. Grey, red, orange, blue, and purple spheres represent C, H, S, N, and Na atoms, respectively.

Figure 4.10 (a-b) In situ Raman spectra of S/N-C electrode in the first cycle with a scan rate of 1.0 mV s-1 in discharge and charge processes.

Figure 5.1 Schematic illustration of the synthetic route to prepare the porous WS\textsubscript{2}@S/N-C nanofibers.

Figure 5.2 (a) Low-resolution SEM image of WO\textsubscript{3} nanosheets; (b) low-resolution and (c) high-resolution SEM images, (d) low-resolution TEM image, (e) electron diffraction pattern, (f) high-resolution TEM image, and (g) element mappings of WS\textsubscript{2}@S/N-C.

Figure 5.3 (a) The SEM and (b) TEM images of synthesized WS\textsubscript{2}; (c) SAED images and (d) high-resolution TEM images of WS\textsubscript{2}.

Figure 5.4 (a) XRD patterns of WO\textsubscript{3}, WS\textsubscript{2}, and WS\textsubscript{2}@S/N-C; (b) Raman spectra, (c) FT-IR spectra, and (d) TGA curves of WS\textsubscript{2} and WS\textsubscript{2}@S/N-C.

Figure 5.5 Nitrogen adsorption and desorption isotherms of WS\textsubscript{2}@S/N-C nanofibers and pure WS\textsubscript{2}.

Figure 5.6 Characterizations of S/N-C nanofibers: (a) XRD pattern; (b) SEM image; (c) TEM image and (d) HR-TEM image.

Figure 5.7 EDS spectra of (a) WS\textsubscript{2}@S/N-C nanofibers and (b) S/N-C nanofibers.

Figure 5.8 (a) XPS full survey spectra of WS\textsubscript{2}@S/N-C nanofibers and pure WS\textsubscript{2}; (b-e) High-resolution XPS spectra of WS\textsubscript{2}@S/N-C: (a) W; (b) S; (c) N; (d) C; (f and g) High-resolution XPS spectra of W and S elements for pure WS\textsubscript{2}.

Figure 5.9 CV curves of (a) WS\textsubscript{2}@S/N-C, (b) WS\textsubscript{2} and (c) S/N-C electrodes in the voltage range of 0.01-3 V at a scan rate of 0.1 mV s-1; Charge-discharge profiles of (d) WS\textsubscript{2}@S/N-C, (e) pure WS\textsubscript{2} and (f) S/N-C electrodes at a current density of 0.1 A g-1.

xv
Figure 5.10 Rate capability of the (a) WS₂@S/N-C, (b) WS₂ and (c) S/N-C electrodes at various current densities; Cycling performance of the (d) WS₂@S/N-C, (e) WS₂ and (f) S/N-C electrodes at a current density of 0.1 A g⁻¹; (g) Long-term cycling performance and Coulombic efficiency of WS₂@S/N-C electrode at a current density of 5 A g⁻¹. ... 122

Figure 5.11 Low-resolution SEM images of WS₂@S/N-C electrode: (a) fresh electrode and (b) cycled electrode after 100 cycles; low-resolution SEM images of WS₂ electrode: (c) fresh electrode and (d) cycled electrode after 100 cycles......... 124

Figure 5.12 EIS spectra of WS₂@S/N-C and pure WS₂ after 1st cycle at 0.1 A g⁻¹. The inset is the equivalent circuit. .. 125

Figure 5.13 (a) CV curves of WS₂@S/N-C electrodes at different scan rates; (b) log i vs. log v plots of WS₂@S/N-C electrodes; (c) Ratio of diffusion and capacitive contributions to the capacity at various scan rates for WS₂@S/N-C electrodes; (d) Capacitive charge storage contribution (pink region) for WS₂@S/N-C electrode at 1.0 mV s⁻¹. ... 126

Figure 5.14 Adsorption sites for of I, II and III Na on (a) pure WS₂ and (b) the WS₂ in WS₂@S/N-C; Differences of charge density (charge accumulation: green, charge depletion: blue) with an isosurface level of 0.001 e/Å³ for Na on (c) pure WS₂ and (d) the WS₂ in WS₂@S/N-C in the most stable adsorption configuration................. 128

Figure 6.1 Illustrative synthesis scheme of Fe₇S₈@S/N-C nanofibers.................. 133

Figure 6.2 (a) SEM image of α-Fe₂O₃ nanoparticles; (b) SEM image of Fe₇S₈@S/N-C nanofibers; (c) Low-resolution and (d) high-resolution TEM images of a Fe₇S₈@S/N-C nanofiber; (e) Element mapping of a Fe₇S₈@S/N-C nanofiber........ 137

Figure 6.3 (a) SEM image and (b) HR-TEM image of Fe₇S₈; (c) SEM image and (d) HR-TEM image of S/N-C... 139

Figure 6.4 (a) XRD patterns of as-prepared α-Fe₂O₃, Fe₇S₈, S/N-C and Fe₇S₈@S/N-C samples; (b) Raman spectra, (c) N₂ adsorption-desorption isotherms and (d) TGA data of as-prepared Fe₇S₈, Fe₇S₈@S/N-C and S/N-C samples.............................. 140

XV
Figure 6.5 High-resolution XPS spectra of Fe\textsubscript{7}S\textsubscript{8}@S/N-C: (a) Fe 2p; (b) S 2p; (c) C 1s; (d) N 1s.. 142

Figure 6.6 CV curves of (a) Fe\textsubscript{7}S\textsubscript{8}@S/N-C, (b) Fe\textsubscript{7}S\textsubscript{8} and (c) S/N-C electrodes at 0.2 mV s-1. The charge-discharge profiles of (d) Fe\textsubscript{7}S\textsubscript{8}@S/N-C, (e) Fe\textsubscript{7}S\textsubscript{8} and (f) S/N-C electrodes at 0.1 A g-1. (g) Rate capability of Fe\textsubscript{7}S\textsubscript{8}@S/N-C, Fe\textsubscript{7}S\textsubscript{8} and S/N-C electrodes at various current densities. (h) Cycling performance of Fe\textsubscript{7}S\textsubscript{8}@S/N-C, Fe\textsubscript{7}S\textsubscript{8} and S/N-C electrodes at 1 A g-1... 143

Figure 6.7 Nyquist plots of the Fe\textsubscript{7}S\textsubscript{8} and Fe\textsubscript{7}S\textsubscript{8}@S/N-C electrodes (a) before and (b) after 10 cycles.. 147

Figure 6.8 (a) CV curves at various sweep rates from 0.2 to 5 mV s-1, (b) relationship between the peak currents and scan rates in logarithmic format, (c) capacitive contribution at a scan rate of 0.5 mV s-1 and (d) contribution ratio of the capacitive and diffusion-controlled capacity of Fe\textsubscript{7}S\textsubscript{8}@S/N-C electrode... 149

Figure 6.9 (a) CV curves at various sweep rates from 0.2 to 5 mV s-1 and (b) contribution ratio of the capacitive and diffusion-controlled capacity of Fe\textsubscript{7}S\textsubscript{8}@S/N-C electrode.. 150
LIST OF TABLES

Table 3.1 Chemicals employed in this thesis... 71
Table 5.1 The adsorption behaviour of Na on pristine WS$_2$.. 130
Table 5.2 The adsorption behaviour of Na on WS$_2$@S/N-C.. 130
Table 6.1 Comparisons of electrochemical performances of this work with the reported Fe$_7$S$_8$ for Sodium ion batteries... 145
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D</td>
<td>One-dimensional</td>
</tr>
<tr>
<td>2D</td>
<td>Two-dimensional</td>
</tr>
<tr>
<td>3D</td>
<td>Three-dimensional</td>
</tr>
<tr>
<td>PAN</td>
<td>Polyacrylonitrile</td>
</tr>
<tr>
<td>PMMA</td>
<td>Polymethylmethacrylate</td>
</tr>
<tr>
<td>DMF</td>
<td>N, N–dimethylformamide</td>
</tr>
<tr>
<td>CNFs</td>
<td>Carbon nanofibers</td>
</tr>
<tr>
<td>CNTs</td>
<td>Carbon nanotubes</td>
</tr>
<tr>
<td>GO</td>
<td>Graphene oxide</td>
</tr>
<tr>
<td>rGO</td>
<td>Reduced graphite oxide</td>
</tr>
<tr>
<td>EVs</td>
<td>Electric vehicles</td>
</tr>
<tr>
<td>CV</td>
<td>Cyclic voltammetry</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy dispersive X-ray spectroscopy</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>DFT</td>
<td>Density functional theory</td>
</tr>
<tr>
<td>FE-SEM</td>
<td>Field emission scanning electron microscopy</td>
</tr>
<tr>
<td>HR-TEM</td>
<td>High-resolution transmission electron microscopy</td>
</tr>
<tr>
<td>FT-IR</td>
<td>Fourier transform infrared spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray diffraction</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray photoelectron spectroscopy</td>
</tr>
<tr>
<td>BET</td>
<td>Brunauer-Emmett-Teller</td>
</tr>
<tr>
<td>TGA</td>
<td>Thermogravimetric analysis</td>
</tr>
<tr>
<td>EIS</td>
<td>Electrochemical impedance spectroscopy</td>
</tr>
<tr>
<td>LIBs</td>
<td>Lithium-ion batteries</td>
</tr>
<tr>
<td>SIBs</td>
<td>Sodium-ion batteries</td>
</tr>
<tr>
<td>a.u.</td>
<td>Arbitrary unit</td>
</tr>
<tr>
<td>cm</td>
<td>Centimeter</td>
</tr>
<tr>
<td>um</td>
<td>Micrometer</td>
</tr>
<tr>
<td>nm</td>
<td>Nanometer</td>
</tr>
<tr>
<td>WS$_2$</td>
<td>Tungsten disulfide</td>
</tr>
<tr>
<td>Fe$_7$S$_8$</td>
<td>Pyrrhotite</td>
</tr>
<tr>
<td>EG</td>
<td>Expanded graphite</td>
</tr>
<tr>
<td>CMC</td>
<td>Carboxymethyl cellulose</td>
</tr>
<tr>
<td>PC</td>
<td>Propylene carbonate</td>
</tr>
<tr>
<td>EC</td>
<td>Ethylene carbonate</td>
</tr>
<tr>
<td>DEC</td>
<td>Diethyl carbonate</td>
</tr>
<tr>
<td>FEC</td>
<td>Fluoroethylene carbonate</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>CF$_3$SO$_3$Na</td>
<td>Sodium trifluoromethanesulfonate</td>
</tr>
<tr>
<td>NaFSA</td>
<td>Sodium bis (fluorosulfonyl) amide</td>
</tr>
<tr>
<td>SN</td>
<td>Succinonitrile</td>
</tr>
<tr>
<td>PEDOT</td>
<td>Poly(3,4-ethylenedioxythiophene)</td>
</tr>
<tr>
<td>Symbol</td>
<td>Name</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>2θ</td>
<td>Detection angle in XRD</td>
</tr>
<tr>
<td>d</td>
<td>Lattice spacing</td>
</tr>
<tr>
<td>C-rate</td>
<td>Charge or discharge rate</td>
</tr>
<tr>
<td>S_{BET}</td>
<td>Specific BET surface area</td>
</tr>
<tr>
<td>p</td>
<td>Relative pressure</td>
</tr>
<tr>
<td>P^0</td>
<td>Saturation pressure</td>
</tr>
<tr>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>wt.%</td>
<td>Weight percent</td>
</tr>
<tr>
<td>λ</td>
<td>X-ray Wavelength</td>
</tr>
<tr>
<td>R_{ct}</td>
<td>Charge transfer resistance</td>
</tr>
<tr>
<td>f</td>
<td>Frequency in the EIS test</td>
</tr>
<tr>
<td>W</td>
<td>Warburg impedance</td>
</tr>
<tr>
<td>η</td>
<td>Coulombic efficiency</td>
</tr>
<tr>
<td>σ</td>
<td>Ionic conductivity</td>
</tr>
</tbody>
</table>
LIST OF ORGANIZATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISEM</td>
<td>Institute for Superconducting and Electronic Materials</td>
</tr>
<tr>
<td>AIIM</td>
<td>Australian Institute for Innovative Materials</td>
</tr>
<tr>
<td>EMC</td>
<td>Electron Microscopy Centre</td>
</tr>
<tr>
<td>UOW</td>
<td>University of Wollongong</td>
</tr>
</tbody>
</table>
CHAPTER 1 INTRODUCTION

1.1. Research Background

The limited lithium resources in the earth’s crust will be likely to deplete, as lithium-ion batteries (LIBs) are being used for electric vehicles (EVs) and electronic portable devices on a large scale.1, 2 The low-cost sodium-ion batteries (SIBs) are considered to be a promising alternative for the future.3, 4 Since there are many similarities between the properties of sodium and lithium, SIBs share the same working principle with LIBs, i.e., the "rocking-type" battery. Compared with LIBs, SIBs have their own unique advantages, such as the abundance and wide distribution of sodium in the earth’s crust and its higher standard reduction potential. Thus, SIBs are the potential substitute for LIBs as next-generation energy storage systems. Despite these advantages of SIBs, there is still a long way to go for realizing SIBs commercialization due to its relatively low capacity and inferior long-term cycling stability. The worldwide researchers have been devoted into SIBs for decades and many innovations in the materials have been obtained, such as for electrodes, electrolytes, and the separators.5-8 However, the present anode materials are still not able to meet the requirements for practical application, because the existing anode materials are suffering from either large volume expansion or relatively low capacity. Therefore, designing novel anode materials is extremely urgent. The good news is the rapid development of nanotechnologies for high-performance LIBs could give some hints for searching ideal anode materials for SIBs with similar synthesis methods.9, 10
For obtaining anode materials with low-cost and good capability, in this thesis, three anode materials, i.e., N, S-co-doped carbon nanofibers, WS₂@carbon nanofibers and Fe₇S₈@carbon nanofibers, have been synthesized by electrospinning techniques and sulfidation process, and investigated as anodes for SIBs.

1.2. The Problem Statement

Although SIBs have obvious advantages in terms of the low cost and high abundance of sodium resource, there are also some limits on anode materials, i.e., low capacity, and poor cycling performance and rate capability. WS₂ and Fe₇S₈ could provide relatively high capacity for Na storage, although, these materials also suffer from poor cycling performance during the conversion process. These problems can be attributed to the volume change during the sodiation/desodiation process for SIBs, which is larger than that for the lithiation/delithiation process in LIBs. The inherent reason is the fact that the radius of the sodium ion is larger than that of the lithium ion. Therefore, it is important to develop novel technologies to obtain high-performance anode materials for SIBs.

1.3. Objectives of the Research

The main goal of this research is to develop the high-performance anode materials for SIBs. Three anode materials are included in this work, N, S-co-doped carbon nanofibers, WS₂@carbon nanofibers and Fe₇S₈@carbon nanofibers. This research was also dedicated to revealing the electrochemical sodium storage mechanisms based on
these materials and uncovering the relationship between these materials and their corresponding electrochemical performance.

1.4. Thesis Outline

The scope of this thesis consists of seven chapters, which are summarized as follows:

Chapter 1 introduces the research background, existing challenges for the anode development of sodium-ion batteries, the objectives of this research, and the thesis outline.

Chapter 2 provides a comprehensive literature review on the basic concepts, and recent advances in anode materials for sodium-ion batteries.

Chapter 3 includes information on the chemicals used in my experiments, the synthetic methods for the targeted anode materials in my research, and the corresponding characterization techniques.

Chapter 4 describes an electrospinning method to successfully fabricate mesoporous S/N-doped carbon nanofibers (S/N-C) as the anode for SIBs. Firstly, the introduction of N and S in S/N-C nanofibers can increase the active sites for Na\(^+\) storage and reduce the energy required for Na\(^+\) transfer. Moreover, the mesoporous S/N-doped carbon nanofibers are easily wetted by liquid electrolyte, which facilitates the Na\(^+\) transport and increases the rate performance. As a result, the as-synthesized S/N-C
nanofibers deliver a high reversible capacity of 552.5 and 355.3 mA h g⁻¹ at 0.1 and 5 A g⁻¹, respectively.

Chapter 5 reports a delicate method to embed WS₂ nanosheets into lotus rhizome-like heteroatom-doped carbon nanofibers with abundant hierarchical tubes inside, forming WS₂@sulfur and nitrogen-doped carbon nanofibers (WS₂@S/N-C). Firstly, the embedding of WS₂ nanosheets in carbon nanofibers could enhance the overall electrode conductivity, offering high reversible capacity. Moreover, the formation of lotus rhizome-like carbon nanofibers could facilitate electron transfer and prevent the pulverization of the electrode structure, resulting in a stable long-term cycling lifespan. As a result, the WS₂@S/N-C nanofibers exhibit a large discharge capacity of 381 mA h g⁻¹ at 0.1 A g⁻¹, excellent rate capacity of 108 mA h g⁻¹ at 30 A g⁻¹, and a superior capacity of 175 mA h g⁻¹ at 5 A g⁻¹ after 1000 cycles.

Chapter 6 describes a synthesis method for synthesizing Fe₇S₈@sulfur, nitrogen-doped carbon (S/N-C) nanofibers through electrospinning/sulfurization processes with Fe₂O₃ particles as the precursor. Owing to the unique structural characteristics, Fe₇S₈@S/N-C exhibited stable cycling performance of 347 mA h g⁻¹ after 150 cycles at 1 A g⁻¹ and superior rate capability of 220 mA h g⁻¹ at 5 A g⁻¹. The improved performance of Fe₇S₈@S/N-C is ascribed to the enhanced Na adsorption provided by the heteroatom doped carbon nanofibers.
Finally, Chapter 7 provides a conclusion for the research work in this thesis. In addition, some comments on the present work are included, and future research directions in this field are also presented.
CHAPTER 2 LITERATURE REVIEW

Sodium batteries have been studied for electrochemical energy storage since the late 1970s, when TiS$_2$ was found to intercalate Na$^+$ ions reversibly at room temperature. The Na/TiS$_2$ battery was not comparable with Li/TiS$_2$ batteries, however, in terms of in energy density.$^{11, 12}$ Moreover, Prof. Goodenough discovered the potential of LiCoO$_2$ as the cathode material of choice for lithium ion batteries (LIBs) in 1980, while Prof. Yazami found that graphite could intercalate Li$^+$ ions reversibly and could be used as the anode for LIBs in 1982. These two important milestones promoted the rapid development of LIBs and most researchers focused their attention on the area of LIBs, which hindered the development of sodium ion batteries (SIBs). After they were commercialized by Sony in 1991, LIBs came to be widely used in portable electronics, and began to be used as power sources for electric vehicles (EVs) and hybrid electric vehicles (HEVs) in the subsequent three decades. Nevertheless, the scarcity of lithium resources means that they will not be able to meet the requirements of large-scale applications of LIBs in EVs and HEVs in the future, which directed researchers’ attention onto the SIBs again, because the sodium is much more abundant than lithium. Yet there was no suitable electrode material for sodium insertion for a long period. In 2000, Stevens and Dahn found that hard carbon could deliver a high reversible capacity of 300 mA h g$^{-1}$ for Na$^+$ ion storage, although its cycle life could not meet the demands of battery applications. In 2009, NaFeO$_2$ was found to be reversible for Na$^+$ insertion/de-insertion based on the redox couple of
Fe$^{3+}$/Fe$^{4+}$, which could offer an opportunity for the development of high-energy and low-cost SIBs. Since 2010, the research on SIBs has regained its initial rapid development due to the driving force of the large-scale applications in EVs and HEVs. In this chapter, the mechanism of sodium-ion batteries and recent developments related to the cathode, electrolyte, and anode will be summarized, with the main focused on anode materials because my research works are all related to anode materials for SIBs.

2.1 Mechanism of Sodium-ion Batteries

SIBs are mainly composed of the cathode (negative electrode), anode (positive electrode), separator, and electrolyte. The cathode and anode are separated by the separator, which is immersed in the electrolyte. The anodes usually consist of hard carbon or intercalation compounds for Na storage, while the cathodes consist of layered transition metal oxides, Prussian blue materials, or polyanionic cathode materials for hosting Na$^+$ ions. The SIBs share almost the same working principle with the "rocking-chair-type" LIBs, as shown in Figure 2.1. On charge, the cathode is oxidized due to the increase of the metal valence, with the de-intercalation of Na$^+$ ions into the electrolyte while the anode intercalates sodium and undergoes reduction. On discharge, they undergo the reverse process.
2.2 Cathode Materials

The cathode material is one of the important components that determine energy density. Great efforts have been made to search for suitable cathode materials with reversible capacity, resulting in excellent cycling stability. To date, many kinds of materials have been studied as potential cathode materials for SIBs, such as layered transition metal oxides,13 Prussian blue materials,14 and polyanionic cathode materials.15 In the case of layered transition metal oxides (Na\textsubscript{x}MO\textsubscript{2}), many metal elements (M = Fe, Mn, Ni, Co, Cr, Ti, or V) are available as promising cathode candidates for SIBs due to their advantages of feasible synthesis and high operating potential. Nevertheless, their structural instability is an obstacle to their large-scale practical application in SIBs. As one class of important cathodes, Prussian blue materials (Na\textsubscript{2}M[Fe(CN)\textsubscript{6}], M = Fe, Co, Mn, Ni, or Cu) have attracted great attention due to their open channel structure and compositional tunability. Moreover, their low
cost is also an important factor driving us to study them. However, the low energy density of Prussian blue cathodes will limit their applications at higher energy density, such as EVs and grid-scaled energy storage systems. The polyanionic cathode materials are a big group of cathode materials for SIBs, including phosphates, sulfates, mixed polyanionic compounds, silicates, molybdates, etc. They have obvious structural stability, but they exhibit low electronic conductivity, which limits their rapid development.

2.3 Electrolyte Systems

Electrolytes play crucial roles in the performance and characteristics of SIBs. At present, there are five kinds of electrolytes, e.g., aqueous electrolytes, organic electrolytes, ionic liquids, ceramic electrolytes, and polymer electrolytes. The aqueous electrolytes possess high ionic conductivity, low effective cost, and good safety, but they have low energy density due to their limited voltage window. Compared to aqueous electrolytes, organic electrolytes have obvious advantages in terms of the voltage window. As shown in Figure 2.2, organic electrolytes are composed of sodium salts, solvents, and additives. Some additives could improve the performance of SIBs in some situations. Owing to the low cost of the sodium salts and solvents used in organic electrolytes, organic electrolytes can be used in large-scale practical application, which is cost-effective. Ionic liquids and ceramic electrolytes can tolerate high voltage and high temperature, so they can be used in some harsh environments. Their synthesis is complicated, however, and the cost is unaffordable
for practical applications at present. Polymer electrolytes possess moderate conductivity, safety, and good stability compared with organic electrolytes and ceramic electrolytes. In addition, the cost of polymer electrolytes is acceptable, which indicates that polymer electrolyte is a promising electrolyte in the future. Therefore, it is very important for us to choose suitable electrolytes for certain targeted purposes.

![Image of Electrolytes for SIBs]

Figure 2.2 Chemical compositions of the organic electrolytes for SIBs.\(^{17}\)

2.4 Anode Materials

In view of the current state of sodium ion batteries, a huge number of researchers are paying attention to exploring anode material. Some of them have already shown excellent specific capacity and stable cycling performance. Generally, these anode materials can be classified into the following six main groups: carbon-based materials, alloying materials, metal oxides, metal sulfides, metal selenides, and metal phosphides. In the following part, I will introduce some representative works in detail.
2.4.1. Carbon-based anode materials

2.4.1.1. Graphite

Metal Na anode can exhibit a theoretical capacity of 1165 mA h g⁻¹, although its theoretical operating voltage is the lowest among the various anode materials. This would lead to the formation of Na dendrites, causing serious safety problems. This has prompted us to look for other anode materials. Graphite, with its long-range-ordered layered structure, has been successfully commercialized and widely studied as an anode material due to its reversible capacity of 372 mA h g⁻¹ in LIBs. Graphite could not well work in SIBs, however, because the interlayer distance (0.34 nm) between graphite layers is too small to allow the insertion of Na⁺ (0.37 nm). Therefore, it is necessary to adjust the lattice spacing of the graphite to accommodate Na⁺ insertion and extraction.

Expanded graphite (EG) is considered to be effective for storing more Na⁺ due to the enlarged lattice spacing of the graphite. Dou’s group synthesized thermally reduced graphene oxide (rGO) with an interlayer lattice spacing of 3.71-3.65 Å, and found that it could sustain a reversible capacity of 141 mA h g⁻¹ at 40 mA g⁻¹ in the electrolyte of 1 M NaClO₄ in propylene carbonate (PC) after 1000 cycles.¹⁸ There is a large irreversible capacity, however, which arises from the formation of a solid-electrolyte interphase (SEI) film due to the decomposition of electrolyte. Matsuo and Ueda synthesized carbon with a interlayer distance of 4.22 - 3.34 Å through the pyrolysis of
graphite oxide at 300 - 1000 °C. The optimized expanded carbon (300 °C) could maintain a reversible capacity of 252 mA h g⁻¹ at 20 mA g⁻¹ in an electrolyte consisting of 0.5 M NaClO₄ in ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 v/v) after 250 cycles. Wang’s group realized the synthesis of expanded graphite (EG) with a interlayer lattice distance of 4.3 Å through the oxidation/partial reduction of graphite. The as-synthesized EG could maintain a highly reversible capacity of 284 mA h g⁻¹ at 20 mA g⁻¹, which is attributed to its enlarged interlayer lattice spacing with reduced oxygen-containing groups, as shown in Figure 2.3. The above examples indicate that it is effective to store Na⁺ ions in graphite with a widened interlayer lattice distance.

![Figure 2.3](image)

Figure 2.3 Schematic illustration of sodium storage in (a) graphite, (b) graphite oxide, and (c) expanded graphite.

Electrolytes play important roles in the formation of stable graphite intercalation compounds (GICs), which makes graphite a promising anode for SIBs. Therefore, co-intercalation reactions can be employed to improve the performance of graphite. Previously, we thought that graphite could not be properly used as the anode for SIBs, since no binary graphite intercalation compound can be formed due to mismatch of
the structure of graphite and the size of Na+ ions. Ternary graphite intercalation compounds of graphite and sodium, however, offer a great opportunity to store sodium with the proper electrolytes. Jache and Adelhelm found that the ternary GICs Na(diglyme)\textsubscript{2}C\textsubscript{20} (Na(DGM)\textsubscript{2}C\textsubscript{20}) could be formed in electrolyte consisting of 1 M NaPF\textsubscript{6} in EC/DMC (1:1, w\%), and the graphite could sustain a reversible capacity of \(\sim 100 \text{ mA h g}^{-1} \) after 1000 cycles with high Coulombic efficiency.21 Moreover, \(\sim 15\% \) expansion of the interlayer lattice spacing of graphite was observed. Kang’s group found that natural graphite could present a reversible capacity of \(\sim 150 \text{ mA h g}^{-1} \) after 2500 cycles in ether-based electrolytes.22 The high capacity is attributed to the Na+-solvent co-intercalation and pseudocapacitive behaviour, which were further confirmed by Chen’s group.23 The effect of electrolytes is schematically shown in Figure 2.4.

![Figure 2.4](image)

Figure 2.4 Proposed scheme of Na storage in natural graphite with different electrolyte systems.22
Since the first use of co-intercalation in graphite anode for SIBs, some work has been done along this direction, and some progress has been achieved. Tirado’s group further studied sodium co-intercalation in the thermally synthesized EG with an interlayer lattice distance of 3.388 Å in 1 M NaCF$_3$SO$_3$/DGM electrolyte, and found that solvated sodium ions intercalated into the EG based on a two-stage sodium storage process, as identified by \textit{ex-situ} X-ray diffraction (XRD) patterns.24 Adelhelm’s group used certain techniques, such as \textit{in-situ} electrochemical dilatometry, online electrochemical mass spectrometry (OEMS), and other structural and compositional characterizations to clearly help us to understand the co-intercalation reaction,25 and they found that there was no SEI film in graphite for the co-intercalation reaction. Gotoh’s group further investigated the effect of the active motion of sodium-DGM complexes on Na$^+$ diffusion via the dynamics and the coordination structure of DGM-d14 molecules using 2 H solid-state nuclear magnetic resonance (NMR).26

Based on their understanding of the nature of electrolytes and graphite, Hassoun’s group designed the first full sodium-ion cell, which consisted of graphite anode and Na$_{0.7}$CoO$_2$ cathode with 1 M NaClO$_4$ with tetraethylene glycol dimethyl ether (TEGDME) as the electrolyte.27 The as-designed cell could deliver a high energy density of 30 W h kg$^{-1}$ at 10 C, which demonstrated the promise for high rate application. Then, Kang’s group further optimized the full sodium-ion cell with
graphite anode, Na$_{1.5}$VPO$_{4.8}$F$_{0.7}$ cathode, and a designed ether-based electrolyte.28 The cell presented an energy density of as high as 149 W h kg$^{-1}$ at 0.1 A g$^{-1}$.

2.4.1.2. Hard carbon

Compared to graphite, non-graphitizable hard carbon (HC) can be considered not to transform into graphite even above 3000 °C. It is composed of randomly aligned small graphene layers, which exhibit a porous structure that well accommodates Na$^+$.29 The detailed structure is shown in Figure 2.5. In this structure, there are some sites that can store sodium, i.e., through intercalation between small graphene layers, in the porous structure, and by defect and surface adsorption. In addition, the sodium storage mechanism in HC has also been confirmed to be a three-step process: i) Na$^+$ ions are adsorbed at defect sites in the sloping voltage range; ii) Na$^+$ ions are intercalated into the hard carbon lattice; and iii) Na$^+$ ions are adsorbed at the porous surface in the plateau range. The unique structure offers many advantages for sodium storage. The clear mechanism of Na storage helps us to develop enhanced HC materials.

Figure 2.5 Schematic illustrations of graphite and HC accommodating sodium.

HC has been usually synthesized from biomass precursors for SIBs. Commonly, it is thought that the carbonization is accompanied by some concurrent reactions, e.g., dehydrogenation, condensation, hydrogen transfer, and isomerization (**Figure 2.6**). Yuan et al. synthesized a 3D hard carbon matrix through carbonizing sodium polyacrylate at 1100 °C for 10 h. The porous structure could present a discharge capacity of 116 mA h g⁻¹ at 4 A g⁻¹ after 3000 cycles, which is attributed to the structural characteristics of the 3D porous matrix, which could effectively store sodium and accommodate the volume changes.
Moreover, some other strategies are employed to enhance the electrochemical performance of hard carbon, such as optimizing electrolytes and binders. Komaba’s group found that sodium carboxymethyl cellulose helps hard carbon to deliver good performance. Yamada’s group found that 50 mol % sodium bis(fluorosulfonyl)amide (NaFSA)/succinonitrile (SN) electrolyte could facilitate reversible Na⁺ insertion into hard carbon. This demonstrates that the electrolyte plays an important role in the electrochemical performance of hard carbon.

2.4.1.3 Soft carbon

Soft carbon exhibits a semi-graphitic, fewer-defect structure with high/low strain regions (disordered and graphitic parts). This structure endows soft carbon with good
electronic conductivity. Little research on soft carbon anode for SIBs has been reported, however, due to the small interlayer spacing of graphite. Alcántara et al. synthesized soft carbon through the calcination of petroleum coke and firstly found that it could offer a discharge capacity of above 100 mA h g\(^{-1}\). Recently, Song’s group found that mesoporous soft carbon obtained through the carbonization of mesophase pitch with CaCO\(_3\) as the template could retain a sustainable capacity of 103 mA h g\(^{-1}\) after 3000 cycles at 500 mA g\(^{-1}\), which could be due to its mesoporous structure and well-balanced disordered and graphitic parts. Feng’s group found that soft carbon fibers obtained through the calcination of wet-spun polyacrylonitrile (PAN) fibers could sustain a discharge capacity of 190 mA h g\(^{-1}\). More attention should be paid to soft hard research in the future.

2.4.2 Alloying anodes

Carbon-based materials have been successfully used for Na storage in SIBs, delivering reasonable capacity during the charge/discharge processes. The specific capacity of carbon-based materials is obviously low, however, owing to its intrinsic structural constraint. Alloy materials are attractive for storing Na\(^+\) ions in the host structure below 1.0 V to achieve a high specific capacity. To date, some alloying metal anode materials have been reported, \(i.e.,\) Sn, Bi, Si, Ge, Sb, P, \(etc.\) The large Na\(^+\) ion could cause severe volume changes during the electrochemical reactions, however, leading to their fracture or pulverization. To overcome these problems, structural design of the electrode materials is particularly crucial.
2.4.2.1 Sn anode

Sn has attracted great attention as a high-capacity anode (847 mA h g\(^{-1}\) for Na\(_{15}\)Sn\(_4\) alloy), although it also suffers from severe volume change of \(\sim 400\%\) during the sodiation process.\(^{39}\) To overcome this obstacle, many strategies have been used for obtaining good electrochemical performance from the cycling and rate aspects.\(^{40}\)

In 2012, Wang’s group designed mesoporous C/Sn composites to stabilize Sn nanoparticles via the mesoporous carbon matrix during sodiation/desodiation processes.\(^{41}\) The as-synthesized samples showed very poor cycling performance, however, due to the large interfacial resistance to the sodiation of Sn. Since then, some progress has been achieved. Chen’s group synthesized Sn nanodots@porous N-doped carbon nanofibers to form an integrated electrode by the electrospinning method (Figure 2.7 a and b).\(^{42}\) The as-synthesized integrated electrode (Figure 2.7 c and d) could deliver a high capacity of 483 mA h g\(^{-1}\) after 1300 cycles at 2000 mA g\(^{-1}\). Its excellent performance could be attributed to the small Sn particle size, the porous carbon matrix for Sn, and the interlinked 3D carbon network. Wang’s group prepared core–sheath Sn nanorods@carbon nanotubes on carbon paper through a soaking-chemical vapour deposition process, which could maintain a high capacity of \(\sim 887 \mu \text{Ah}\cdot\text{cm}^{-2}\) after 50 cycles at 50 mA g\(^{-1}\).\(^{43}\) The integrated Sn@carbon nanotube (CNT) arrays facilitated fast ion/electron transfer, and provided enough room for volume change during the sodiation process. Moreover, other Sn/carbon hybrids were also reported, such as Sn@C nanospheres/carbonized filter paper,\(^{44}\) yolk-shell Sn@C
nanostructures,45 Sn/graphene composites,46 and so on. These researchers could obtain superior anodes with good performance through taking the advantages of the structure and the high conductivity of the carbon matrix.

![Figure 2.7](image)

Figure 2.7 (a) Schematic illustration of the synthesis process for Sn@N-C nanofibers; (b) photograph of the integrated precursor and electrode; (c) scanning electron microscope (SEM) image and (d) element mapping of Sn@N-C nanofibers.42

Furthermore, Sn intermetallic compounds, i.e., Sn\textsubscript{0.9}Cu\textsubscript{0.1},47 Na\textsubscript{x}Sb\textsubscript{y}Sn\textsubscript{100-x-y},48 etc., have been reported for Na+ storage in SIBs. These intermetallic compounds can be catalogued into two kinds, alloying with inactive metals and alloying with active metals. On the one hand, in the case of alloying with inactive metals, the inactive metals play two important roles in buffering the volume expansion of Sn and
improving the conductivity. On the other hand, active metals can contribute extra capacity and buffer the volume expansion in hybrids.

2.4.2.2 Sb anode

As a potential anode for SIBs, Sb has relatively high theoretical capacity (Na$_3$Sb, 660 mA h g$^{-1}$) and working voltage of about 0.5-0.8 V vs. Na$^+/$/Na. These two characteristics endow Sb with high energy-density and safety. There is a ~390% volume change in Na$_3$Sb during electrochemical processes, however, which will lead to poor electrochemical performance due to the pulverization of the electrode. The following part will discuss the progress of the Sb anode for SIBs.

Xie’s group was the first to synthesize the Sb/graphene (Sb/G) nanocomposite using the solvothermal method in 2014, which could deliver 211 mA h g$^{-1}$ after 30 cycles at 20 mA g$^{-1}$. To further improve the performance, Ji’s group designed hollow structural Sb by galvanic replacement, using nickel nanoparticles as the precursor, and employed the unique structure to realize a high capacity of 627.3 mA h g$^{-1}$ after 50 cycles at 100 mA g$^{-1}$. Feng’s group employed the chemical dealloying technique to synthesize porous Sb particles, and the optimized sample could deliver a sustainable capacity of 573.8 mA h g$^{-1}$ after 200 cycles at 100 mA g$^{-1}$, which is ascribed to the interconnected porous structure of integrated Sb, which might provide easy electrolyte access and excellent electron/ion transport. They selectively etched Al from the Al-Sb alloy using NaOH to form porous Sb, as shown in Figure 2.8. Apart from the
above-mentioned structural control, Yang’s group exfoliated Sb particles from antimony nanosheets in isopropyl alcohol solution containing sodium hydroxide, and combining the as-exfoliated Sb nanoplates with graphene to assemble hybrid films, which demonstrated a high volumetric capacity of 1226 mA h cm$^{-3}$.52 The sample’s high volumetric sodium storage should be attributed to the high capacity and high density of antimony along with the high conductivity of graphene.

Figure 2.8 (a) Schematic illustration of the chemical dealloying process to produce the porous Sb structure; (b) Al$_{30}$Sb$_{70}$ and its dealloyed products; (f-i) Al$_{20}$Sb$_{80}$ and its dealloyed products.51

Compared to their pure counterparts, intermetallic compounds have some advantages, i.e., improved capacity retention, faster kinetics, etc. From these considerations, some Sb-based intermetallic compounds have been synthesized, such as Cu$_2$Sb, NiSb, etc. Baggetto *et al.* synthesized Cu$_2$Sb thin films, and tested their performance with fluoroethylene carbonate (FEC) as the electrolyte additive, finding that they could largely sustain a discharge capacity of ~ 250 mA h g$^{-1}$ after 200 cycles.53 Yu’s group
designed 3D interconnected NiSb hollow nanospheres by a galvanic replacement reaction using 3D interconnected Ni nanospheres and Sb$^{3+}$ ions as the precursors, as shown in Figure 2.9a. The as-synthesized hybrid structures exhibited a discharge capacity of 230 mA h g$^{-1}$ after 150 cycles at 10 C. Both the unique structure and the Ni matrix could improve the rate capability of the 3D interconnected NiSb nanospheres, as shown in Figure 2.9b. The above examples demonstrate that the intermetallic compounds are promising anode materials for SIBs.

Figure 2.9 Schematic illustrations of (a) the synthesis of 3D interconnected NiSb hollow nanospheres; and (b) the sodiation/desodiation of 3D interconnected NiSb hollow nanospheres.54
To alleviate the stress during the sodiation process for Sb, it is an effective strategy to hybridize the Sb with various kinds of carbon, such as graphene,\(^{55}\) carbon nanofibers,\(^{56}\) etc. Bao’s group designed the Sb/G composites through confined vapour deposition with the Sb particles and freeze-dried graphene oxide located at the lower and upper parts of a sealed tube,\(^{55}\) as shown in Figure 2.10. The as-synthesized Sb/graphene composite could deliver a high rate capability of 210 mA h g\(^{-1}\) at 5000 mA g\(^{-1}\), which was attributed to the graphene, which could enhance sodium ion/electron diffusion and electronic transport, and possibly stabilize the SEI layer.

![Figure 2.10 Schematic illustration of the synthesis of Sb/graphene composite.\(^{55}\)](image)

2.4.2.3 Ge anode

Ge presents a theoretical capacity of 369 mA h g\(^{-1}\) via alloying with sodium (NaGe) and has its potential range from 0.15 to 0.6 V.\(^{57}\) Veith’s group was the first to report the Na storage behavior of Ge thin films, and found that the as-synthesized thin films
could offer a capacity of 110 mA h g⁻¹ at 125.46 A g⁻¹. Lu’s group designed and prepared the core-shell Ge@rGO@TiO₂ nanofibers by electrospinning/atomic layer deposition processes, which exhibited a capacity of 182 mA h g⁻¹ after 250 cycles at 100 mA g⁻¹ owing to the graphene/TiO₂ double protection. Yin’s group designed a carbothermal reduction method for encapsulating Ge nanoparticles in hollow carbon boxes, with a reversible capacity of 346 mA h g⁻¹ after 500 cycles at 100 mA h g⁻¹.

2.4.2.4 Bi anode

As one of the potential anode materials, Bi exhibits a theoretical capacity of 385 mA h g⁻¹ for Na₃Bi, with 250 % volumetric expansion during the charge/discharge processes. Owing to its high volumetric capacity and relatively low volume change, Bi has attracted some attention as an anode material for SIBs.

Wang’s group found that the Bi@G composite could demonstrate a highly reversible capacity of 561 mA h g⁻¹, which was attributed to the unique structure of Bi for Na intercalation. Feng’s group prepared Bi nanorod bundles by chemically dealloying Al₃₀Bi₇₀ alloy, and found that it exhibited 301.9 mA h g⁻¹ after 150 cycles at 50 mA g⁻¹, which was due to high Na⁺/electron accessibility and transport in the structure. Liang’s group grew Bi nanosheets on carbon fiber cloth. The integrated Bi electrode showed a reversible capacity of 240 mA h g⁻¹ after 300 cycles at 200 mA g⁻¹, which is attributed to the integrated electrode design. Yin et al. embedded Bi in carbon nanofibers through the electrospinning method. The 1D hybrid structure endowed the sample with a sustainable
capacity of 273.2 mA h g\(^{-1}\) after 500 cycles at 100 mA g\(^{-1}\).\(^{65}\) Yu’s group prepared Bi nanorods@N-doped carbon nanotubes through the reduction of Bi\(_2\)S\(_3\) and the carbonization of a polymer coating layer. The as-synthesized Bi@C electrode delivered a reversible capacity of 410 mA h g\(^{-1}\) at 50 mA g\(^{-1}\) for SIBs.\(^{66}\) The unique structure could account for its excellent performance. The hybridization with various carbon materials is demonstrated to be effective to improve the performance of Bi-based anodes. Moreover, Li’s group found that bulk Bi could also present a sustainable capacity of 400 mA h g\(^{-1}\) in NaPF\(_6\)-DGM electrolyte with a high retention rate of 94.4% after 2000 cycles.\(^{67}\) They found that both the porous integrity of the bulk Bi and the wettability of DGM towards Bi contributed to the formation of a stable SEI film for achieving excellent performance.

2.4.2.5 P anode

Phosphorus is considered to be a cost-effective anode material with a theoretical capacity of 2590 mA h g\(^{-1}\) (Na\(_3\)P) for SIBs.\(^{68}\) Due to severe volume changes during alloying/dealloying processes, however, P anode usually exhibits poor cycling performance, so it is necessary to find new strategies to overcome this.

Yang’s group was the first to report an amorphous phosphorus/carbon (P/C) composite as anode for SIBs.\(^{69}\) It could sustain a reversible capacity of 1764 mA h g\(^{-1}\), but it exhibited disappointing cyclability due to its weak ion/electron conductivity. Oh’s group found that their amorphous red P/carbon composite could maintain a
sustainable capacity of 1890 mA h g\(^{-1}\) at 143 mA g\(^{-1}\).\(^{70}\) Song et al. prepared a chemically bonded phosphorus/graphene composite, which sustained a capacity of 1700 mA h g\(^{-1}\) after 60 cycles with relatively good cyclability.\(^{71}\) Following these pioneering works, more and more work has been done in this field. They mainly focused on the design and synthesis of P/C composites and ranged from physical hybrids to chemically bonded hybrids.\(^{72}\) Wang’s group found that their red P/CNT composite fabricated by the vaporization–condensation method (Figure 2.11) could present a reversible capacity of \(~240\) mA h g\(^{-1}\) after 2000 cycles at 2 A g\(^{-1}\).\(^{73}\) This excellent cycling performance was ascribed to the conductive carbon nanotube network surrounding the red P. Amine’s group further synthesized a black phosphorus/Ketjenblack–carbon nanotubes composite by ball milling, and found that it could exhibit 1700 mA h g\(^{-1}\) after 100 cycles at 1.3 A g\(^{-1}\), which was attributed to nanostructuring of the phosphorus particles and the carbon matrix.\(^{74}\)

Figure 2.11 Synthesis process for red P/carbon nanotube composite.\(^{73}\)
2.4.3 Metal oxides

Metal oxides have the advantages of abundance and high theoretical capacity as anode materials for SIBs. Metal oxides can be classified into three groups according to their electrochemical reaction mechanisms in SIBs: i) intercalation/de-intercalation materials (TiO$_2$, Nb$_2$O$_5$), ii) conversion materials (Fe, Cu, Ni, or Co-based oxides), and iii) conversion and alloying materials (SnO$_2$, Sb$_2$O$_3$, and Bi$_2$O$_3$). Nevertheless, the metal oxides suffer from unsatisfactory cycling stability and rate capability, which are ascribed to low conductivity and large volumetric changes during the charge/discharge processes. To date, a great number of efforts have been made to solve these issues via designing new composite structures and combining them with carbonaceous substrates.

2.4.3.1 TiO$_2$ anode

TiO$_2$ is considered to be able to store Na with some advantages, i.e., natural abundance, non-toxicity, high chemical stability, etc. Yet, there are also the disadvantages of low electronic conductivity and the inferior Na$^+$ diffusion of TiO$_2$. Xiong et al. synthesized amorphous TiO$_2$ nanotubes (NTs) on Ti foil as the substrate that demonstrated a reversible capacity of \sim150 mA h g$^{-1}$ at 50 mA g$^{-1}$ with poor cycling performance. In order to solve these problems, various strategies have been employed, such as nanostructured designs, hybridization with carbon, hybridization with other materials, and defect engineering.
Nanostructure design is important for the development of TiO₂ anode. Lei’s group designed 3D Ni-TiO₂ core-shell nanoarrays by the nanoimprinted anodic aluminium oxide (AAO) templating method, and they sustained a reversible capacity of ~200 mA h g⁻¹ after 100 cycles at 50 mA g⁻¹, which is attributed to their good ion/electron transport and electrode integrity. The fabrication process for highly ordered 3D Ni-TiO₂ nanoarrays is shown in Figure 2.12 using the AAO templating technique. Ji’s group synthesized anatase TiO₂@C “olives” composed of tiny crystalline grains with a sustainable capacity of 267 mA h g⁻¹ at 33.6 mA g⁻¹, which is associated with the existence of subtle loose structure that can facilitate Na⁺ transportation.

Figure 2.12 (a) Schematic illustration of the preparation of highly ordered 3D Ni-TiO₂ nanoarrays using the AAO templating technique. SEM images of (b and e) the AAO template, (c and f) Ni nanopillar arrays, and (d and g) 3D Ni-TiO₂ nanoarrays.

2.4.3.2 Nb₂O₅ anode
Recently, Nb$_2$O$_5$ has attracted tremendous attention due to its advantages of unique chemical stability under acid conditions, wide potential window and rich redox chemistry (Nb$^{5+}$/Nb$^{4+}$, Nb$^{4+}$/Nb$^{3+}$). Orthorhombic Nb$_2$O$_5$ features the largest interplanar lattice spacing of 0.39 nm for (001) planes, which could possibly promote the fast diffusion and storage of Na$^+$. Nevertheless, the low electronic conductivity of Nb$_2$O$_5$ has greatly hindered its application in high performance SIBs. Much effort has been made to address this problem by structure optimization.83

Kang’s group reported an ordered mesoporous Nb$_2$O$_5$/C composite with a discharge capacity of \sim175 mA h g$^{-1}$, which could be achieved because the mesoporous structure could accommodate the large volume changes. They also found that the Na storage in Nb$_2$O$_5$ is via Na intercalation/deintercalation reactions and surface capacitive reactions,84 as shown in Figure 2.13. Lee’s group designed core-shell Nb$_2$O$_5$@C nanoparticles supported by rGO, which delivered \sim 285 mA h g$^{-1}$ at 25 mA g$^{-1}$. 85
Yu’s group encapsulated S-doped Nb$_2$O$_5$ hollow nanospheres in S-doped graphene networks to form a S-Nb$_2$O$_5$@G composite with outstanding rate capability due to the combined effects of the 3D hollow structure and heteroatom doping, as shown in Figure 2.14. Wang and his co-workers proposed a nanocasting approach to synthesize a mesoporous Nb$_2$O$_5$ nanosheets/graphene (Nb$_2$O$_5$/G) composite, which could present a capacity of 230 mA h g$^{-1}$ after 30 cycles at 0.25 C. This high performance was attributed to its unique thin mesoporous structure and crystalline characteristics.
Figure 2.14 (a) Schematic illustration of the synthesis of S-Nb$_2$O$_5$@S-rGO; (b) the Na$^+$/e$^-$ transportation process in Nb$_2$O$_5$/rGO composite; (c) the hollow nanosphere/graphene structure can buffer the volume expansion during the sodiation/desodiation processes.

2.4.3.3 Fe$_2$O$_3$ and Fe$_3$O$_4$ anodes

Fe$_2$O$_3$ and Fe$_3$O$_4$ have high theoretical capacities (~1007 mA h g$^{-1}$ for Fe$_2$O$_3$ and 926 mA h g$^{-1}$ for Fe$_3$O$_4$) and are considered as promising anodes for SIBs, although their poor intrinsic electronic conductivity and severe volume changes during the cycling process would cause pulverization and capacity fading. In order to solve these problems, nanostructuring and hybridizing with carbon were investigated and found to alleviate expansion of the structure and improve the conductivity.
Zhou’s group found that their Fe$_2$O$_3$@graphene composite could sustain ~ 400 mA h g$^{-1}$ after 200 cycles at 100 mA g$^{-1}$. Inspired by this idea, some works on a variety of Fe$_2$O$_3$/graphene composites as anodes for Na storage were reported. For example, Yang’s group anchored ~ 300 nm Fe$_2$O$_3$ single crystallites on rGO nanosheets to form a Fe$_2$O$_3$/graphene composite, which exhibited ~ 500 mA h g$^{-1}$ after 100 cycles at 50 mA g$^{-1}$ due to the existence of the conductive matrix. Moreover, other carbon materials have been also used as supports for Fe$_2$O$_3$ to improve its performance.

Fe$_3$O$_4$/C composites have been employed as models for improving the electrochemical performance of Fe$_3$O$_4$. Wang’s group reported that Fe$_3$O$_4$/rGO composite exhibited a sustainable capacity of 210 mA h g$^{-1}$ for 250 cycles at 200 mA g$^{-1}$. Xu’s group synthesized an Fe$_3$O$_4$/rGO composite composed of Fe$_3$O$_4$ quantum dots and 3D rGO by the hydrothermal method, which presented a capacity of 312 mA h g$^{-1}$ after 200 cycles at 50 mA g$^{-1}$. This performance was attributed to the 3D structure of graphene, which could accommodate the volume changes during the cycling process, and the small size of the Fe$_3$O$_4$ particles. In addition, Fe$_3$O$_4$-based heterostructures, i.e., Fe$_3$O$_4$/MoS$_2$, Fe$_3$O$_4$@FeS, and Fe$_3$O$_4$/Fe$_{1-x}$S@C@MoS$_2$, have also achieved excellent performance due to their multi-component effects.

2.4.3.4 Co$_3$O$_4$ anode

Co$_3$O$_4$ undergoes a multi-electron transfer reaction process with a theoretical capacity of ~ 890 mA h g$^{-1}$. Some strategies should be undertaken for improving its
performance, however, e.g., accommodating the volume changes during sodiation/desodiation and enhancing its electrical conductivity. Rahman et al. reported that Co$_3$O$_4$ nanoparticles could sustain a capacity of 447 mA h g$^{-1}$ after 50 cycles at 25 mA g$^{-1}$. Li et al. demonstrated that Co$_3$O$_4$/3D graphene composite could exhibit a capacity of \sim523.5 mA h g$^{-1}$ after 50 cycles, which is attributed to the ability of 3D graphene to accommodate the volume change of Co$_3$O$_4$ during the cycling process. Inspired by these results, other Co$_3$O$_4$/C composites have been studied, i.e., CNTs, carbon nanofibers (CNFs), carbon hollow spheres, etc.

2.3.4.5 NiO anode

NiO has a theoretical capacity of 718 mA h g$^{-1}$ for Na storage. Wang and his coworkers realized the growth of NiO nanosheets on the surface of hollow carbon microspheres to form the HC@NiO composite (Figure 2.15), which maintained a capacity of 309 mA h g$^{-1}$ after 50 cycles at 0.1 A g$^{-1}$. Zhu’s group synthesized NiO/Ni/graphene from nickel metal-organic frameworks (Ni-MOFs), which had a sustainable capacity of 300 mA h g$^{-1}$ at 200 mA g$^{-1}$, which is attributed to the facilitation of faster charge transfer by the conductive matrix.
Figure 2.15 Schematic illustration of the synthesis of hollow carbon@NiO composite.\(^{103}\)

2.4.3.6 CuO anode

CuO follows a conversion reaction mechanism for Na storage and has a high theoretical capacity (674 mA h g\(^{-1}\)), which has attracted some attention due to the abundant global reserves and environmental compatibility of Cu, although its poor electronic conductivity and severe volume expansion have limited its application in SIBs.

Zhang’s group designed CuO nanoarrays on Cu foil as anode for SIBs, which could sustain \(~640\) mA h g\(^{-1}\) at 200 mA g\(^{-1}\) due to its structural characteristics.\(^{105}\) Wang’s group prepared 3D CuO on Cu foil, which maintained a reversible capacity of 280 mA h g\(^{-1}\) at 1.0 A g\(^{-1}\).\(^{106}\) Jiao’s group further synthesized CuO@C nanofibers
(Figure 2.16) with a specific capacity of 401 mA h g\(^{-1}\) after 500 cycles at 500 mA g\(^{-1}\), which was attributed to the integration of CuO with the conductive carbon matrix.\(^{107}\)

Figure 2.16 The synthesis process for CuO@C nanofibers.\(^{107}\)

2.4.3.7 SnO\(_2\) anode

SnO\(_2\) has a theoretical capacity of 667 mA h g\(^{-1}\), and follows the conversion/alloying reaction mechanism,\(^{108}\) although SnO\(_2\) has low conductivity and suffers huge volume variation during the cycling process. To explore the potential of SnO\(_2\), several strategies have been used.

The hybridization of SnO\(_2\) with graphene is considered to be a useful method to obtain high performance. Wang et al. synthesized an ultrasmall SnO\(_2\)/rGO composite that could sustain a capacity of 330 mA h g\(^{-1}\) after 150 cycles at 50 mA g\(^{-1}\).\(^{109}\) Other carbon materials were also used to support SnO\(_2\) to form composites. Zhang’s group
reported the use of carbon coated SnO\textsubscript{2}/C nanofibers to form C@SnO\textsubscript{2}@C nanofibers, which delivered \(\sim 374 \) mA h g-1 after 100 cycles at 50 mA g-1.110 Zhang’s group constructed SnO\textsubscript{2-x}@C nanofibers with a reversible capacity of 565 mA h g-1 after 2000 cycles at 1 A g-1, which was attributed to the enhanced reaction kinetics and less volume expansion due to the integration of the electrode structure.111 Moreover, Zhang’s group reported that sandwich-like MoS\textsubscript{2}@SnO\textsubscript{2}@C (Figure 2.17) exhibited a capacity of 396 mA h g-1 after 150 cycles at 0.1 A g-1 due to the combined effect of MoS\textsubscript{2} and SnO\textsubscript{2}.112

Figure 2.17 The synthesis process for MoS\textsubscript{2}@SnO\textsubscript{2}@C.112

2.4.3.8 Sb\textsubscript{2}O\textsubscript{3} and Bi\textsubscript{2}O\textsubscript{3} anodes

Sb\textsubscript{2}O\textsubscript{3} and Bi\textsubscript{2}O\textsubscript{3} have attracted some attention for Na storage due to their high gravimetric specific capacity and abundant resources, although they inevitably suffer from huge volume expansion during the sodiation/desodiation process and low
electrical conductivity (Figure 2.18). To address these issues, several strategies have been proposed.

Figure 2.18 Schematic diagram of the characteristics of the alloying reaction and conversion reaction.

Yan’s group investigated an Sb$_2$O$_3$ film fabricated by the electrostatic spray deposition (ESD) method that could sustain capacity of 414 mA h g$^{-1}$ after 200 cycles at 0.5 A g$^{-1}$ through a reversible conversion-alloying process. Wang’s group fabricated a Sb$_2$O$_3$/Ti$_3$C$_2$Tx composite with a capacity of 472 mA h g$^{-1}$ after 100 cycles at 100 mA g$^{-1}$ due to the high capacity of Sb$_2$O$_3$ and the conductive Ti$_3$C$_2$Tx network.

Nithya reported the synthesis of a Bi$_2$O$_3$/rGO composite with 70.2 % capacity retention after 200 cycles at 350 mA g$^{-1}$. Zhu’s group prepared Bi$_2$O$_3$@C nanofibers with capacity of as high as 430 mA h g$^{-1}$ after 200 cycles at 100 mA g$^{-1}$,
which was attributed to the small Bi$_2$O$_3$ particle size and the conductive CNFs.116 Mai’s group constructed sheet-like Bi$_2$S$_3$-Bi$_2$O$_3$ heterostructures with a built-in electric field (Figure 2.19), which could effectively facilitate the charge transport to yield a reversible capacity of \sim630 mA h g$^{-1}$ at 100 mA g$^{-1}$.117

![Figure 2.19](image.png)

Figure 2.19 Schematic illustration of charge transfer in Bi$_2$S$_3$-Bi$_2$O$_3$ heterostructures.117

2.4.3.9 MoO$_2$ and MoO$_3$ anodes

Molybdenum oxides, including MoO$_3$ and MoO$_2$, have been considered as promising anodes due to their layered structure and environmental friendliness, although they still suffer from poor capacity retention and ion transfer kinetics. To date, enormous attempts have been devoted to solving these critical problems.
Xu’s group investigated a MoO$_2$/rGO composite that delivered 276 mA h g$^{-1}$ after 1000 cycles at 100 mA g$^{-1}$.118 Xia \textit{et al.} reported vertical graphene/MoO$_2$ core-shell arrays synthesized by plasma-enhanced chemical vapor deposition–electrodeposition (PECVD-ED).119 The core-shell arrays demonstrated superior Na storage capability with \sim554 mA h g$^{-1}$ after 500 cycles at 100 mA g$^{-1}$ due to the improved electrical conductivity.

Balaya’s group was the first to report α-MoO$_3$ as anode, sustaining 100 mA h g$^{-1}$ after 500 cycles at 1.117 A g$^{-1}$.120 Sreedhara and his coworkers reported the synthesis of a MoO$_3$/rGO composite by the oxidation of few-layer MoS$_2$ nanosheets.121 The hybrid demonstrated superior electrochemical stability, which was ascribed to the Mo-O-C linkages between MoO$_3$ and rGO. Moreover, MoO$_3$/MoS$_2$ and MoO$_3$/MoSe$_2$ heterostructures have been reported to achieve enhanced performance.122, 123

\subsection*{2.4.4 Metal sulfides}

Metal sulfides have the following advantages for Na storage: i) they have high theoretical capacity; ii) the weak M-S bonds in metal sulphide are favourable for conversion reactions with Na$^+$ ions; and iii) they have comparable mechanical stability to the oxides. Most of them usually follow the conversion reaction mechanism or the conversion/alloying reaction mechanism. To date, some sulfides, including MoS$_2$, WS$_2$, SnS, NbS$_2$, TiS$_2$, FeS, Fe$_3$S$_4$, Fe$_7$S$_8$, FeS$_2$, CoS, Co$_3$S$_4$, Co$_9$S$_8$, \ldots
CoS\(_2\), NiS, Ni\(_3\)S\(_2\), NiS\(_2\), SnS, SnS\(_2\), Sb\(_2\)S\(_3\), and Bi\(_2\)S\(_3\), have been reported as anode materials for SIBs.

2.4.4.1 MoS\(_2\) anode

MoS\(_2\) consists of S-Mo-S sandwich layers with 0.62 nm interlayer spacing, which is beneficial for the migration of Na\(^+\) ions\(^{124}\) although the aggregation and collapse of this structure during sodiation/desodiation processes and its low electronic conductivity are obstructing its practical application in SIBs. To explore its potential as anode, some strategies have been used to enhance MoS\(_2\) anode performance.

Singh’s group prepared a paper assembled from acid-exfoliated MoS\(_2\) and rGO, which showed superior Na storage with a capacity of \(~230\) mA h g\(^{-1}\) after 20 cycles at 25 mA g\(^{-1}\).\(^{125}\) Inspired by this example, more than 40 examples of MoS\(_2\)/G composites have been explored for obtaining optimized performance up to August 2019.\(^{126}\) From this, we can conclude that graphene can be explored as a support for MoS\(_2\) with enhanced electrochemical performance. Zhu’s group designed the growth of metallic 1T MoS\(_2\) on graphene tubes to form a free-standing MoS\(_2\) anode (Figure 2.20),\(^{127}\) which exhibited a capacity of 313 mA h g\(^{-1}\) after 200 cycles at 50 mA g\(^{-1}\). In addition, other carbon materials were well considered as excellent supports for MoS\(_2\), such as CNTs, CNFs, carbon paper, carbon fabrics, graphite paper, etc.\(^{97}\)
Figure 2.20 (a-d) Synthesis of the 3D MoS2-graphene-MoS2 structure; (e) Mechanism of MoS2 growth on both sides of the 3D graphene. (f) Photograph of the lightweight, free-standing MoS2-graphene foam.127

It is considered effective to construct heterostructures with MoS2 to boost their Na storage performance. Ahemd et al. prepared MoS2@HfO2 nanosheets through a hydrothermal process, followed by atomic layer deposition (ALD), as shown in Figure 2.21, in which HfO2 strongly enhances the cycling performance, with a capacity of 435 mA h g⁻¹ after 50 cycles at 100 mA g⁻¹.128 Chen’s group modified MoS2 nanosheet arrays on carbon cloth by TiO2 layers by ALD, and they exhibited a capacity of 891 mA h g⁻¹ after 150 cycles at 200 mA g⁻¹.129 Moreover, other heterostructures, i.e., Sn/MoS2, Fe3O4/MoS2, SnS2/MoS2, MoS2/MoO3, MoS2/Fe2O3, Co9S8/MoS2, and NiCo2S4/MoS2, have been explored for enhanced electrochemical performance.97
Figure 2.21 Synthesis of MoS$_2$@HfO$_2$ nanosheets.128

2.4.4.2 WS$_2$ anode

WS$_2$ has a theoretical capacity of 432 mA h g$^{-1}$ for Na storage, which is relatively lower than that of MoS$_2$.130 In addition, it also suffers from similar problems to those of MoS$_2$. Therefore, there are few reports on WS$_2$ anode for SIBs. Yu’s group synthesized a 3D WS$_2$/C composite by electrostatic spray deposition (ESD) technique with WS$_2$ particles, rGO, and CNTs as precursors.131 The as-synthesized composite could deliver a capacity of 219 mA h g$^{-1}$ after 300 cycles at 432 mA g$^{-1}$, which was due to the conductive pathways provided by the structure and the composite’s ability to accommodate the volume change during cycling. Wang et al. further developed a WS$_2$/CNT-rGO composite to form an aerogel through a three-step method including solvothermal treatment and freeze-drying/post annealing techniques (Figure 2.22).132 The aerogel could sustain 252.9 mA h g$^{-1}$ after 100 cycles at 200 mA g$^{-1}$. Moreover,
there are some high-performance WS$_2$/C composites that have been due to their superior structural design.133

Figure 2.22 Synthesis of WS$_2$/CNT-rGO aerogel.132

2.4.4.3 TiS$_2$ anode

As early as the 1980s,134 a room-temperature Na/TiS$_2$ cell was reported. There has been little progress on TiS$_2$, however, which has attracted less attention as an anode material for SIBs due to its low theoretical capacity of 239 mA h g$^{-1}$, capacity loss, and low ion diffusion rate. To more deeply understand the reason for the capacity decay, Han et al. investigated the Na$^+$ intercalation behaviour by *in situ* transmission electron microscope (TEM) measurements,135 and found that the structure broke into nanosized domains with a diameter of \sim3 nm, which accounts for the capacity decay during the charge/discharge processes. Li’s group found that TiS$_2$ nanoplates could show a capacity of \sim100 mA h g$^{-1}$ at 2.39 A g$^{-1}$ due to the low dimensions and large
surface area. In addition, Chou’s group prepared ultrathin TiS$_2$ nanosheets by the shear-mixing method, which exhibited 386 mA h g$^{-1}$ after 200 cycles at 0.2 A g$^{-1}$. Hawkins and Whittaker-Brooks prepared TiS$_2$ arrays with a discharge capacity of 224 mA h g$^{-1}$ after 100 cycles at 23.9 mA g$^{-1}$, which was related to the short ion diffusion paths and the good electrical conductivity offered by the structure.

2.4.4.4 NbS$_2$ anode

Metallic NbS$_2$ consists of the S-Nb-S layers, and has a theoretical capacity of 683 mA h g$^{-1}$. There have only been a few research works on NbS$_2$, however. Lepienski’s group was the first to report the Na storage behaviour of NbS$_2$ in a saturated Na$_2$S$_2$O$_4$ aqueous solution. Liu et al. employed in situ XRD to research the phase transformation of NbS$_2$ during sodiation/desodiation through the intercalation and conversion processes.

2.4.4.5 FeS, Fe$_3$S$_4$, Fe$_7$S$_8$, and FeS$_2$ anodes

Iron sulfides feature low cost, environmental-friendliness, and high capacities for Na storage. They also have some disadvantages like other sulfides, undergoing severe volume changes during electrochemical processes, which lead to poor cycling performance. Thus, some strategies should be used to overcome these problems.

Ferrous sulfide (FeS) has a theoretical capacity of 609 mA h g$^{-1}$ for Na storage. Yu’s group designed the growth of FeS@C on carbon cloth to form FeS@C/carbon
cloth for Na storage, with the composite sustaining a capacity of 365 mA h g\(^{-1}\) after 100 cycles at 91 mA g\(^{-1}\).\(^{145}\) The good conductivity of carbon cloth and its porous structure endowed FeS with good performance. Following this example, some FeS/C composites have been designed as anodes for SIBs. For example, Yang’s group prepared porous FeS/C fibers through the pyrolysis of Fe-carrageenan fibers, as shown in Figure 2.23.\(^{146}\) The as-synthesized FeS/C fibers exhibited a capacity of 283 mA h g\(^{-1}\) after 400 cycles at 1 A g\(^{-1}\) due to their structural advantages. In addition, FeS/Fe\(_3\)C and FeS/Fe\(_3\)O\(_4\) heterostructures were reported to improve the FeS behavior.\(^{98,147}\)

![Figure 2.23 Synthesis of of FeS/C fibers.](image)

Jung’s group synthesized Fe\(_7\)S\(_8\)@C nanoparticles with ~10 nm in size by colloidal synthesis, and the composite achieved a capacity of 447 mA h g\(^{-1}\) after 1000 cycles at 180 mA g\(^{-1}\),\(^{148}\) which was ascribed to the small size of Fe\(_7\)S\(_8\) and the carbon shell. Under the guidance of this example, much effort has recently been made to the
synthesis of various kinds of Fe\textsubscript{7}S\textsubscript{8}/C composites to obtain high-performance results.149 In addition, as another kind of iron sulphide, Fe\textsubscript{3}S\textsubscript{4} has been employed as an active material through hybridization with carbon to form Na storage composites.150

Pyrite FeS\textsubscript{2} has a theoretical capacity of 894 mA h g-1 for Na storage. Walter et al. reported that FeS\textsubscript{2} nanoparticles sustained a capacity above 500 mA h g-1 after 400 cycles at 1.0 A g-1 due to the small size of FeS\textsubscript{2}.152 Chen’s group found that their optimized Co-doped FeS\textsubscript{2} could exhibit 220 mA h g-1 after 5000 cycles at 2 A g-1 due to its pseudocapacitive behaviour.153 To improve the reversibility of FeS\textsubscript{2}, some strategies have been undertaken to synthesize FeS\textsubscript{2}/C composites with various functions.154,155

2.4.4.6 CoS, Co\textsubscript{3}S\textsubscript{4}, Co\textsubscript{9}S\textsubscript{8}, and CoS\textsubscript{2} anodes

Cobalt sulfides are promising as anode materials for SIBs due to their high conductivity and high capacities. Similar problems to those of other sulfides still exist, however, such as volume changes during the charge/discharge process and relatively low conductivity. Thus, some strategies have been adopted to deal with these issues and improve their electrochemical performance.

Peng et al. synthesized a CoS nanoplates/rGO composite to form CoS/rGO composite as an advanced anode, which exhibited 420 mA h g-1 after 1000 cycles at 1 A g-1 due to their synergetic effects.156 Then, Wang’s group and Wei’s group also employed
graphene as the support for buffering the volume changes of CoS during the charge/discharge processes.157 Moreover, in order to enhance the performance of CoS, a carbon coating strategy was used to improve the conductivity of CoS/C composites, resulting in excellent electrochemical behaviour.158, 159 Compared with CoS, there have been few reports on Co\textsubscript{3}S\textsubscript{4} for Na storage. The Liu group reported Co\textsubscript{3}S\textsubscript{4}@polyaniline nanotubes that sustained a capacity of 252.5 mA h g-1 after 100 cycles at 200 mA g-1.160 In addition, to enhance the performance of Co\textsubscript{3}S\textsubscript{4}, hybridization strategies with carbon were also used by Hou’s group.161, 162

Hybridizing Co\textsubscript{9}S\textsubscript{8} with carbon is considered to be one of the most effective methods to improve its electrochemical performance. Kang’s group synthesized a Co\textsubscript{9}S\textsubscript{8}/carbon composite by the spray pyrolysis method, which exhibited a capacity of 404 mA h g-1 after 50 cycles at 0.5 A g-1.163 Jiao’s group reported Co\textsubscript{9}S\textsubscript{8}@C hollow microspheres synthesized by a solvothermal/thermal treatment process,164 as shown in Figure 2.24. The carbon layers played an important role in boosting charge transfer for obtaining the excellent performance of 492 mA h g-1 after 100 cycles at 0.5 A g-1. In addition, to boost the charge-transfer kinetics, some Co\textsubscript{9}S\textsubscript{8}-based heterostructures were proposed as advanced anodes for SIBs,165 i.e., Co\textsubscript{9}S\textsubscript{8}/MoS\textsubscript{2}, Ni\textsubscript{3}S\textsubscript{2}/Co\textsubscript{9}S\textsubscript{8}, Co\textsubscript{9}S\textsubscript{8}/Co, etc.
Figure 2.24 Synthesis of Co$_9$S$_8$@C hollow microspheres.164

CoS$_2$ is another important cobalt sulphide investigated as anode for SIBs,166 and has been mainly studied through incorporating carbon into composites. Fu’s group was the first to investigate such composites and found that CoS$_2$/CNTs exhibited 568 mA h g$^{-1}$ after 100 cycles at 100 mA g$^{-1}$ in ether-based electrolyte.167 Graphene and CNFs were also used as the support for CoS$_2$ by some groups.168 In addition, the hybridization of CoS$_2$ with other types of functional carbon has been also employed to improve its Na storage behaviour.169

2.4.4.7 NiS, Ni$_3$S$_2$ and NiS$_2$ anodes

Nickel sulfides are promising anode materials for Na storage due to their low cost, rich chemical formulas, and high electrical conductivity. Ni$_3$S$_2$, NiS, and NiS$_2$ have theoretical capacities of 446, 591 and 870 mA h g$^{-1}$, respectively,170,171 although they suffer from poor cycling performance due to structural collapse during sodiation/disodiation processes.172 Some work has been done to overcome this obstacle.
Cui’s group constructed a composite of Ni$_3$S$_2$-poly(3,4-ethylenedioxythiophene) (PEDOT) on Ni foam173 which delivered 280 mA h g$^{-1}$ after 30 cycles at 280 mA g$^{-1}$. Sun’s group further prepared Ni$_3$S$_2$ nanosheets/carbon tubes on Ni foam174 The composite sustained capacity of 212 mA h g$^{-1}$ after 260 cycles at 50 mA g$^{-1}$, which was attributed to the free space provided by the arrays for buffering volume changes.

Yan’s group prepared NiS nanosheets by the MOF-template method, which could sustain 166 mA h g$^{-1}$ over 100 cycles at 1 A g$^{-1}$. Zhao’s group was the first to report NiS/rGO composite as an anode with sustained capacity of 446 mA h g$^{-1}$ over 50 cycles at 200 mA g$^{-1}$. Yang’s group designed the synthesis route of NiS@C nanofibers, as shown in Figure 2.25. The optimized hybrid exhibited a reversible capacity of 320.5 mA h g$^{-1}$ after 100 cycles at 1.0 A g$^{-1}$ due to the hollow structure of NiS and conductive CNFs.177

![Figure 2.25 Synthesis of NiS@C nanofibers](image-url)

Figure 2.25 Synthesis of NiS@C nanofibers.177
In addition, much effort has been made to enhance the cycling performance of NiS\textsubscript{2} through combining it with carbon materials. Hou’s group encapsulated NiS\textsubscript{2} in bifunctional carbon to form NiS\textsubscript{2}@C rods wrapped in S/N-co-doped carbon,178 which delivered \(\sim580\) mA h g\(^{-1}\) after 100 cycles at 0.1 A g\(^{-1}\). Wen et al. prepared NiS\textsubscript{2}@CNFs by the electrospinning method with a capacity of 200 mA h g\(^{-1}\) at 2 A g\(^{-1}\).179 Zhu and co-workers reported NiS\textsubscript{2}@CoS\textsubscript{2}@N-doped CNTs synthesized by a co-precipitation method, which offered a capacity of 560 mA h g\(^{-1}\) over 250 cycles at 5 A g\(^{-1}\) due to the interconnected porous structure180.

\subsection*{2.4.4.8 SnS and SnS\textsubscript{2} anodes}

Low-cost tin-based sulfides are regarded as promising anodes for Na storage due to their high capacity (1022 mA h g\(^{-1}\) for SnS and 1136 mA h g\(^{-1}\) for SnS\textsubscript{2}).181 During the sodiation process, the interlayer spacing of SnS\textsubscript{2} can accommodate the transfer of Na+ ions with a three-phase conversion from hexagonal SnS\textsubscript{2} to orthorhombic-Na\textsubscript{15}Sn\textsubscript{4} via tetragonal Sn.182 In the case of SnS, the same multiple-phase reaction pathway was also proved from orthorhombic SnS to orthorhombic Na\textsubscript{15}Sn\textsubscript{4} via cubic Sn.183 To date, great efforts have been made to explore its potential as anode for SIBs.

Mitra’s group was the first to investigate SnS nanoparticles and found that they exhibited \(\sim500\) mA h g\(^{-1}\) at 125 mA g\(^{-1}\).184 Guo’s group found that SnS@graphene composite, originating from the annealing treatment of SnS\textsubscript{2}/graphene in argon, exhibited 492 mA h g\(^{-1}\) over 250 cycles at 810 mA g\(^{-1}\), which was ascribed
to the fact that there was a two-structural-phase transformation mechanism for SnS.185 This facilitated the structural stability of SnS/graphene composite. Following this, many examples of SnS/C composites were reported,186 such as with graphene, CNTs, and others. In addition, some SnS-based heterostructures, i.e., SnS/SnS\textsubscript{2}, SnS/SnO\textsubscript{2}, SnS/ZnS, SnS/SnSb, etc., have also been studied to boost the electrochemical performance through their built-in driving force for charge-transfer kinetics.187

Layered SnS\textsubscript{2} has 0.5899 nm interlayer spacing for Na storage.188 Qu et al. reported that a SnS\textsubscript{2}/rGO composite delivered 500 mA h g-1 after 400 cycles at 1 A g-1 due to the combined effects of the conductive rGO network and the wide interlayer spacing.189 Similar to the strategies used for SnS, many examples of SnS\textsubscript{2}/G composites have been reported. Other carbon materials have also been employed to buffer the volume changes of SnS\textsubscript{2} and improve its electrochemical performance,190 e.g., carbon nanospheres, CNTs, hollow carbon nanospheres, CNFs, and others. Some SnS\textsubscript{2}-based heterostructures (SnS\textsubscript{2}/MXene, SnS\textsubscript{2}/Sb\textsubscript{2}S\textsubscript{3}, SnS\textsubscript{2}/CoS\textsubscript{2}, SnS\textsubscript{2}/Mn\textsubscript{2}SnS\textsubscript{4}) have been constructed to improve the electrochemical performance of SnS\textsubscript{2} through speeding up the charge-transfer kinetics.182

2.4.4.9 Sb\textsubscript{2}S\textsubscript{3} anode

Sb\textsubscript{2}S\textsubscript{3} consists of many layer units191 and is regarded as a potential anode for SIBs due to its high theoretical capacity of 946 mA h g-1.192 Unfortunately, Sb\textsubscript{2}S\textsubscript{3} suffers from
unavoidable volume expansion and particle aggregation, which lead to poor cycling performance.193

To address the above problems, Yan’s group utilized an ionic liquid-assisted method to synthesize Sb\textsubscript{2}S\textsubscript{3}/rGO composite, in which Sb\textsubscript{2}S\textsubscript{3} nanorods were wrapped by rGO sheets. This hybrid could delivered 400 mA h g-1 after 100 cycles at 50 mA g-1 because the graphene prevented particle aggregation and buffered the volume expansion.194 Ji’s group synthesized Sb\textsubscript{2}S\textsubscript{3}@C nanorods, which offered capacity of 699.1 mA h g-1 after 100 cycles at 100 mA g-1.195

Apart from 1D morphology, some 3D Sb\textsubscript{2}S\textsubscript{3} materials have been reported. Zhang’s group prepared flower-like Sb\textsubscript{2}S\textsubscript{3} by the polyol reflux method, which delivered 835.3 mA h g-1 over 50 cycles at 50 mA g-1.196 Liu’s group reported Sb\textsubscript{2}S\textsubscript{3} hollow microspheres with capacity of 384 mA h g-1 over 50 cycles at 200 mA g-1.197 Recently, Qiao’s group prepared a multi-shell Sb\textsubscript{2}S\textsubscript{3} anode by using zeolitic imidazolate framework-8 (ZIF-8) as precursor, as shown in Figure 2.198 The multi-shell Sb\textsubscript{2}S\textsubscript{3} showed capacity of ~500 mA h g-1 after 50 cycles at 1 A g-1 due to its hierarchical structure.
Some Sb$_2$S$_3$-based heterostructures were claimed to improve Na storage.199 Yin’s group reported the synthesis of ZnS-Sb$_2$S$_3$@C polyhedra from ZIF-8 precursor, which could sustain a reversible capacity of 661.9 mA h g$^{-1}$ after 50 cycles at 100 mA g$^{-1}$.200 Wang’s group designed SnS$_2$/Sb$_2$S$_3$ heterostructures with rGO that showed capacity of 567 mA h g$^{-1}$ at 4 A g$^{-1}$, which was attributed to the improved Na$^+$ diffusion kinetics and electrical conductivity offered by the structure.201 Zhao’s group synthesized Sb$_2$S$_3$ nanorods/MoS$_2$ nanosheets to form core–shell heterostructures by a two-step hydrothermal method, which delivered ~560 mA h g$^{-1}$ over 100 cycles at 100 mA g$^{-1}$.202
2.4.4.10 Bi₂S₃ anode

Bismuth sulfide (Bi₂S₃) consists of anisotropic layers interlinked with Bi₄S₆ units. Bi₂S₃ features a two-step Na storage pathway, namely, conversion/alloying processes, with a theoretical capacity of 625 mA h g⁻¹. Due to its high density (7.39 g cm⁻³), Bi₂S₃ can achieve an extremely high volumetric capacity. Pristine Bi₂S₃ always suffers from bad cycling and rate performances, however, due to its irreversible phase conversion, large volume changes, and limited conductivity.

Sun’s group prepared Bi₂S₃ nanorods/N-doped graphene aerogel (Figure 2.27) as a flexible anode for SIBs. The aerogel showed ~ 650 mA h g⁻¹ at 62.5 mA g⁻¹, which was ascribed to the ability of the graphene matrix to alleviate the volume changes and enhance conductivity. Li and co-workers reported a bio-inspired Bi₂S₃-PPy yolk-shell composite, where PPy is polypyrrole, which exhibited ~600 mA h g⁻¹ at 0.2 C due to its unique structure.

Figure 2.27 Synthesis of Bi₂S₃/rGO composite.
2.4.5 Metal selenides

Metal selenides can be considered as promising anode materials since they have a wider crystal lattice and higher electrical conductivity than their oxide and sulfide counterparts. Moreover, they also have high bulk density, as well as excellent performance in terms of good reversibility and rate performance due to the low volume effect. Some selenides are discussed in the following part.

2.4.5.1 MoSe$_2$ anode

MoSe$_2$ stands out from various candidates as an attractive anode for SIBs, mainly due to its large interlayer spacing, small band gap, and high theoretical capacity (~422 mA h g$^{-1}$).209 Morales et al. investigated the structural changes in MoSe$_2$ during the sodiation process.210 MoSe$_2$ anode has relatively low electronic conductivity, however, and often suffers from large volume expansion, which limits its further application in SIBs. In order to address these issues, several useful strategies have been developed.211

Morphology control plays a crucial role in adjusting the electrochemical performance of MoSe$_2$. Kang’s group designed yolk-shell MoSe$_2$ microspheres prepared by the selenization process, which exhibited a capacity of 433 mA h g$^{-1}$ after 50 cycles at 0.2 A g$^{-1}$, which was attributed to the structure, which could buffer the large volume changes during cycling.212 Jiang’s group reported MoSe$_2$ nanospheres with a capacity of 416 mA h g$^{-1}$ after 200 cycles at 0.1 C.213
Hybridization with carbon could not only provide MoSe$_2$ with high conductivity, but also provided room to buffer the volume changes during the sodiation/desodiation processes. Zhang’s group reported a hierarchical MoSe$_2$/rGO composite with a reversible capacity of 430 mA h g$^{-1}$ after 200 cycles at 0.5 A g$^{-1}$, which is attributed to the synergistic effects between the MoSe$_2$ nanosheets and the rGO.214 Xie et al. reported that the porous MoSe$_2$/rGO composite displayed 445 mA h g$^{-1}$ over 350 cycles at 200 mA g$^{-1}$. 215 To further improve the conductivity of the entire electrode, Niu et al. prepared a MoSe$_2$/N,P-co-doped carbon nanosheets composite, 216 which could retain a capacity of 378 mA h g$^{-1}$ over 1000 cycles at 0.5 A g$^{-1}$. Zheng’s group anchored MoSe$_2$ nanosheets on N, P-doped graphene to form MoSe$_2$/N, P-G composite, which exhibited a capacity of ~200 mA h g$^{-1}$ at 10 A g$^{-1}$ due to the widened interlayer distance for facilitating Na$^+$ diffusion.217 The MoSe$_2$ undergoes the electrochemical process shown in Figure 2.28.
Figure 2.28 (a and c) Charge–discharge profiles; (b and d) In situ XRD patterns at different charge-discharge states of MoSe$_2$@C/N,P-rGO; (e) Schematic illustration of the proposed energy storage mechanism of MoSe$_2$@C/rGO at different stages.217

Liu et al. synthesized MoSe$_2$@hollow carbon nanospheres through a templating method, in which few-layer MoSe$_2$ nanosheets with expanded (002) planes (from 0.64 nm to 1.02 nm) were confined in the nanospheres.218 The hybrids exhibited ~501 mA
h g$^{-1}$ after 1000 cycles at 1 A g$^{-1}$. Another constraint on MoSe$_2$ anode for SIBs that can not be ignored is the “shuttle effect” of the intermediate reaction products, the polyselenides, which can diffuse to the electrolyte, causing loss of active materials and serious deterioration. To this end, Xie et $al.$ proposed that wrinkled MoSe$_2$ nanosheets sandwiched by a vertical graphene core and an N-doped carbon shell effectively suppressed the “shuttle effect”, so that the composite exhibited a capacity of 298 mA h g$^{-1}$ over 1000 cycles at 2.0 A g$^{-1}$.

2.4.5.2 WSe_2 anode

WSe_2 has a layered Se-W-Se sandwich structure with large interlayer spacing (0.65 nm), which makes it a potential anode for SIBs.220 Few studies have investigated the ability of WSe_2 to store sodium ions, however. Yang et $al.$ investigated WSe_2 nanoplates and found that they exhibited superior cycling performance and high rate capability.221 Based on the ex $situ$ XRD and Raman spectroscopy results, Na storage involves the alloying reaction and conversion reaction for WSe_2.

2.4.5.3 $TiSe_2$ and $NbSe_2$ anodes

Layered $TiSe_2$, with a large interlayer spacing of 0.601 nm, is expected to promote a reversible multi-step insertion/extraction processes for Na$^+$ in $TiSe_2$.222 Zhang et $al.$ explored the exfoliation of $TiSe_2$ via an ultrasonication- or grinding-assisted method. The exfoliated $TiSe_2$ showed a specific capacity of 147 mA h g$^{-1}$ at 0.1 A g$^{-1}$ for Na storage.223 $NbSe_2$ is formed via interactions between Se-Nb-Se and Se-Se, which is
convenient for the reversible intercalation of ions. Dai’s group found that NbSe$_2$ had a diffusion barrier of 0.086 eV for Na$^+$ and a theoretical specific capacity of 312 mA h g$^{-1}$ using first-principles calculations.224 Kim’s group reported NbSe$_2$ synthesized by the gas-phase solid state method, which exhibited a reversible capacity of 142.5 mA h g$^{-1}$ at 200 mA g$^{-1}$ after 100 cycles.225

\subsubsection*{2.4.5.4 FeSe$_2$ anode}

FeSe$_2$ has attracted attention for Na storage due to its environmental friendliness, low cost, and high conductivity.226 Chen’s group was the first to report FeSe$_2$ microspheres assembled from nanoctahedra as anode for SIBs,227 which displayed a capacity of 447 mA h g$^{-1}$ at 0.1 A g$^{-1}$. Zhao et al. synthesized ultra-small FeSe$_2$ nanoparticles that delivered a capacity of ~500 mA h g$^{-1}$ in ether-based electrolyte.228 Fan et al. reported core-shell FeSe$_2$@C hollow nanocubes (Figure 2.29), which exhibited a capacity of 212 mA h g$^{-1}$ after 3000 cycles at 10 A g$^{-1}$ and attributed this performance to its structural advantages and high conductivity.229 Ge et al. further studied FeSe$_2$ rods wrapped in N-doped C with a reversible capacity of 308 mA h g$^{-1}$ after 10000 cycles at 10.0 A g$^{-1}$.230 Most recently, An et al. synthesized a burr-globule-like FeSe$_2$/graphene hybrid by the hydrothermal method, which delivered a reversible capacity of 496.3 mA h g$^{-1}$ after 400 cycles at 2.5 A g$^{-1}$ due to the high pseudocapacitive contribution induced by its special structure.231
2.4.5.5 CoSe and CoSe$_2$ anode

Cobalt selenides have been well studied as anodes for SIBs due to their versatility and high intrinsic electrical conductivity.232 Zhang et al. synthesized yolk-shell CoSe@C dodecahedra, which could sustain a reversible capacity of 531.6 mA h g$^{-1}$ at 0.5 A g$^{-1}$ after 50 cycles.233 Jiang’s group confined ultrafine CoSe nanoparticles in N-doped carbon to form a composite with capacity of ~436 mA h g$^{-1}$ at 0.5 A g$^{-1}$ after 150 cycles. This superior performance is attributed to the combined effects of ultrafine CoSe and N-doped carbon nanosheets.234

CoSe$_2$ has been explored as a promising anode for SIBs, with the overall reaction of CoSe$_2$ + 4Na$^+$ + 4e$^{-}$ \leftrightarrow Co + 2Na$_2$Se by Chen’s group.235 The urchin-like CoSe$_2$ synthesized by the hydrothermal method delivered a high reversible capacity of 410 mA h g$^{-1}$ after 1800 cycles at 1 A g$^{-1}$, which was attributed to the influence of its stable ether-based electrolyte and the pseudocapacitive contribution. To further improve the cycling stability of CoSe$_2$ anodes, Cui et al. synthesized CoSe$_2$@N-C
nanofibers with a reversible capacity of 371.8 mA h g\(^{-1}\) after 500 cycles at 0.2 A g\(^{-1}\).\(^{236}\) Moreover, doping and morphology control are also key strategies to improve the electrochemical performance of CoSe\(_2\) electrodes. Lou’s group reported Cu-doped CoSe\(_2\) microboxes assembled from nanosheets with a reversible capacity of 492 mA h g\(^{-1}\), due to their unique porous structure and Cu-doping.\(^{237}\) Wang’s group synthesized core–shell ZnSe-N-doped C@CoSe\(_2\)-N-doped C from the ZIF-8@ZIF-67 precursor, which exhibited a reversible capacity of 308.5 mA g\(^{-1}\) after 150 cycles at 0.1 A g\(^{-1}\). This performance was attributed to the enhanced diffusion rates due to the interfacial effect.\(^{238}\)

2.4.5.6 NiSe\(_2\) anode

NiSe\(_2\) possesses a high theoretical capacity of 495 mA h g\(^{-1}\), which is based on the conversion reaction.\(^{239}\) The first-ever study of NiSe\(_2\) as anode material for SIBs was conducted by Kang’s group.\(^{240}\) Their porous NiSe\(_2\)/rGO nanofibers synthesized by an electrospinning/selenization process could deliver a reversible capacity of 486 mA h g\(^{-1}\) after 100 cycles at 200 mA g\(^{-1}\). In order to improve the cycling performance, Zhu et al. prepared NiSe\(_2\) octahedra by the hydrothermal method, and they showed long-term cycling stability (313 mA h g\(^{-1}\) after 4000 cycles at 5 A g\(^{-1}\)) and superior rate capability (175 mA h g\(^{-1}\) at 20 A g\(^{-1}\)),\(^{241}\) which benefited from the exposed facets and the pseudocapacitive behaviour of NiSe\(_2\). The Song group developed a layered Ni-hexamine framework as the precursor to prepare a 2D NiSe\(_2\)/N-rich carbon composite,\(^{242}\) which exhibited a high reversible capacity (410 mA h g\(^{-1}\) at 1 A g\(^{-1}\)) and
excellent rate capability (255 mA h g\(^{-1}\) at 10 A g\(^{-1}\)) due to the synergistic effects between the N-rich carbon and the NiSe\(_2\).

2.4.5.7 SnSe and SnSe\(_2\) anodes

Layered SnSe and SnSe\(_2\) undergo the conversion and alloying reaction mechanism, and they demonstrated high theoretical capacity (426 mA h g\(^{-1}\) for SnSe\(_2\)). Yang et al. reported a facile ball-milling method to prepare SnSe/rGO composite,\(^{243}\) which exhibited an enhanced reversible capacity of 590 mA h g\(^{-1}\) after cycling at 0.05 A g\(^{-1}\). Yuan et al. first developed a surfactant-free method for the phase-controlled synthesis of SnSe nanosheets,\(^{244}\) which exhibited a reversible capacity of 738 mA h g\(^{-1}\) and superior rate capability even at 40 A g\(^{-1}\). Zhang et al. adopted a hydrothermal method to prepare SnSe\(_2\)/rGO composites with a reversible capacity of 515 mA h g\(^{-1}\) after 100 cycles.\(^{245}\) The excellent performance of this SnSe\(_2\)/rGO composite is attributed to the combination of the layered structure of SnSe\(_2\) and the electrical conductivity of rGO. Ren et al. reported a cation-exchange strategy to synthesize SnSe nanoplates vertically grown on nitrogen-doped carbon (SnSe/NC, as shown in Figure 2.30),\(^{246}\) which exhibited the large capacity of 723 mA h g\(^{-1}\) at 25 mA g\(^{-1}\). This excellent capacity is attributed to the pseudocapacitive behaviour of SnSe/NC due to the fast electron/ion transfer facilitated by the strong electronic coupling of Sn-C bonding.
2.4.5.8 Sb_2Se_3 and Bi_2Se_3 anodes

Sb_2Se_3 undergoes the conversion and alloying reactions in its sodiation/desodiation processes, with a theoretical capacity of 670 mA h g$^{-1}$.²⁴⁷ Mai’s group fabricated a free-standing Sb_2Se_3 membrane via the hydrothermal method combined with a subsequent vacuum filtration treatment.²⁴⁸ The as-fabricated membrane delivered a reversible capacity of 289 mA h g$^{-1}$ after 50 cycles at 100 mA g$^{-1}$. To improve the performance, Ou et al. reported the solvothermal synthesis of hierarchical Sb_2Se_3/rGO hybrids,²⁴⁹ which exhibited a high reversible specific capacity of 682 mA h g$^{-1}$ at 0.1 A g$^{-1}$, good reversible capacity of 386 mA h g$^{-1}$ at 2.0 A g$^{-1}$, and excellent stability for 500 cycles. Fang et al. developed a template-engaged ion-exchange method for the synthesis of PPy-coated Sb_2Se_3 microclips,²⁵⁰ which exhibited a high specific capacity of 630 mA h g$^{-1}$ and excellent rate capability (486 mA h g$^{-1}$ at 2 A g$^{-1}$), which were due to their unique structure and composition.
Bi$_2$Se$_3$ has the similar sodiation/desodiation process to Sb$_2$Se$_3$. Xie et al. prepared Bi$_2$Se$_3$/C composites via a higher-energy ball milling (HEBM) approach. Owing to its high intrinsic conductivity and the positive effects of carbon, Bi$_2$Se$_3$/C achieved a high initial reversible capacity of 527 mA h g$^{-1}$ at 0.1 A g$^{-1}$. To further improve the Na storage performance of Bi$_2$Se$_3$, Zhou’s group synthesized the Bi$_2$Se$_3$/G composite with a two-step process, as shown in Figure 2.31, which delivered a high reversible capacity of 346 mA h g$^{-1}$. In summary, one of the most important methods to improve the performance of Sb$_2$Se$_3$ and Bi$_2$Se$_3$ is by enhancing their electric conductivity through hybridization with various kinds of carbon.

Figure 2.31 Two-step synthesis of Bi$_2$Se$_3$/G.

2.4.6 Metal phosphides

Metal phosphides have just been considered as anode materials for SIBs. A pulverization problem exists, however, just as in the above materials, which leads to
capacity fading. This section will provide an overview of the recent results on metal phosphide anodes for SIBs.

2.4.6.1 Sn_4P_3

Sn_4P_3 has attracted interest due to its theoretical volumetric capacity (6650 mA h cm$^{-3}$). Lee’s group was the first to report that Sn_4P_3 could deliver a reversible capacity of 718 mA h g$^{-1}$ after 100 cycles, and concluded that the amorphous phosphorus matrix could effectively confine the Sn particles to enable good performance.253 Yu’s group found that their yolk-shell $Sn_4P_3@C$ nanospheres synthesized by the template method could show a reversible capacity of 360 mA h g$^{-1}$ after 400 cycles at 1.5 C, which was attributed to the ability of the void space in the yolk-shell structure to accommodate the expansion of Sn_4P_3 during sodiation.254 Yin’s group255 synthesized a Sn_4P_3/graphene composite by a solution-based phosphorization reaction. The as-synthesized Sn_4P_3/graphene composite could present a reversible capacity of 656 mA h g$^{-1}$ after 100 cycles at 100 mA g$^{-1}$, owing to its porous structure and the synergistic effects between its components. Li’s group introduced TiC into Sn_4P_3 to achieve enhanced electrochemical performance.256 Moreover, Choi’s group realized improved performance of Sn_4P_3 anode through using fluoroethylene carbonate (FEC) and tris(trimethylsilyl) phosphite (TMSP) in the electrolyte.257
2.4.6.2 MP ($M = \text{Fe, Co}$)

FeP is easily prepared and low-cost, so it has been studied as an anode for SIBs. Chou’s group found that FeP synthesized by the ball-milling method could deliver a reversible capacity of 764.7 mA h g$^{-1}$, which was attributed to the buffering provided by the Fe matrix to alleviate the volume expansion.258 To improve the performance of FeP, Guo’s group reported that FeP nanorod arrays on carbon cloth that were synthesized by hydrothermal/transformation methods could deliver a reversible capacity of 829 mA h g$^{-1}$ after 100 cycles at 0.1 A g$^{-1}$, which was attributed to the short Na$^+$ diffusion pathways during the sodiation/desodiation processes.259

Yin’s group designed core-shell structured FeP@CoP phosphide microcubes assembled from graphene by phosphorizing Prussian blue.260 In this structure, the conductive graphene network could enhance the charge transfer kinetics, and thus, the optimized sample could maintain a reversible capacity of 456.2 mA h g$^{-1}$ after 200 cycles at 100 mA g$^{-1}$, which was attributed to the core-shell structure, which could provide enough room for volume changes as well as short Na$^+$ diffusion paths. Kang’s designed PPy encapsulated CoP nanowires grown on carbon paper (CP) to form core-shell CoP@PPy/CP.261 The optimized structure played a role in enhancing the charge transfer and accommodating the volume change, so that the sample could show an areal capacity of 0.443 mA h cm$^{-2}$ after 1000 cycles at 1.5 mA cm$^{-2}$. Research on sodium storage in CoP is just beginning. More attention should be paid in future.
2.4.6.3 CuP$_2$ anode

CuP$_2$, similar to FeP, has a potential advantage as an anode due to the presence of metallic Cu nanoparticles after the sodiation of CuP$_2$, which could enhance the electrochemical alloying of P with Na$^+$ due to its high conductivity. Li’s group was the first to study CuP$_2$ as a potential anode for SIBs, which could exhibit a reversible capacity of \sim430 mA h g$^{-1}$ after 30 cycles at 150 mA g$^{-1}$. Yu’s group designed CuP$_2$ nanoparticles encapsulated by cross-linking hollow carbon sheets, which delivered a reversible capacity of \sim410 mA h g$^{-1}$ after 200 cycles at 80 mA g$^{-1}$. The cross-linked hybrid structure was obtained through two steps involving the polymerization of dopamine hydrochloride and the carbonization of the composite, as shown in Figure 2.32. This hybrid structure endowed CuP$_2$ with good electrochemical sodium storage performance. Recently, Wu’s group encapsulated CuP$_2$ nanoparticles int graphene networks, which could deliver a reversible capacity of 804 mA h g$^{-1}$ at 100 mA g$^{-1}$. In summary, the hybrids with carbon will be promising as CuP$_2$-based anodes.
Figure 2.32 (a and b) Synthesis and reversible reactions with Na\(^+\) ions of the composite and bare CuP\(_2\).\(^{263}\)
CHAPTER 3 EXPERIMENTAL PROCEDURE

In this doctoral work, I mainly synthesized carbon-based nanofibers by the electrospinning method. Moreover, hydrothermal synthesis was also used to obtain the WO$_3$ nanosheets and Fe$_2$O$_3$ nanoparticles, which were further electrospun into polymers for the final products, i.e. WS$_2$@N/S-C and Fe$_7$S$_8$@N/S-C. To determine the structures and components of the obtained composites, these products were investigated by many characterization techniques, such as SEM, TEM, XRD, BET, XPS, and others. Finally, these prepared composites were prepared into electrodes in batteries for electrochemical measurements. The whole experimental process is shown in Figure 3.1.

Figure 3.1 Outline of the experimental procedures and characterization techniques used in this thesis.
3.1 Chemicals and Materials

Table 3.1 lists the main chemicals used in this thesis, with each entry including the chemical, formula, purity, and suppliers.

Table 3.1 Chemicals employed in this thesis

<table>
<thead>
<tr>
<th>Chemicals</th>
<th>Formula</th>
<th>Purity (%)</th>
<th>Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyacrylonitrile</td>
<td>(\text{CH}_2\text{CH}_2\text{CN})</td>
<td>MW 150,000</td>
<td>Sigma Aldrich, USA.</td>
</tr>
<tr>
<td>Polymethylmethacrylate</td>
<td>([\text{C}_5\text{H}_8\text{O}_2]_n)</td>
<td>MW 35,000</td>
<td>Shanghai Aladdin Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Acetylene black</td>
<td>C</td>
<td>Battery grade</td>
<td>Shenzhen Poxon Machinery Technology Co., Ltd.</td>
</tr>
<tr>
<td>CR2025 type coin cells</td>
<td>N/A</td>
<td>N/A</td>
<td>China</td>
</tr>
<tr>
<td>N, N-dimethylformamide</td>
<td>(\text{C}_3\text{H}_7\text{NO})</td>
<td>99.5</td>
<td>Sinopharm Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Carboxymethyl cellulose</td>
<td>CMC</td>
<td>Battery grade</td>
<td>Shenzhen Poxon Machinery Technology Co., Ltd.</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>99.5%</td>
<td>Tianjin Kemiou Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C₂H₆O</td>
<td>99.5%</td>
<td>Sinopharm Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Copper foil</td>
<td>Cu</td>
<td>Battery grade</td>
<td>Shenzhen Poxon Machinery Technology Co., Ltd.</td>
</tr>
<tr>
<td>Sodium tungstate dihydrate</td>
<td>Na₂WO₄·2H₂O</td>
<td>99.99% (metals basis)</td>
<td>Shanghai Aladdin Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Sodium metal</td>
<td>Na</td>
<td>99.7%</td>
<td>Shanghai Aladdin Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Tetrafluoroboric acid</td>
<td>HBF₄</td>
<td>40 w%</td>
<td>Energy Chemical Co., Ltd.</td>
</tr>
<tr>
<td>Iron chloride, ferric chloride</td>
<td>FeCl₃·6H₂O</td>
<td>Chemically Pure</td>
<td>Sinopharm Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Pure ethanol</td>
<td>C₂H₅OH</td>
<td>Analytically pure</td>
<td>Tianjin Zhi Yuan Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Sodium perchlorate</td>
<td>NaClO₄</td>
<td>Battery grade</td>
<td>Suzhou Qianmin Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Material</td>
<td>Chemical Formula</td>
<td>Grade</td>
<td>Supplier</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Ethylene carbonate</td>
<td>C₃H₄O₃</td>
<td>Battery</td>
<td>Suzhou Qianmin Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Diethyl carbonate</td>
<td>C₅H₁₀O₃</td>
<td>Battery</td>
<td>Suzhou Qianmin Chemical Reagent Co., Ltd.</td>
</tr>
<tr>
<td>Fluoroethylene carbonate</td>
<td>C₃H₃FO₃</td>
<td>Battery</td>
<td>Suzhou Qianmin Chemical Reagent Co., Ltd.</td>
</tr>
</tbody>
</table>

3.2 Materials Preparation

The anode materials in this doctoral work were synthesized by different methods, including the hydrothermal method and electrospinning method. These experimental methods and procedures are introduced in detail in this part.

3.2.1 Electrospinning method

The electrospinning method is a method to prepare nanofiber materials by applying a high voltage electrostatic field. As shown in Figure 3.2 a, the electrospinning device is composed of the collector, the syringe and the high voltage power source. The high voltage power is linked to the syringe and the collector, which is usually set as 10 to 30 kV; the distance between the collector and the syringe is generally set as 15-30 cm. For preparing the polymer solution, the material is first dissolved in a specific solvent, and then the resulting solution is added to a syringe. Due to the high voltage electrostatic field, the solution in the syringe will gradually be ejected and located at
the collector. The electrospinning process is affected by many factors, such as the precursor material, the shape of the collector, the applied high voltage, the composition and concentration of the polymer solution, the spinning distance, etc., which will all affect the diameter, morphology and structure of the final product. Therefore, electrospinning is one of the effective methods for preparing nanofiber materials because of its low cost, simple equipment and controllable morphology of the fibers.

![Schematic diagram of the electrospinning device.](image)

Figure 3.2 Schematic diagram of the electrospinning device.

To obtain the carbon-based composites or oxides, the obtained polymer nanofibers should be further annealed in non-oxidizing atmospheres or air. In this thesis work, we prepared the S/N-C nanofibers, WS$_2$@S/N-C nanofibers, and Fe$_7$S$_8$@S/N-C nanofibers by the electrospinning method combined with other techniques.
3.2.2 Hydrothermal method

Hydrothermal synthesis is a low-cost wet-chemical process to synthesize crystal materials and nanomaterials in a sealed and isolated solution-based system at high temperature (100-1000 °C) and high pressure (1 MPa-1 GPa). The reaction system is a stainless-steel autoclave with stainless-steel cover and polytetrafluoroethylene (PTFE) internal cups, as shown in Figure 3.3. Usually, 2/3 of the volume of the PTFE cup is the precursor volume limit to ensure safety. The hydrothermal method exhibits obvious advantages compared with conventional wet-chemical methods in preparing crystalline materials and nanomaterials. Because the compositions, morphologies, and crystal structures of the prepared materials can be easily adjusted through changing the reaction conditions, such as the condensation of the precursors, kinds of solvents, the reaction temperature, reaction time, et al. Therefore, synthesizing novel phases, new complexes, and materials with different morphologies can be obtained by using the hydrothermal method.

Figure 3.3 Hydrothermal autoclave (left) with a cross-sectional view (right).
In this thesis work, the WO₃ nanosheets and Fe₂O₃ nanoparticles were synthesized by hydrothermal methods.

3.3 Characterization Techniques

3.3.1 X-ray diffraction

X-ray diffraction (XRD) is a phase-identification technique to characterize and identify the crystalline structure, the crystallite size (grain size), and the preferred orientation of crystalline materials. The technique is based on the constructive interference of monochromatic X-rays in the crystalline material. Figure 3.4 illustrates the principle of XRD. When X-rays strike crystals, the crystalline substances act as three-dimensional diffraction gratings. The X-ray will be scattered by each set of lattice planes at a unique angle, which is called elastic scattering. The patterns of the scattered X-ray waves have a characteristic relationship with the given crystal materials, which can be determined by Bragg's law:

\[2d \sin \theta = n \lambda, \]

where \(d \) is the distance between lattice planes, \(\theta \) is the angle of incidence with the lattice plane, \(n \) is any integer, and \(\lambda \) is the X-ray wavelength of the incident beam. Since, each crystal materials has their own unique lattice planes, there will be peaks at specific angles. Therefore, the phases and crystal structures can be identified through these unique X-ray peaks at different angles.
In this thesis work, all the XRD measurements were performed on a Rigaku D/Max-2500 with Cu Kα radiation (\(\lambda = 1.5406 \, \text{Å} \)). Moreover, the working voltage and current were set as 40 kV and 25 mA, respectively.

3.3.2 Raman spectroscopy

When laser light from a monochromatic light source is employed to irradiate the sample, elastic scattering (Rayleigh scattering) and inelastic scattering (Stokes and anti-Stokes Raman scattering) will occur. The scattered light of the elastic scattering has the same wavelength with the excitation light, while the scattered light of the inelastic scattering has a shorter or longer wavelength compared with the excitation light. This energy shift is collectively referred as a Raman effect, which is the result of the interaction of photons with the molecular vibrations, phonons, or other excitations of the sample to provide characteristic shifts in laser energy. The energy shift is detected and recorded in the form of frequency or wavelength, and the spectrum contains chemical and structural information on the sample materials. The Raman spectra of the samples in this thesis work were obtained on a DXR microscope.
(Thermo Fischer DXR) with a 532 nm laser as the excitation resource. *In-situ* Raman spectroscopy is a kind of Raman spectroscopy, but it is more sensitive than the Raman spectroscopy, which can monitor the structural changes of electrode materials during cycling process to speculate the reaction mechanism of redox process.

3.3.3 Fourier transform infrared spectroscopy

Fourier transform infrared spectroscopy (FTIR) is an adsorption spectrum showing molecular vibrations, which can be used to identify the molecular functional groups properties of organic materials. The absorption, emission, photoconductivity, or Raman scattering in the infrared spectrum of a material can be collected. The chemical bonds in the molecules of the sample material can be detected from the spectral pattern of molecular absorption and transmission. In this thesis work, the FTIR spectra in this thesis work were recorded on a Nicolet-460. For measurement, the sample materials were mixed with potassium bromide (KBr) powder, which acts as the background, and pressed in a die with a barrel.

3.3.4 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a surface-sensitive technique to test the elemental compositions, chemical states and electronic states of the surface of materials. When the sample is irradiated with X-rays, the inner electrons or valence electrons of the atom or molecule will be stimulated and escaped from the surface of the samples. The electron excited by a photon is called a photoelectron. Measuring the
energy of photoelectrons can obtain the information about the sample. XPS usually tests: (1) What elements and the quantity of those elements exist within sample surface. (2) Solid surface analysis: including the chemical composition or elemental composition of the surface, the atomic valence state, the surface energy state distribution, the electron cloud distribution of the surface electrons and the energy level structure. (3) Structure of the samples: the chemical shift of the internal electron binding energy can be accurately measured to provide information about chemical bonds and charge distribution. The XPS measurement in this thesis work was performed on an Escalab 250Xi.

3.3.5 Thermogravimetric analysis

Thermogravimetric analysis (TGA) is a thermal analysis method to study the thermal stability and composition of materials according to the weight loss or gain with increasing temperature. TGA depends on a function of temperature or time. The precise weight changes can be caused by decomposition, oxidation, or loss of volatiles (such as moisture). Through these changes, the composites of the measured sample can be calculated. The TGA performance in this thesis work was evaluated on a SDTQ600.

3.3.6 BET measurement

Brunauer-Emmett-Teller (BET) analysis is used for evaluating the specific surface area and pore size distribution of materials, which is based on a theory that deals with
the physical adsorption of gas molecules on a solid surface. During the BET test, the sample was put into a system filled with N₂ gas, and the surface of the material is physically adsorbed at a liquid nitrogen temperature. When the physical adsorption is in equilibrium, the specific surface area of the sample can be calculated by measuring the adsorption pressure at the equilibrium and the flow rate of the adsorbed gas to determine the amount of monolayer adsorption of the material. The Brunauer-Emmett-Teller (BET) surface areas of samples in this thesis work were measured on a Tristar 3020.

3.3.7 Scanning electron microscopy

Scanning electron microscopy (SEM) is a type of electron microscope to observe the surface morphology of the sample. When using a very narrow electron beam to scan the sample, various signals are generated by the interaction of the electron beam and the sample, including secondary electrons (SE), back-scattered electrons (BSE), characteristic X-rays, specimen currents under illumination, and transmitted electrons. We can collect these signals (mainly secondary electron signal) to get some information on the morphology, composition and other properties of the sample surface, such as electrical conductivity. The high-resolution images of a sample surface can be obtained to observe details under 1 nm in size.

Usually, SEM is equipped with some other detectors, such as energy-dispersive X-ray spectroscopy (EDS, EDX, or XEDS). EDS is an analytical technique to detect the
elemental analysis or chemical characteristics of a sample. Its characterization capabilities rely on an interaction between some source of X-ray excitation and the sample, because each element has a unique atomic structure, allowing a unique set of peaks on its X-ray spectrum. In this doctoral work, the SEM images were collected on a Helios Nanolab G3UC.

3.3.8 Transmission electron microscopy

Transmission electron microscopy (TEM) is a microscopy technique to obtain images and other information when an accelerated and concentrated electron beam passes through a very thin sample. The electron reacts with atoms in the sample to change direction, resulting in solid angle scattering. The size of the scattering angle is related to the density and thickness of the sample, so that images of different brightness and darkness can be formed. Due to the short wavelength of the electron, the resolution of the TEM is much higher than that of the optical microscope, which can reach 0.1 to 0.2 nm and the magnification is tens of thousands to millions of times. Therefore, the fine structure of the sample can be observed using TEM, and even a structure of only one column of atoms can be observed, which is tens thousands of times smaller than the smallest atomic structure observed by an optical microscope. In this doctoral work, the TEM observations were carried out on a JEOL 2011 TEM (200 keV).
3.4 Electrode Preparation and Coin-cell Assembly

The cells were assembled as Figure 3.5, with their main components of anode, separator, cathode, and electrolyte. The electrodes usually consist of the electrode material (active material), a conductive additive, and a binder in a certain ratio. These are mixed in a solvent (water or organic solvents) to form a slurry. The slurry is further spread on metal foil (aluminium for the cathode and copper foil for the anode), and then dried at a high temperature in vacuum. In this thesis, the active materials were used for the anode, and acetylene black and carboxymethyl cellulose (CMC) were the conductive additive and binder. The weight ratio of active material to acetylene black to CMC was set to 8:1:1. The mass loading of the active material was ~1 mg cm$^{-2}$.

![Figure 3.5](image)

Figure 3.5 Stacking sequence of components of a coin cell.
In this thesis, the electrochemical performances of the active materials were evaluated using 2025 coin-type half cells. Before assembling the cells, the electrode needed to be cut into discs of 12 mm in diameter as the working electrode. The working electrode, Na metal as the counter electrode, and glass fiber as the separator were assembled with the electrolyte in an Ar-filled glovebox. Here, the electrolyte was 1 M NaClO$_4$ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (v/v = 1:1) with 5 wt% fluoroethylene carbonate (FEC) as additive.

3.5 Electrochemical Measurements

3.5.1 Cyclic voltammetry tests

Cyclic voltammetry (CV) is a useful electrochemical research method to study the nature, mechanism and kinetic parameters of electrode reactions. The method controls the electrode potential at different scan rates, and scans one or more times with a triangular waveform. Different reduction and oxidation reactions can alternately occur on the electrode within the potential range, and the current-potential curve is recorded. According to the shape of the curve, the degree of reaction reversibility of the electrode, the possibility of intermediate or formation of a new phase can be judged. CV curve is often used to measure electrode reaction parameters, determine reaction mechanism, and observe what and how reactions can occur within the entire potential sweep range. In this thesis work, the CV measurements were carried out on a CHI660E electrochemical workstation.
3.5.2 Galvanostatic charge-discharge

The galvanostatic charge and discharge profiles are used for characterizing the redox processes of rechargeable cells during various cycles. When the battery is discharged or charged, its working voltage always changes with the continuation of time. The curve drawn by the operating voltage and discharge/charge time or capacity is called the discharge/charge characteristic curve. The curve is flat, indicating that the operating voltage of the battery is stable. Measuring the discharge/charge curve of the battery is one of the basic methods for studying the electrochemical performance of the battery. According to the discharge/charge curve, it can be judged whether the battery performance is stable, the maximum current allowed by the battery during stable operation, and the information for the potential vs. capacity or potential and current vs. time plots. In this thesis work, the galvanostatic charge/discharge tests were carried out on a battery test system (Land CT2001A).

3.5.3 Electrochemical impedance spectroscopy

Electrochemical impedance spectroscopy (EIS) is to measure the inner resistance of cells to study the dynamics and mechanism of electrode material. Normally, the EIS spectrum consists of a semicircle at high-frequency and a linear tail at low-frequency. The semicircle is attributed to the charge transfer resistance, reflecting the kinetic processes and the double-layer capacitance. The linear tail is related to the diffusion of alkali ions in the electrode materials. Moreover, EIS can measure the alkali ion
diffusion and apparent energy activation of the electrode. In this thesis, EIS data were collected on a CHI660E electrochemical workstation.

3.6 Calculation Methods

Density functional theory (DFT) is a quantum mechanical method for studying the electronic structure of multi-electron system. DFT was performed using the Vienna Ab-initio Simulation Package (VASP) based on the frozen-core projector augmented wave (PAW) method. The exchange correlation functional is based on the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) functionals. The plane wave basis had the cut-off energy of 520 eV. The convergence criteria were set to 10^{-5} eV and 0.02 eV Å$^{-1}$ for the energy change and atomic force, respectively. The DFT-D3 method is invoked by setting the van der Waals correction (IVDW) with the value of 11. The surface structure was set with a 15 Å vacuum layer to avoid interaction between adjacent images.
CHAPTER 4 S/N-DOPED HIGH-CAPACITY MESOPOROUS CARBON ANODE FOR NA-ION BATTERIES

4.1 Introduction

Na-ion batteries (SIBs), as one of the most promising alternatives to commercial Li-ion batteries (LIBs), have attracted great attention for grid-scale energy storage systems because of the abundance and low-cost of sodium (Na) and its similar physical and electrochemical properties to lithium.265-270 The larger radius of the Na+ ion than that of Li+ ion, however, reduces the mobility of Na+ in various electrodes and at the electrode/electrolyte interface, which limits the rate performance and cycling life of SIBs. Therefore, it is still highly desirable to explore new anode materials for SIBs. Heteroatom doped carbonaceous materials,271-277 alloys,278-282 metal oxides/sulfides,283-286 and their composites287-289 have been investigated as anode materials for SIBs. Nevertheless, the large volume expansion of alloys and metal oxides/sulfides during sodiation and the correspondingly low capacity of titanates severely restrict their actual applications. As a result, low-cost carbon-based materials with various structures are the most promising anode materials for SIBs.290

It is well known that the intercalation of Na+ into graphite depends on electrolyte solvents. Diglyme-based electrolytes with narrow wide electrochemical window demonstrated that the co-intercalation phenomena of ternary graphite intercalation compounds could enable the sodium storage within the graphite.291-294 However, graphite cannot accept Na+ ions in traditional carbonate electrolytes with wide
electrochemical window because of the inadequate interlayer spacing for Na$^+$ intercalation.283 Although the capacity of graphite has been improved in carbonate electrolytes by optimizing its structure,295-297 it still has a low initial Coulombic efficiency and a limited cycling performance. Therefore, to overcome these drawbacks, heteroatom (such as N, S, B, P) doped into carbon has been reported to be an effective method to change the physical and chemical properties of carbon materials by introducing more defect sites and increasing the surface area.272, 298-301

Carbon materials usually have a capacitive charge storage mechanism that works by absorbing Na$^+$ ions into the voids or on the defect sites of carbon materials,302 which can offer long cycling performance and superior rate capability because of the fast Na$^+$ transport on the carbon/electrolyte interface.

In this work, porous carbon nanofibers doped with high populations of N and S atoms (S/N-C) were prepared. The nitrogen and sulfur in the S/N-C nanofibers not only enhances the electronic conductivity,303-306 but also provides more active sites to increase the capacitive storage. Moreover, numerous meso/micropores and channels in the S/N-C nanofibers were obtained by decomposing polymethylmethacrylate (PMMA) in the precursor at high temperature, which increases the contact area with the electrolyte to facilitate the adsorption of Na$^+$ ions and shortens the Na$^+$ diffusion path. The S/N-C nanofibers displayed a high reversible capacity of 552.5 mA h g$^{-1}$ at a current density of 0.1 A g$^{-1}$, excellent cycling stability (335.8 mA h g$^{-1}$ after 800 cycles at 5 A g$^{-1}$ with a capacity retention of 94.5 %, calculated based on the 2nd capacity), and superior rate capability (333.4 mA h g$^{-1}$ at 5 A g$^{-1}$).
4.2 Experimental Section

Synthesis of porous S/N-C nanofibers: The porous S/N-C nanofibers were synthesized by an electrospinning method, followed by a sulfidation treatment. 0.327 g polyacrylonitrile (PAN) and 0.327 g PMMA were separately dissolved in 3 ml N,N-dimethylformamide (DMF) at 60 °C with vigorous stirring for 1 h. Then, the two transparent solutions were mixed and stirred vigorously at 60 °C for another 4 h to obtain a homogeneous solution. The obtained mixture was ejected into a 10 ml syringe with a single-nozzle (diameter: 0.6 mm). The applied voltage and the feeding rate for electrospinning were 16 kV and 0.3 ml h⁻¹, respectively. The distance between the nozzle and collector is set to be 20 cm. The nanofibers were collected from the collector plate after electrospinning and stabilized at 60 °C for 12 h in a vacuum oven. The obtained nanofibers were stabilized at 230 °C for 2 h in air, and further carbonized with sulfur in a vacuum-tight tube by annealing the mixed nanofiber/sulfur (1:5 by weight) in a quartz boat at 500 °C for 3 h. The sample was annealed in Ar atmosphere at 230 °C for 2 h to remove the residual sulfur and obtain the final S/N-C nanofibers. Here, the sulfur doping in the vacuum-tight tube could guarantee the high doping amount of sulfur into carbon nanofibers. Nitrogen-doped carbon (N-C) nanofibers were prepared by stabilization at 230 °C in air, followed by carbonizing the nanofibers at 500 °C for 3 h in vacuum.

Material characterization: Powder X-ray diffraction (PXRD) was used to characterize the sample structure. The surface structure and chemical states of samples were measured by X-ray photoelectron spectroscopy (XPS), Fourier
transform infrared (FT-IR) spectroscopy and Raman spectrum. The morphology was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) equipped with an energy-dispersive X-ray analyser (EDX) that can be used to determine the element distribution. Elemental content analysis was conducted by CHNS/O elemental analyser. The surface area was determined via the Brunauer-Emmett-Teller (BET) technique.

Electrochemical measurements: CR2025 half-cells were assembled in an Ar-filled glove box for electrochemical measurements of the N-C and S/N-C samples. The electrodes were prepared by mixing the active materials, acetylene black, and carboxymethyl cellulose (CMC) in a weight ratio of 8:1:1 with a mixed solvent of ethanol and distilled water (3:2 by volume) to form a slurry. The resultant slurry was coated on Cu foil, dried in a vacuum oven at 60 °C overnight, and then cut into discs with a diameter of 12 mm. The mass loading of the active material is about 1 mg cm\(^{-2}\). Sodium metal and glass fibers were used for the counter electrode and separator, respectively. 1 M NaClO\(_4\) in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 by volume), along with 5% fluoroethylene carbonate (FEC), was the electrolyte. The cells were cycled between 0 and 3 V at room temperature.

Calculation details: The density functional theory (DFT) calculations were performed with the Vienna Ab-initio Simulation Package (VASP).\(^{309, 310}\) The interactions between core and valence electrons were described using the frozen-core projector-augmented wave (PAW) method.\(^{311-313}\) The exchange-correlation function was calculated by the Perdew-Burke-Ernzerhof generalized gradient approximation
(PBE-GGA) method. The plane wave basis was used with the energy cut-off set to 350 eV. The convergence criteria of 10^{-5} eV and 0.02 eV Å$^{-1}$ were adopted for the total energy calculation. The so-called climbing image nudged elastic band method (cNEB) was employed to study the diffusion properties of Na$^+$. The adsorption energy (E_{ad}) of a Na ion on the surface of S/N co-doped carbon was calculated according to the following equation:

$$E_{ad} = E_{(S/N-C + Na)} - E_{(S/N-C)} + E_{Na}$$

Where $E_{(S/N-C + Na)}$, $E_{(S/N-C)}$, and E_{Na}, are the total energies of one Na$^+$ adsorbed at the surface of S/N-C, the clean surface of S/N-C, and one Na atom in the same slab, respectively.

4.3 Results and Discussion

4.3.1 Structure and morphology

![Figure 4.1](image)

Figure 4.1 (a) XRD patterns and (b) Raman spectra of sulfur, N-C and S/N-C samples.

The two broad peaks in the X-ray diffraction (XRD) patterns (**Figure 4.1 a**) correspond to the (002) and (100) diffractions of carbon materials, indicating the
amorphous nature of the N-C and S/N-C samples. No peaks related to sulfur S_8 were observed in the S/N-C sample. The larger interlayer distance (3.621 Å) of the S/N-C sample than that of carbon (3.481 Å) facilitates the insertion/extraction of Na^+ ions and results in improved electrochemical performance. Figure 4.1 b shows the Raman spectra of commercial sulfur, N-C and S/N-C nanofibers. The sulfur shows three typical peaks below 500 cm$^{-1}$, which correspond to the vibration of S_8. The N-C sample only exhibits two major peaks at 1350 and 1580 cm$^{-1}$, corresponding to the disorder induced D band and the graphitic G band, respectively. Two additional peaks at 298 and 460 cm$^{-1}$ in the S/N-C sample are related to the C-S and S-S stretching, indicating the disordered distribution of C and S atoms. Moreover, there are no typical peaks of S_8 in the S/N-C Raman spectrum, which agrees well with the XRD results.

Figure 4.2 (a) XPS spectra of N-C and S/N-C samples; high-resolution XPS spectra of (b) C 1s, (c) N 1s, and (d) S 2p for the S/N-C sample; high-resolution XPS spectra of (e) C 1s, and (f) N 1s for the N-C sample.

XPS measurements were carried out on the S/N-C and N-C samples to investigate their composition and surface chemical structure (Figure 4.2). There are two peaks at
165 and 229 eV in the XPS spectrum of the S/N-C sample (Figure 4.2 a), which are assigned to S 2p and S 2s, respectively. The three peaks at 284.6, 286.3, and 288.8 eV for C 1s in the S/N-C sample (Figure 4.2 b) are attributed to C-C, C-S/C-N, and C=O groups, respectively, verifying the existence of S- and N- containing functional groups. The content of N in N-C nanofibers is confirmed to be 17.36% by element analysis. However, the content of N in S/N-C nanofibers is decreased to 12.59% when high sulfur content (27.95%) exists in S/N-C nanofibers. The C 1s spectrum of the N-C sample (Figure 4.2 e) shows a similar result to that of the S/N-C sample. The high-resolution XPS spectrum of N 1s in the S/N-C sample (Figure 4.2 c) is fitted into three peaks located at 398.2, 399.9, and 401.2 eV, which are assigned to pyridinic N, pyrrolic N, and graphitic N doped into the S/N-C sample, respectively. The doped nitrogen could improve the electronic conductivity of the carbon nanofibers by imposing an electron donor effect. Compared with the N 1s spectrum of the N-C sample (Figure 4.2 f), the content of graphitic N in S/N-C sample was increased from 3 to 5.4%, while the content of pyridinic N decreased from 60 to 57.6%. The introduction of sulfur could promote the transformation of pyridinic N to graphitic N. The S 2p spectrum of the S/N-C sample in Figure 4.2 d can be deconvoluted into four peaks, i.e., C=S at 161.7 eV, S 2p3/2 at 163.5 eV, S 2p1/2 at 164.8 eV, and S=O at 168 eV. The existence of C=S bonds confirms the successful doping of S into carbon.
Further structural information on the N-C and S/N-C samples was provided by FT-IR spectroscopy, as shown in Figure 4.3. Compared with the N-C sample, the S/N-C sample exhibited three relatively weak peaks at 513, 670, and 939 cm\(^{-1}\). The peaks at 513 and 670 cm\(^{-1}\) correspond to S-S stretching and the C-S stretching, respectively. The peak at 939 cm\(^{-1}\) corresponds to the breathing of a ring with a C-S bond. Thus, these peaks verify the formation of C-S and S-S bonds after the sulfurization reaction, which is consistent with the reported Raman results.\(^{319}\)
Figure 4.4 (a and b) SEM images of S/N-C nanofibers and N-C nanofibers; (c) high-magnification SEM image of S/N-C nanofibers; (d) low-magnification and (e) high-magnification TEM images of S/N-C nanofibers; (f) element mapping of the part of a S/N-C nanofiber.

The morphology of the S/N-C and N-C samples was characterized by SEM and TEM (Figure 4.4). The S/N-C nanofibers (Figure 4.4 a) have a diameter of ~ 200 nm and a rough surface due to the sulfidation treatment; the reaction of sulfur with carbon results in more defects and a higher surface area. The N-C nanofibers, however, show a relatively smooth surface (Figure 4.4 b). Some meso-/micro-pores inside the individual nanofibers (Figure 4.4 c) are ascribed to the decomposition of PMMA at high temperature. In contrast, the PAN is fully transformed to carbon, resulting in a continuous fiber morphology. These results indicate that the PMMA mainly stayed inside the fibers during electrospinning process while the PAN as the framework was continuously distributed throughout the whole nanofiber. Some isolated hollow cores existed along with the whole nanofibers (Figure 4.4 d), which could sufficiently
shorten the diffusion paths of Na+ ions and facilitate electrolyte permeation into the entire structure. The high-magnification TEM image (Figure 4.4 e) confirms the amorphous structure of the S/N-C nanofibers, and the energy dispersive spectroscopy (EDS) elemental mapping (Figure 4.4 f) indicates a homogeneous distribution of C, N, and S elements in the S/N-C nanofibers. Moreover, the surface areas of the N-C and S/N-C nanofibers were analyzed by nitrogen adsorption/desorption isotherms (Figure 4.5): the S/N-C nanofibers (16.1 m2 g-1) exhibit a higher specific surface area than the N-C nanofibers (7.8 m2 g-1).

![Figure 4.5](image)

Figure 4.5 Nitrogen adsorption/desorption isotherms of N-C and S/N-C nanofibers.

4.3.2 Electrochemical characterization

Figure 4.6 shows the first three cyclic voltammetry (CV) curves of the N-C and S/N-C electrodes at 0.1 mV s-1. A large and broad cathodic peak for the N-C electrode that appeared below 0.5 V (Figure 4.6 a), which is related to solid-electrolyte interphase (SEI) formation, disappeared after the 1st cycle; the weak cathodic peak at
1.9 V is attributed to the reaction between metallic Na and the functional groups on the carbon surface. The redox peaks at 0 and 0.1 V correspond to the reversible insertion/extraction of Na$^+$ ions into/out of the porous carbon nanofibers. The hysteresis can be ascribed to the defect structure of the carbon materials, as reported for LIBs. The CV curves of S/N-C electrode (Figure 4.6 b) show two more redox couples at 1.8/2.2 V and 1.2/1.85 V, which can be attributed to the stepped redox reactions between Na$^+$ and S in S/N-C electrode. These results indicate that the bonded S is electrochemically active and can react with Na to improve the capacity of carbon.

Figure 4.6 Electrochemical performance of N-C and S/N-C electrodes. (a-b) The first three CV curves at 0.1 mV s$^{-1}$; (c-d) The charge-discharge profiles at 0.1 A g$^{-1}$; (e) Cycling performance at 0.1 A g$^{-1}$; (f) Rate capability at various current densities; (g) Long cycling performance of S/N-C at 5 A g$^{-1}$.
The charge-discharge profiles for the first 3 cycles of N-C and S/N-C electrodes are shown in Figure 4.6 c and d. The N-C electrode delivered an initial discharge capacity of 390.9 mA h g⁻¹ at 0.1 A g⁻¹ with an initial Coulombic efficiency of 55.6%. The low Coulombic efficiency is ascribed to the irreversible reaction between Na and the functional groups in the N-C electrode, as well as the formation of SEI layer. Nevertheless, the initial discharge capacity of S/N-C electrode (766.8 mA h g⁻¹) is almost twice as high as that of N-C electrode. In addition, the initial Coulombic efficiency of the S/N-C electrode (73.4 %) is much higher than that of N-C electrode because of the reduced amount of C=O bonds in S/N-C electrode, which consume Na⁺ during SEI formation. The discharge profile of S/N-C electrode includes two slopes. The capacity at voltages above 1 V is due to the stepped reduction of the bonded S, which is consistent with the CV results. The high specific capacity and Coulombic efficiency of the S/N-C electrode indicates that the sulfur doping could effectively increase the density of active sites and enlarge the interlayer spacing d_{002} to facilitate the adsorption and transportation of Na⁺ in the carbon.

Figure 4.6 e shows the cycling performance of the S/N-C and N-C electrodes at a current density of 0.1 A g⁻¹. The S/N-C electrode delivered an initial discharge capacity of 766.8 mA h g⁻¹ and a reversible capacity of 426.3 mA h g⁻¹ after 400 cycles, while N-C electrode is only 253.7 mA h g⁻¹ after 400 cycles. The excellent cycling performance of the S/N-C nanofibers can be attributed to the presence of more active sites induced by S doping and the synergistic effects of N and S co-doping. Figure 4.6 f shows the rate capabilities of the electrodes at various current
densities; the S/N-C electrode exhibits much higher capacity than the N-C electrode and shows stable cycling performance at different current densities. The S/N-C electrode exhibited surprisingly high capacity of 372.8, 357.8, and 333.4 mA h g\(^{-1}\) at a high current density of 2.5, 4, and 5 A g\(^{-1}\), respectively. **Figure 4.6** g shows the long cycling performance of the S/N-C electrode at 5 A g\(^{-1}\); it has a discharge capacity of 335.8 mA h g\(^{-1}\) after 800 cycles. The sulfur doping could enlarge the interlayer spacing (3.62 Å) of the carbon materials, thus improving the insertion/extraction of Na\(^{+}\) ions.

![Nyquist plot](image)

Figure 4.7 Nyquist plots of EIS data for N-C and S/N-C nanofiber electrodes. The inset is the equivalent circuit diagram.

Moreover, electrochemical impedance spectroscopy (EIS) measurements were conducted to characterize the internal resistance and charge-transfer process (**Figure 4.7**). The much lower charge-transfer resistance (R\(_{ct}\)) of the S/N-C electrode than that of the N-C electrode would give it better rate capability. Moreover, the interconnected pores derived from the deposition of PMMA during thermal treatment of the nanofibers could facilitate the transportation of Na\(^{+}\) ions.
Figure 4.8 CV curves of (a) N-C and (d) S/N-C electrodes at different scan rates; linear fitting of peak current dependence (normalized by $\nu^{1/2}$) on the square root of the scan rate ($\nu^{1/2}$) for the (b) N-C and (e) S/N-C electrodes; capacitive and diffusive contributions to the current density of (c) N-C and (f) S/N-C electrodes at 1.0 mV s$^{-1}$; percentage of the capacitive contribution to the current density of the (g) N-C and (h) S/N-C electrodes at different scan rates.

To further understand the good electrochemical performance of S/N-C nanofibers, the energy storage mode was studied based on CV profiles. Figure 4.8 a and d displays the CV curves of N-C and S/N-C electrodes at various scan rates, which all show similar shapes even at the high scan rate of 2 mV s$^{-1}$. According to a report from Dunn’s group,325 the measured current (i, mA) is related to the scan rate (ν, mV s$^{-1}$) as follows:

$$i(\nu) = k_1 \nu + k_2 \nu^{1/2}$$ \hspace{1cm} (1)
The whole current response $i(V)$ at an applied voltage consists two parts: one is the surface-controlled contribution (capacitive, $k_1 v$), and the other is the diffusion-controlled contribution ($k_2 v^{1/2}$). By solving for the values of k_1 and k_2, we can separate the current into the capacitive contribution and the diffusion-controlled contribution. The $i(V)/v^{1/2} - v^{1/2}$ plots at a specific voltage during discharge and charge processes at various scan rates were calculated, as shown in Figure 4.8 b and e. The values of k_1 (the slope) and k_2 (the intercept) could be obtained after linear fitting, thus obtaining the contributions of surface and diffusion-controlled current. Figure 4.8 c shows the CV profile of the N-C electrode at 1 mV s$^{-1}$ with its capacitive contribution (red region) of 81%, which is much lower than (89%) for the S/N-C electrode (Figure 4.8 f) because of the pseudocapacitive interaction between the Na$^+$ and the O-, N- and S-containing functional groups. This is because the C=O groups could reversibly react with Na to form sodium enolate groups (C-O-Na) in surface-induced way.276 Qian and co-workers investigated the nitrogen and sulfur doping which contributed to the capacitive charge storage.277 In addition, the porous S/N-C nanofibers are easily wet by the electrolyte to improve the capacitive contribution. Figure 4.8 g and h present the calculated capacitive contributions for N-C and S/N-C electrodes at various scan rates. The proportion of capacitive contribution gradually increases with the increasing scan rate and finally reaches a maximum value of 93% at the scan rate of 2 mV s$^{-1}$, implying that the capacitive contribution occupies a high percentage of the total capacity at high scan rates.
4.3.3 Theoretical calculations

Figure 4.9 Optimized structure and charge density difference of (a) N-C, (b) S^1/N-C, and (c) S^2/N-C; (d) Na$^+$ diffusion energy and the related migration path for (e) N-C, (f) S^1/N-C, and (g) S^2/N-C. Grey, red, orange, blue, and purple spheres represent C, H, S, N, and Na atoms, respectively.

Density functional theory (DFT) calculations were carried out to reveal the mechanism behind outstanding sodium storage and diffusion performance of S/N-C. To elucidate the synergistic effects of S and N co–doping, all the reasonable molecular models were optimized, and the related charge density differences are
shown in Figure 4.9. In N-C nanofibers, the N atoms have much stronger adsorption to Na\(^+\) than S\(^1\)/N-C (-2.21 eV for S-S structure) and S\(^2\)/N-C (-1.55 eV for S-C-S structure) for the S/N-C nanofibers; the stronger binding energy will increase the activation energy for Na\(^+\) transport on the N-C nanofibers. The N-C sample with an ultrahigh diffusion barrier of 3.99 eV has low Na ion migration (Figure 4.9 d and e), which increases the charge transfer resistance and decreases the rate performance. The S\(^1\)/N-C and S\(^2\)/N-C of S/N-C nanofibers have a much smaller diffusion barrier (by 1 eV) than that of the N-C nanofibers (S\(^1\)/N-C: 3 V in Figure 4.9 d-f and S\(^2\)/N-C: 1.41 eV in Figure 4.9 d-g. Therefore, S and N co-doping reduces the adsorption of Na\(^+\) and improves the storage/diffusion capability of Na\(^+\) in S/N-C nanofibers.

4.3.4 In situ Raman analysis

![Figure 4.10](image) (a-b) In situ Raman spectra of S/N-C electrode in the first cycle with a scan rate of 1.0 mV s\(^{-1}\) in discharge and charge processes.

To monitor the structural evolution of S/N-C nanofibers during discharge/charge in SIBs, in situ Raman spectroscopy was conducted at 1.0 mV s\(^{-1}\), as shown in Figure 4.10. The intensities and positions of the D and G-band (~ 1330 and 1600 cm\(^{-1}\)) of
carbonaceous materials are affected by the intercalation or adsorption of Na\(^+\) ions during the cycling process\(^{326}\). During the discharge process (Figure 4.10 a), the intensity of the D-band decreases, which can be ascribed to the introduction of Na\(^+\), which occupies the defect or edge sites. Moreover, the G-band of the S/N-C sample exhibits an obvious red-shift during the discharge process, which is related to the charge transfer effects caused by the adsorption and intercalation of Na\(^+\) ions and the formation of the SEI layer\(^{327}\). When then charged to 3.0 V, the intensity of the D-band could recover its intensity before discharge (Figure 4.10 b), indicating the reversible desorption of Na\(^+\) from the defect or edge sites. The G-band could undergo a blue-shift, in contrast to the discharge process. These phenomena both demonstrate that the S/N-C sample features a highly reversible charging/discharging process.

4.4 Conclusion

S and N co-doping in carbon nanofibers introduces more active sites for Na\(^+\) storage and increases the interaction between mesoporous carbon and liquid electrolytes. The presence of S also reduces the strong adsorption energy of Na\(^+\) on the carbon surface, which frees up the Na\(^+\) transport across the carbon/electrolyte interface and increases the cycling performance of S/N-C at high current densities. A Na-ion battery with the porous S/N-C nanofibers showed a high initial discharge and charge capacity of 766.8 and 563.4 mA h g\(^{-1}\) at 0.1 A g\(^{-1}\) with an improved initial Coulombic efficiency of 73.5%, excellent rate capability (333.4 mA h g\(^{-1}\) at 5 A g\(^{-1}\)), and superior cycling stability (335.8 mA h g\(^{-1}\) at 5 A g\(^{-1}\) after 800 cycles). The sodium storage mechanism
analysis indicates that the capacitive contribution dominates the whole capacity because of the mesoporous defect–rich structure of the S/N-C electrode.
CHAPTER 5 LOTUS RHIZOME-LIKE S/N-C FOR STRENGTHENING WS₂ WITH SUPERIOR SODIUM STORAGE

5.1 Introduction

Sodium-ion batteries (SIBs) have promisingly replaced for lithium-ion batteries (LIBs) as power sources for smart grids and low-speed electric vehicles, owing to the low cost and abundance of sodium (Na) resources and their high safety due to the high potential of Na (-2.714 V). Nevertheless, the radius of Na ions (1.06 Å) is larger than that of lithium (Li) ions (0.76 Å), leading to sluggish diffusion kinetics for Na⁺, making it difficult to find appropriate anode materials with larger interlayer spacing and good reversible Na⁺ storage for SIBs. So far, a large number of anode materials have been explored for SIBs, including carbonaceous materials, alloying reaction metals and alloys (Sn, Sb, Bi, and their alloys), metal oxides and chalcogenides, and others. Among them, carbonaceous materials usually exhibit excellent cycling performance, although they possess relatively low capacity. The alloyed metal materials always show high theoretical capacity, but the large volume change problem during the alloying/de-alloying process leads to poor rate capability. In addition, the large volume expansion for Na⁺ storage due to the formation of Na₂O and Na₂S (or Na₂Se) will shorten the cycling life of these anode compounds. Therefore, it is essential to find effective strategies to obtain
excellent anode materials with well-balanced performance in terms of high capacity, excellent rate capability, and long-term cycling stability.

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have obtained great interest as anode materials for SIBs due to their unique layered structure.354, 355 As one example of typical TMDCs, tungsten disulfide (WS\textsubscript{2}) exhibits larger layer spacing with weak Van Der Waals interaction and higher electronic conductivity than the traditional MoS\textsubscript{2}.356 Benefiting from its structural characteristics and conductive nature, the WS\textsubscript{2} anode material exhibits high rate capability for SIBs,357-360 although the long-term cycling performance of WS\textsubscript{2} as anode for SIBs is not satisfactory for practical application.361 Actually, this is a common issue for metal sulfides as electrode materials for LIBs and SIBs because the cycling life is strongly influenced by certain factors,361-363 i.e., the large volume changes during electrochemical processes, the Li+/Na+ diffusion kinetics, and the obvious dissolution of the polysulfide intermediates. Thus, it is desirable to look for effective means to solve the problem of WS\textsubscript{2} as anode material to obtain stable long-term cycling and high rate capability.

Carbon scaffolds have been employed to effectively host metal sulfides as electrode materials,364-366 i.e., one-dimensional (1D) carbon nanofibers, graphene, or mesoporous carbon. Among them, the carbon nanofibers have been demonstrated to be a good substrate for hosting metal sulfides as anode materials.367-371 First, their highly conductive nature, along with the large longitudinal aspect ratio of carbon nanofibers could facilitate electron transfer among the metal sulfide particles and
improve the Na$^+$ diffusion kinetics at the same time, resulting in high rate capability for electrodes. Second, carbon nanofibers can alleviate the mechanical stress during the electrochemical process and prevent the pulverization of the embedded metal sulfide materials, which can yield electrodes with stable long cycling performance. Last but not least, heteroatom doping is favourable to improve the capacity of carbon nanofibers, which can be easily prepared by electrospinning. Based on the above analysis, it would be a promising method to achieve enhanced sodium storage performance with large capacity, excellent rate capability, and cycling stability by embedding WS$_2$ nanosheets in heteroatom doped carbon nanofibers.

Herein, we have designed a novel method to prepare lotus rhizome-like WS$_2$@S/N-co-doped carbon nanofibers (denoted as WS$_2$@S/N-C) to realize the above targets. The synthetic procedures are shown in **Figure 5.1**. The WO$_3$ nanosheets are first synthesized via the hydrothermal method, and then embedded into polymer nanofibers via electrospinning. Subsequently, WS$_2$@S/N-C nanofibers are obtained through carbonizing the WO$_3$/poly-acrylonitrile/polymethyl methacrylate (PAN/PMMA) nanofibers with sulfur. The designed WS$_2$@S/N-C nano-architecture offers various advantages: i) the embedding of WS$_2$ nanosheets in carbon nanofibers could enhance the overall electrode conductivity, offering high reversible capacity; ii) the formation of lotus rhizome-like carbon nanofibers could facilitate electron transfer and prevent the pulverization of the electrode structure, resulting in a stable long-term cycling life span. The WS$_2$@S/N-C electrode presents a high rate capacity of 108 mA h g$^{-1}$ at 30 A g$^{-1}$, a good reversible capacity of 321 mA h g$^{-1}$ at 100 mA g$^{-1}$ (vs. 25 mA h g$^{-1}$ at 1 A g$^{-1}$).
h g⁻¹ for WS₂) after 100 cycles, and a stable capacity of 175 mA h g⁻¹ at 5 A g⁻¹ after 1000 cycles. In addition, both the kinetics calculations and the theoretical analysis demonstrate that S/N-C nanofibers could improve the rate capability of WS₂ materials.

Figure 5.1 Schematic illustration of the synthetic route to prepare the porous WS₂@S/N-C nanofibers.

5.2 Experimental Section

Synthesis of WO₃ nanosheets: WO₃ nanosheets were synthesized according to the literature with minor modification. Typically, 1.0 g Na₂WO₄·2H₂O was first dissolved in 40 mL water, and then 3.0 mL HBF₄ solution (40% by weight) was dropped into the solution. After that, the mixture was maintained under hydrothermal conditions at 100 °C for 10 h. Finally, the resulting product was collected with distilled water and absolute ethanol to obtain the pure WO₃.

Synthesis of WS₂@S/N-C nanofibers: The WS₂@S/N-C nanofibers were produced through the electrospinning method. In a typical synthesis, 0.24 g PMMA and 0.36 g
PAN were firstly dissolved in 5 mL dimethylformamide (DMF) solution under vigorous stirring at 60 °C for 4 h. Then, 0.3g as-synthesized WO₃ were added in the above solution to obtain a stable suspension for the electrospinning with an applied voltage of 13 kV and a feeding rate of 0.3 mL h⁻¹. Moreover, the distance between the stainless steel needle and the collector was set to be 15 cm. To stabilize the structure, the obtained fiber-like membrane was annealed at 230 °C for 2 h in air. The pretreated nanofibers were further carbonized with sulfur powder (mass ratio of 1:4) in flowing Ar. The nanofibers and sulfur were carbonized at 600 °C for 2 h to transform the WO₃ into WS₂ in carbon nanofibers.

For comparison, 0.3 g WO₃ and 1.2 g sulfur power were further carbonized by the same method to convert the WO₃ into WS₂. In addition, S/N-C nanofibers were synthesized according to the similar procedure without WO₃ precursor.

Material characterizations: The morphologies and structure of the as-synthesized samples were measured by field emission scanning electron microscopy (FE-SEM, Helios Nanolab G3UC) equipped with Energy Dispersive Spectrometer (EDS) and field emission transmission electron microscopy (TEM, FEI Titan G2 60–300). The crystal structure and phase composition were confirmed by X-ray powder diffraction (XRD, Rigaku D/Max-2500). Raman spectroscopy (DXR microscope, Thermo Fischer DXR) was carried out with 532 nm laser as excitation resource. Fourier transform infrared spectra were also collected (FT-IR, Nicolet-460). Thermogravimetric analysis (TGA, SDTQ600) was used to confirm the content of WS₂ in the composite. The chemical states of the samples were investigated by X-ray
photoelectron spectroscopy (XPS, Escalab 250Xi). Nitrogen adsorption and desorption isotherms (BET, Tristar 3020) was used to determine the Brunauer-Emmett-Teller (BET) surface area.

Electrochemical measurements: All the electrochemical tests were carried out using 2025 coin-type half cells. The working electrodes were prepared by mixing the active material powder, acetylene black, and carboxymethyl cellulose (CMC) in a weight ratio of 8:1:1 to form a slurry, which was then spread onto Cu foil, subsequently dried in a vacuum oven at 60 °C for 12 h, and then cut into 12 mm-diameter discs. The mass loading amount of the active material was about 0.7-0.8 mg cm⁻². Half cells were made up using Na metal as the counter electrode and glass fiber as the separator, which were assembled in an Ar-filled glove box. The electrolyte was 1 M NaClO₄ dissolved in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1 by volume ratio) with 5 wt% fluoroethylene carbonate (FEC) as additive. The galvanostatic charge/discharge tests were performed on a battery test system (Land CT2001A), and the cyclic voltammetry (CV) was carried out on an electrochemical workstation (CHI660E), both in the voltage range of 0.01-3 V. All the electrochemical tests were conducted at room temperature.

Calculation details: To investigate the reasons for the enhanced sodium storage performance, density functional theory (DFT) calculations were used to investigate the adsorption behavior of Na on the pristine WS₂ and WS₂ with N/S-doped graphene (WS₂/NS@graphene) by using the Vienna Ab-initio Simulation Package (VASP).³⁷³, ³⁷⁴ The exchange-correlation functional were determined by the generalized gradient
approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) form. The frozen-core projector-augmented wave (PAW) method was used for interactions between the core electrons and the valence electrons. The convergence criterion was set at 10^{-5} eV, and atomic positions were allowed to move until the forces acting on each atom were less than 0.02 eV/Å for the total energy calculations, with a high energy cut-off of 520 eV. The Brillouin zone was integrated with $3 \times 3 \times 1$ Monkhorst-Pack k-point grids for geometry optimization. Moreover, the vacuum space of 20 Å was used in the z-direction could avoid any interaction between the adjacent repeating layers.

The adsorption energy (E_{ad}) of Na atom sites in WS$_2$ and WS$_2$ with N, S doped graphene (WS$_2$/NSG) was calculated as follows:

$$E_{ad} = E_{WS2-Na,WS2/NSG-Na} - E_{WS2,WS2/NSG} - E_{Na}$$

Where $E_{WS2-Na,WS2/NSG-Na}$ is the total energy for one Na atom in WS$_2$ and WS$_2$/NSG; $E_{WS2,WS2/NSG}$ is the total energy for WS$_2$ and WS$_2$/NSG without the adsorption of Na; E_{Na} is for one Na atom in the same slab.

Herein, both the interaction between WS$_2$ or WS$_2$/NSG and Na ion indicates massive charge transfer, which can be visualized by three-dimensional charge difference mapping, and the definition is as follow:

$$\Delta \rho = \rho_{WS2-Na,WS2/NSG-Na} - \rho_{WS2,WS2/NSG} - \rho_{Na}$$
Where \(\rho_{WS_2-Na,WS_2/NSG-Na} \) is the charge density of the composite or WS\(_2\) with one Na atom adsorbed; \(\rho_{WS_2,WS_2/NSG} \) is the charge density of the composite or WS\(_2\) without Na; \(\rho_{Na} \) is the charge density of one Na atom in the same slab, respectively.

5.3 Results and Discussion

5.3.1 Structure and morphology

Figure 5.2 (a) Low-resolution SEM image of WO\(_3\) nanosheets; (b) low-resolution and (c) high-resolution SEM images, (d) low-resolution TEM image, (e) electron diffraction pattern, (f) high-resolution TEM image, and (g) element mappings of WS\(_2\)@ S/N-C.

The structure and morphology of the samples were investigated by SEM and TEM. The SEM image in **Figure 5.2 a** exhibits the as-synthesized WO\(_3\) nanosheets with a size about 40 nm, which could be electrospun into PAN/PMMA. WO\(_3\) nanosheets
could further changed into WS₂@S/N-C nanofibers through a carbonization and sulfidation process. In Figure 5.2 b, WS₂@S/N-C nanofibers exhibit a length of several tens micrometers and a diameter of 400 nm. The WS₂@S/N-C nanofibers (Figure 5.2 c) show a porous lotus-rhizomes-like structure due to the decomposition of PMMA during the carbonization process. The embedding could prevent the aggregation of WS₂ nanosheets during the sulfidation process. In Figure 5.2 d, there are some dark parts in the single nanofiber owing to the presence of WS₂ nanosheets embedded in the carbon nanofibers. The selected area electron diffraction (SAED) pattern of WS₂ nanosheets in the WS₂@S/N-C nanofibers is shown in Figure 5.2 e. The diffraction rings from inside to outside are attributed to the (002), (100), (103), and (110) planes, respectively. The high resolution (HR)-TEM image of the vertically grown WS₂ nanosheets in Figure 5.2 f displays a 0.62 nm interlayer spacing, which can be attributed to the (002) planes of hexagonal WS₂, consistent with the XRD results for WS₂@S/N-C. This value is in accord with the theoretical interlayer spacing along the c-axis direction. The energy dispersive X-ray (EDX) element mapping images indicate that the W, S, C, and N elements are not uniformly distributed throughout the WS₂@S/N-C nanofiber (Figure 5.2 g), which is due to the distribution of the isolated nanosheets. Moreover, pure WS₂, was synthesized by the direct sulfidation of WO₃, which shows similar morphology with that of WO₃ (Figure 5.3 a and b) and has clear crystal fringles (Figure 5.3 c and d).
Figure 5.3 (a) The SEM and (b) TEM images of synthesized WS$_2$; (c) SAED images and (d) high-resolution TEM images of WS$_2$.
The components and crystalline phases of the materials were characterized by the XRD. **Figure 5.4** a compares the XRD patterns of the WO₃, WS₂, and WS₂@S/N-C samples. The diffraction peaks of the pristine WO₃ can be well assigned to a monoclinic phase. The phase transition from monoclinic WO₃ to hexagonal WS₂ can be achieved by carbonization of WO₃ with sulfur. Strong peaks located at 14.3, 32.76, 39.5, 58.4, and 66.5° can be indexed to the (002), (100), (103), (110), and (114) planes of the hexagonal structure of WS₂ (JCPDS no. 08-0237), respectively. Moreover, the obviously weaker intensity of WS₂@S/N-C compared to the WS₂ implies that the sample was successfully wrapped by carbon nanofibers, which may accommodate the volume changes and prevent the pulverization of the electrode structure over a long-term cycling lifespan. Further structural information of the
WS$_2@$S/N-C and WS$_2$ was acquired by Raman spectroscopy and FTIR analysis. The peaks of the WS$_2$ and WS$_2@$S/N-C samples in the Raman spectra (Figure 5.4 b) located at 351 and 416 cm$^{-1}$ can be ascribed to the Raman active E$_{2g}$ and A$_{1g}$ vibration modes for WS$_2$.\cite{360} Compared to the WS$_2$, there is weaker intensity for WS$_2@$S/N-C due to the wrapping with carbon nanofibers. The peaks around 1350 and 1560 cm$^{-1}$ are attributed to the disorder-induced D band and the graphitic G band for the WS$_2@$S/N-C sample, respectively. In addition, the intensity ratio of the D-band to G-band (1.3, $I_D:I_G$) implies that more defects exist in WS$_2@$S/N-C, which is associated with the N, S-co-doping.\cite{378} In the FTIR spectrum of WS$_2@$S/N-C (Figure 5.4 c), three new bands at 618, 802, and 1280 cm$^{-1}$ can be respectively attributed to C-S stretching, ring breathing (main-chain hexahydric-ring), and C=N symmetric stretching modes.\cite{379,380} The observation of C-S bonds confirmed that the S was bonded with C, which can afford a superior reversible capacity.\cite{381} The content of WS$_2$ in the WS$_2@$S/N-C sample was confirmed by TGA analysis (Figure 5.4 d). A weight loss of 14.5 % was observed for pure WS$_2$ due to the oxidation of WS$_2$ into WO$_3$. The weight loss (57.5 %) for the WS$_2@$S/N-C sample is associated with the combination of oxidation of WS$_2$ and combustion of S/N-C. The content of WS$_2$ in the WS$_2@$S/N-C sample was calculated to be 45.4 wt%. Moreover, based on the nitrogen adsorption and desorption isotherms, the Brunauer-Emmett-Teller (BET) surface areas of WS$_2$ and WS$_2@$S/N-C samples were found to be 17.74 and 23.4 m2 g$^{-1}$, as shown in Figure 5.5.
Figure 5.5 Nitrogen adsorption and desorption isotherms of WS₂@S/N-C nanofibers and pure WS₂.

Figure 5.6 Characterizations of S/N-C nanofibers: (a) XRD pattern; (b) SEM image; (c) TEM image and (d) HR-TEM image.
Furthermore, S/N-C nanofibers were also characterized by XRD, SEM, TEM, HR-TEM, as shown in Figure 5.6. XRD pattern in Figure 5.6 a indicates S/N-C sample is typical carbon material, without other impurities. The SEM and TEM images (Figure 5.6 b and c) show porous nanofibers structure with a length about several tens of micrometers. The amorphous nature of S/N-C sample is confirmed by HR-TEM image, as shown in Figure 5.6 d. In addition, the content of sulfur doping in the carbon of WS2@S/N-C and S/N-C samples is confirmed to be ~4.8 % and ~6 % by EDS (Figure 5.7), respectively.

Figure 5.7 EDS spectra of (a) WS2@S/N-C nanofibers and (b) S/N-C nanofibers.
Figure 5.8 (a) XPS full survey spectra of WS$_2$@S/N-C nanofibers and pure WS$_2$; (b-e) High-resolution XPS spectra of WS$_2$@S/N-C: (a) W; (b) S; (c) N; (d) C; (f and g) High-resolution XPS spectra of W and S elements for pure WS$_2$.

The chemical status of the WS$_2$@S/N-C and WS$_2$ samples was characterized by XPS (Figure 5.8 a). Compared to the spectrum of pure WS$_2$, the spectrum of WS$_2$@S/N-C reveals extra distinctive C and N peaks, which demonstrate successful doping, which is consistent with its FTIR spectrum. For WS$_2$@S/N-C, there are three strong peaks from W centered at 32.3, 34.54, and 37.43 eV, as shown in Figure 5.8 b, which exhibit a shift to lower energy than that for pure WS$_2$ (Figure 5.8 f). This might be associated with the interaction between WS$_2$ and C, N. There are two major peaks from S centered at 162.7 and 163.9 eV in pure WS$_2$ (Figure 5.8 g), slightly shifted to lower energy than the S peaks (163.7 and 164.9 eV) of WS$_2$@S/N-C (Figure 5.8 e).
Moreover, two shoulder peaks at 161.9 and 168.0 eV (Figure 5.8 c) are related to the S=C and S-O bonds in carbon nanofibers, indicating that S was successfully incorporated into the carbon matrix. Furthermore, there are three peaks located at 398.2, 399.9, and 401.8 eV in the N 1s spectrum of WS$_2$@S/N-C (Figure 5.8 d), indicating the existence of pyridinic, pyrrolic, and graphitic nitrogen in WS$_2$@S/N-C, respectively. The pyrrolic and pyridinic nitrogen can give rise to surface defects in carbon structures that can offer channels to facilitate Na$^+$ diffusion. In Figure 5.8 e, the C 1s spectrum can be fitted into three peaks for carbon atoms, including for C-C bonds (284.6 eV), C-S/C-N bonds (286.2 eV), and C=O bonds (288.1 eV). In consequence, it is clear that the nitrogen and sulfur dual-doping allows the Na$^+$ ions and electrons to achieve high transfer rates for good performance.

5.3.2 Electrochemical performance

Figure 5.9 CV curves of (a) WS$_2$@S/N-C, (b) WS$_2$ and (c) S/N-C electrodes in the voltage range of 0.01-3 V at a scan rate of 0.1 mV s$^{-1}$; Charge-discharge profiles of (d) WS$_2$@S/N-C, (e) pure WS$_2$ and (f) S/N-C electrodes at a current density of 0.1 A g$^{-1}$.
The electrochemical properties of the WS$_2$@S/N-C, WS$_2$ and S/N-C electrodes were characterized by CV and galvanostatic charge-discharge cycling. Figure 5.9 a-c display the CV profiles of the WS$_2$@S/N-C nanofibers, pure WS$_2$ and S/N-C nanofibers for the initial 3 cycles at a scan rate of 0.1 mV s$^{-1}$, respectively. For the WS$_2$@S/N-C electrode, the reduction peak centered at 0.5 V in the first cycle is attributed to the conversion reaction (Na$_x$WS$_2$ + (4-x) Na$^+$ + (4-x) e$^-$ → W + 2 Na$_2$S) and the formation of an irreversible solid electrolyte interphase (SEI) film. In the following cycles, the reduction peak at ~ 0.5 V disappears while new reduction peaks appear in the potential range from 1.2 to 1.5 V, indicating the presence of reversible conversion mechanism (4 Na$^+$ + WS$_2$ + 4 e$^-$ → W + 2 Na$_2$S). In the anodic scans, three peaks located at 1.8, 2.2, and 2.5 V are corresponded to the oxidation of W to WS$_2$ during the desodiation process. Compared with the WS$_2$@S/N-C electrode, similar reduction and oxidation peaks were also observed for pure WS$_2$. For the S/N-C electrode, a reduction peak centered at ~ 0.5 V in the first cycle is associated with the formation of an irreversible solid electrolyte interphase (SEI) film. The reduction and oxidation peaks of the WS$_2$@S/N-C and S/N-C electrodes show a much more stable profile and tend to overlap each other in the following two cycles, indicating faster Na$^+$ ion insertion/extraction kinetics and higher reversibility of the electrode reactions for WS$_2$@S/N-C and S/N-C electrodes. This confirmed the S/N-C nanofibers could stabilize the WS$_2$ during the electrochemical process. The charge/discharge curves of the WS$_2$@S/N-C nanofibers, pure WS$_2$ and S/N-C nanofibers in Figure 5.9 d-f were collected at 0.1 Ag$^{-1}$. The WS$_2$@S/N-C nanofibers
delivered a discharge and charge capacity of 566 and 381 mA h g\(^{-1}\), while pure WS\(_2\) and S/N-C nanofibers exhibited the capacity of (416 and 352 mA h g\(^{-1}\)) and (465.8 and 356.9 mA h g\(^{-1}\)), respectively. Moreover, the coincidence of subsequent discharge/charge curves for pure WS\(_2\)@S/N-C indicates a reversible and stable electrochemical performance.

Figure 5.10 Rate capability of the (a) WS\(_2\)@S/N-C, (b) WS\(_2\) and (c) S/N-C electrodes at various current densities; Cycling performance of the (d) WS\(_2\)@S/N-C, (e) WS\(_2\) and (f) S/N-C electrodes at a current density of 0.1 A g\(^{-1}\); (g) Long-term cycling performance and Coulombic efficiency of WS\(_2\)@S/N-C electrode at a current density of 5 A g\(^{-1}\).

Figure 5.10 a shows the capacity of the WS\(_2\)@S/N-C electrode at various current densities from 0.1 to 30 A g\(^{-1}\). The electrode delivers a reversible capacity of 371, 291,
275, 246, 230, 204, 192, 167, 145, and 125 mA h g⁻¹ at the current density of 0.1, 0.5, 1, 3, 5, 8, 10, 15, 20, and 25 A g⁻¹, respectively. Even at a very high current density of 30 A g⁻¹, it still delivers a capacity of 108 mA h g⁻¹ and when the current density returns to 0.1 A g⁻¹, it keeps a reversible capacity of 360 mA h g⁻¹. The pure WS₂ electrode and S/N-C electrodes (Figure 5.10 b and c), however, exhibit much poorer rate performance. The reversible capacity for the pure WS₂ electrode rapidly declines to 237 mA h g⁻¹ when the current density returns to 0.1 A g⁻¹. The S/N-C electrode could keep a reversible capacity of 322.2 mA h g⁻¹, which is obviously lower than that of WS₂@S/N-C electrode. The excellent rate performance of WS₂@S/N-C can be attributed to its structure. The lotus rhizome-like carbon nanofibers could offer short paths to facilitate electron transfer, prevent pulverization of the electrode structure, and offer convenient Na⁺ transport. Moreover, the discharge capacity of WS₂@S/N-C reached 319 mAh g⁻¹ at 0.1 A g⁻¹ after 100 cycles (Figure 5.10 d), showing good cycling stability. In comparison, the pure WS₂ only possessed 43 mA h g⁻¹ after 100 cycles (Figure 5.10 e). The S/N-C can sustain 315 mA h g⁻¹ after 100 cycles with good stability (Figure 5.10 f). This demonstrates that S/N-C nanofibers facilitated the stability of WS₂. Moreover, the WS₂@S/N-C even exhibited a capacity of 174 mA h·g⁻¹ at a current of 5 A g⁻¹ over 1000 cycles, with a capacity retention of 89 %, demonstrating excellent ultra-long cycling stability (Figure 5.10 g).
Figure 5.11 Low-resolution SEM images of WS$_2$@S/N-C electrode: (a) fresh electrode and (b) cycled electrode after 100 cycles; low-resolution SEM images of WS$_2$ electrode: (c) fresh electrode and (d) cycled electrode after 100 cycles.

To further explain the difference in cycling stability between the two kinds of electrodes, the morphologies of fresh and cycled WS$_2$@S/N-C and pure WS$_2$ electrodes were characterized by SEM, as shown in Figure 5.11. Obviously, compared with fresh WS$_2$@S/N-C electrode, the surface of cycled electrode after 100 cycles became rough due to the formation of solid electrolyte interphase (SEI). Although some small particles emerged, the rod-like morphology was partially maintained. On the contrary, the morphology of the cycled WS$_2$ electrode changed significantly and no nanosheets could be observed. Based on above results, it was revealed that the different structural stabilities led to the different cycling stabilities. Moreover, electrochemical impedance spectroscopy (EIS) was also carried out to study the reaction kinetics of WS$_2$@S/N-C and pure WS$_2$ electrode after 1st cycle at
0.1 A g⁻¹. In Figure 5.12, the WS₂@S/N-C electrode exhibits a much lower charge transfer resistance (R_{ct}, 298 Ω) than the pure WS₂ electrode (2129 Ω), based on the equivalent circuit simulation, which implies faster charge transfer at the electrode/electrolyte interface.

![Figure 5.12 EIS spectra of WS₂@S/N-C and pure WS₂ after 1st cycle at 0.1 A g⁻¹. The inset is the equivalent circuit.](image)

Figure 5.12 EIS spectra of WS₂@S/N-C and pure WS₂ after 1st cycle at 0.1 A g⁻¹. The inset is the equivalent circuit.
Figure 5.13 (a) CV curves of WS₂@S/N-C electrodes at different scan rates; (b) log i vs. log v plots of WS₂@S/N-C electrodes; (c) Ratio of diffusion and capacitive contributions to the capacity at various scan rates for WS₂@S/N-C electrodes; (d) Capacitive charge storage contribution (pink region) for WS₂@S/N-C electrode at 1.0 mV s⁻¹.

To further evaluate the electrochemical performance of WS₂@S/N-C anode, CV measurements at a series of scan rates from 0.1 mV s⁻¹ to 1 mV s⁻¹ were carried out. As shown in Figure 5.13 a, with the scan rates increasing, all the CV curves retained similar shapes with only a small deviation of the redox peaks, suggesting high rate capability and small potential polarization. As it is well known, the electrochemical capacity is contributed by two mechanisms, the faradaic charge transfer process (ion diffusion) and the non-faradaic contribution (pseudocapacitance). The relationship between peak current and scan rate can indicate the contribution of each part, as follows:

\[i = a v^b \]
and

\[\log i = b \log v + \log a \] (2)

where \(i \) represents the peak current, \(v \) is the scan rate, and \(a \) and \(b \) are adjustment parameters, respectively. The \(b \) value reveals the different types of charge storage. The values of 0.5 and 1 represent the faradaic charge transfer process and the non-faradaic contribution, respectively. In Figure 5.13 b, the \(b \) values of WS\(_2\)@S/N-C anode were calculated to be 0.73 ± 0.015 for the anodic peaks and 0.86 ± 0.006 for the cathodic peaks, suggesting that the sodium storage reaction of WS\(_2\)@S/N-C anode was determined by both pseudocapacitive behavior and ion diffusion control. The percent contributions of the two parts at a serious of scan rates can be calculated from the following equation:

\[i = k_1v + k_2v^{1/2} \] (3)

where \(k_1v \) represents the pseudocapacitive part and \(k_2v^{1/2} \) represents the ion diffusion part. From Figure 5.13 c, the pseudocapacitive contribution increased from 69% to 86.5% as the scan rate increased from 0.1 mV s\(^{-1}\) to 1 mV s\(^{-1}\). The detailed pseudocapacitive fraction at 1 mV s\(^{-1}\) is also illustrated in Figure 5.13 d. These results mean that the pseudocapacitive contribution plays the major role in the overall capacity of the WS\(_2\)@S/N-C anode.
5.3.3 Theoretical calculations

![Diagram showing adsorption sites and charge density differences](image)

Figure 5.14 Adsorption sites for I, II and III Na on (a) pure WS$_2$ and (b) the WS$_2$ in WS$_2$@S/N-C; Differences of charge density (charge accumulation: green, charge depletion: blue) with an isosurface level of 0.001 e/Å3 for Na on (c) pure WS$_2$ and (d) the WS$_2$ in WS$_2$@S/N-C in the most stable adsorption configuration.

To obtain theoretical support for the results, we studied the Na$^+$ adsorption behavior on both pristine WS$_2$ surface and WS$_2$@S/N-C surface by DFT calculations. According to the previous theoretical calculations, the S/N co-doped graphene model can be as the S/N co-doped carbon nanofiber to analyse the adsorption behavior for the Li$^+$, Na$^+$ and K$^+$. Thus, we designed the heterostructure of WS$_2$ and S/N co-doped graphene to investigate the synergistic effects for Na adsorption. As shown in **Figure 5.14 a and b**, both the pristine WS$_2$ and WS$_2$@S/N-C have three adsorption sites of S-top (I), hollow (II) and W-top (III), respectively. And the adsorption energies of Na atom adsorption on pristine WS$_2$ and WS$_2$@S/N-C were calculated and
illustrated in Tables 5.1 and 5.2. For the S-top site, the adsorption energy of the Na in WS$_2$@S/N-C was -0.897 eV that was lower than that in pristine WS$_2$ (-0.494 eV). After the Na adsorption on the hollow site of pristine WS$_2$ and WS$_2$@S/N-C, the adsorption energies are of -0.744 eV and -1.168 eV, respectively. Clearly, the W-top site on WS$_2$@S/N-C has the smaller adsorption energy of -1.208 eV than that of pristine WS$_2$ (-0.759 eV). The smaller adsorption energies of Na adsorption on WS$_2$@S/N-C than that of pristine WS$_2$, indicating that WS$_2$@S/N-C is helpful for Na storage. Moreover, we calculated the three-dimensional charge density difference to understand the mechanism of charge transfer on W-top site of pristine WS$_2$ or WS$_2$@S/N-C with a Na atom. As shown in Figure 5.14 c, the charge accumulation is found on the W atoms, and the charge depletion appears on the Na ion at the same time. The results demonstrate that the charge has accumulated much more massively on the WS$_2$@S/N-C (Figure 5.14 d) than on the pristine WS$_2$ (Figure 5.14 c), which can be verified by the Bader charges. According to Bader charge analysis, 0.79 e of the Na atom is transferred onto the WS$_2$@S/N-C (Table 5.2), while only 0.76 e of the Na atom for the pristine WS$_2$ (Table 5.1). This shows that S/N-C could trap more Na atoms due to increasing the adsorption energy of the Na atom.
Table 5.1 The adsorption behaviour of Na on pristine WS$_2$.

<table>
<thead>
<tr>
<th>Adsorption sites</th>
<th>I(S-top)</th>
<th>II(Hollow)</th>
<th>III (W-top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS$_2$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{ad} (eV)</td>
<td>-0.494</td>
<td>-0.744</td>
<td>-0.759</td>
</tr>
<tr>
<td>Q_{Na} (</td>
<td>e</td>
<td>)</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Table 5.2 The adsorption behaviour of Na on WS$_2$@S/N-C.

<table>
<thead>
<tr>
<th>Adsorption sites</th>
<th>I(S-top)</th>
<th>II(Hollow)</th>
<th>III (W-top)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS$_2$@S/N-C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E_{ad} (eV)</td>
<td>-0.897</td>
<td>-1.168</td>
<td>-1.208</td>
</tr>
<tr>
<td>Q_{Na} (</td>
<td>e</td>
<td>)</td>
<td>0.65</td>
</tr>
</tbody>
</table>

5.4 Conclusion

In conclusion, we have successfully realized the incorporation of WS$_2$ nanosheets into carbon nanofibers via an electrospinning/sulfidation process. Compared to pure WS$_2$, the WS$_2$@S/N-C nanofibers exhibit a higher rate capacity of 108 mA h g$^{-1}$ at 30 A g$^{-1}$ and a stable capacity of 174 mA h g$^{-1}$ at 5 A g$^{-1}$ after 1000 cycles. The theoretical studies demonstrate that S/N-C nanofibers effectively facilitate the storage of Na on
Moreover, analysis of the sodium storage mechanism has demonstrated that the capacitive contribution plays the dominant role in the whole capacity contribution owing to the S/N-heteroatom doping and the existence of the mesoporous defect-rich structure in the S/N-C matrix.
CHAPTER 6 S/N-DOPED CARBON NANOFIBERS
AFFORDING Fe$_7$S$_8$ PARTICLES WITH SUPERIOR SODIUM STORAGE

6.1 Introduction

In recent years, battery technologies have drawn great attention as power sources for transferring the electric energy derived from sustainable energy to electric grids including: lithium-ion batteries (LIBs),\cite{391, 392} low cost sodium-ion batteries (SIBs),\cite{393-396} aqueous flow batteries,\cite{397, 398} zinc-ion batteries\cite{399, 400} or other aqueous batteries.\cite{401, 402} Among them, SIBs have cost-effective characteristics in comparison with LIBs due to the high abundance in earth and low cost of sodium resources. Moreover, compared with other batteries, SIBs have obvious advantage of high energy density since they have the high-output-voltage electrolytes and high-capacity electrode materials.\cite{403, 404} Therefore, low-cost SIBs are demonstrated to exhibit superior advantages as potential power sources.

In the construction, SIBs have the similarity with LIBs, and share the similar working mechanism with LIBs,\cite{405} which offer SIBs with feasible manufacturing process. For electrode materials of SIBs, the design of cathode materials and anode materials can get some ideas from LIBs.\cite{406} However, the commercial graphite could hardly work well in SIBs with traditional carbonate-based electrolytes because the interlayer distance of the graphite is unsuitable to host sodium in carbonate-based electrolytes.\cite{407-410} Thus, other low-cost anode materials are highly needed so far.
Iron-based compounds, i.e., oxides and chalcogenides, are considered to be cost-effective, high-performance anode materials for SIBs.411, 412 Iron chalcogenides have higher conductivity than iron oxides due to their structural characteristics, which makes them more suitable to be anode materials for SIBs. Moreover, low cost and rich natural resources of iron and sulfur elements have driven us to explore iron sulfides as potential anode materials.413, 414 Especially, the rich chemical stoichiometries (e.g., FeS415-418 425-427 Fe\textsubscript{7}S\textsubscript{8}, 419-424 Fe\textsubscript{3}S\textsubscript{4}, 425 and FeS\textsubscript{2}) and high capacity of iron sulfides offer them interesting electrochemical properties. Nevertheless, iron sulfides usually suffer poor electrochemical performance due to the intrinsic sluggish kinetics and severe volume change during sodiation process. To solve these issues, one of effective methods is to design carbon/iron sulfide composites to improve the electrochemical performance. So far, a variety of carbon materials are used, i.e., graphene, carbon nanotubes, biomass-derived carbon, \textit{etc.}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure6_1.png}
\caption{Illustrative synthesis scheme of Fe\textsubscript{7}S\textsubscript{8}@S/N-C nanofibers.}
\end{figure}
Electrospun carbon nanofibers are found to be the excellent matrix for active materials for SIBs, because they not only can provide short electron/ion paths, but also be easily modified to change their properties. Especially, doping, i.e., nitrogen-doping, and sulfur-doping, can improve the electrochemical performance of carbon nanofibers. Under this background, we designed the Fe₇S₈ dedicated sulfur, nitrogen-co-doped carbon nanofibers (Fe₇S₈@S/N-C) through one-step synthesis process, as shown in Figure 6.1. The α-Fe₂O₃ nanoparticles were synthesized by hydrothermal method, then added into PAN for electrospinning. The Fe₇S₈@S/N-C were obtained through high temperature annealing with sulfur. Owing to unique structural characteristics, the Fe₇S₈@S/N-C electrode exhibited stable cycling performance with 347 mA h g⁻¹ after 150 cycles at 1 A g⁻¹ and superior rate capability with 220 mA h g⁻¹ at 5.0 A g⁻¹.

6.2 Experimental Section

Synthesis of Fe₇S₈@S/N-C: α-Fe₂O₃ nanoparticles were prepared through a simple hydrothermal method according to the literature with little modification. In a typical synthesis, 0.54 g FeCl₃·6 H₂O was firstly dissolved into 20 mL deionized water. Then, 10 mL aqueous ammonia was added to the above solution drop by drop. After that, this mixture was transferred into an autoclave of 50 mL and maintained at 180 °C for 12 h. The resulting product was collected by centrifugation and washed with DI water and ethanol several times.
The $\text{Fe}_7\text{S}_8@\text{S/N-C}$ composites were synthesized through the electrospinning/sulfidation processes. Typically, 0.5 g as-prepared α-Fe_2O_3 nanoparticles and 1 g polyacrylonitrile (PAN) were added into 10 mL N,N-dimethylformamide (DMF) and stirred at 60 °C overnight to form a stable suspension. Then, the obtained suspension was transferred into a syringe. A stainless-steel plate was placed to collect the nanofibers with a distance of 15 cm away from the syringe. The flow rate was ~ 0.4 mL h$^{-1}$ and the voltage applied was 15 kV. The collected nanofibers were pre-oxidized at 230 °C for 2 h in air. Finally, 0.5 g pre-treated nanofibers were carbonized with 0.5 g sulfur at 600 °C for 2 h in argon atmosphere to obtain $\text{Fe}_7\text{S}_8@\text{S/N-C}$. For comparison, 0.5 g α-Fe_2O_3 nanoparticles and 0.5 g sulfur power were heated under the same condition to transfer α-Fe_2O_3 to Fe_7S_8. The pure S/N-C nanofibers were synthesized by the same method without using α-Fe_2O_3 precursor.

Materials characterization: The morphology information of the samples were characterized by the scanning electron microscope (SEM, Hitachi S4800) with Energy Dispersive Spectrometer (EDS) and field-emission transmission electron microscope (TEM, Tecnai G2 20). The X-ray diffractions (XRD, Rigaku D/max-2500 X-ray diffractometer, Cu Kα, $\lambda = 0.154056$ nm) were carried out with a scan rate of 8° min$^{-1}$. The thermogravimetric analysis (TGA) was done in air using the STD Q600 thermogravimetric analyser. The Brunauer-Emmett-Teller surface area (BET) and pore size distribution were obtained by a Nova 2000e volumetric adsorption analyser. Raman spectra was carried out using a HORIBA LabRAM HR Evolution Raman
spectrometer. The X-ray photoelectron spectroscopies (XPS) was characterized to evaluate the elemental composition of the samples on a Thermo scientific Kα spectrometer.

Electrochemical measurements: In the typical electrochemical evaluations, the working electrodes were composed of 80 wt% active materials with 10 wt% acetylene black, and 10 wt% carboxymethyl cellulose (CMC) as the conductive agent and binder, respectively. The specific capacity was calculated based on the entire mass of the electrode. A sodium foil was used as the counter electrode. The used electrolyte was 1 M NaClO₄ in the propylene carbonate and ethylene carbonate (PC-EC, 1:1, v:v), and glass fiber (Whatman, Grade GF/A) was applied as the separator. The CR2025-type coin cells were assembled in the Ar-filled glove box. Galvanostatic charge-discharge test were measured at room temperature between the voltage range of 0.01 - 2.5 V.

6.3 Results and Discussion

6.3.1 Structure and morphology
Figure 6.2 (a) SEM image of α-Fe$_2$O$_3$ nanoparticles; (b) SEM image of Fe$_7$S$_8$@S/N-C nanofibers; (c) Low-resolution and (d) high-resolution TEM images of a Fe$_7$S$_8$@S/N-C nanofiber; (e) Element mapping of a Fe$_7$S$_8$@S/N-C nanofiber.

The morphologies and structures of as-prepared α-Fe$_2$O$_3$, Fe$_7$S$_8$, Fe$_7$S$_8$@S/N-C and S/N-C samples were characterized by SEM and TEM techniques, respectively, as shown in Figure 6.2 and 6.3. Figure 6.2 a shows that the diameters of α-Fe$_2$O$_3$ particles distributes in the range of 100-200 nm. The prepared α-Fe$_2$O$_3$ precursor could be electrospun into PAN polymer fibers, and further transformed into Fe$_7$S$_8$@S/N-C composite through the carbonization and sulfidation process. Fe$_7$S$_8$@S/N-C shows the fiber-like structure, and there are no particles on the surface,
as shown in Figure 6.2 b. TEM image further confirmed that Fe7S8 particles were embedded into carbon nanofibers (Figure 6.2 c), which had a diameter of 200-400 nm. The HR-TEM image of Fe7S8@S/N-C in Figure 6.2 d indicates that two lattice fringes with 0.263 nm and 0.172 nm can be observed, which are assigned to the (203) and (220) planes, respectively. The energy dispersive X-ray (EDX) element mapping images indicate that the S, C, and N elements are uniformly distributed throughout the Fe7S8@S/N-C nanofiber (Figure 6.2 e), while Fe element is isolated distributed due to the distribution of isolated Fe7S8 nanoparticles in the nanofibers. After the sulfdation of α-Fe2O3 particles, the obtained Fe7S8 nanoparticles (Figure 6.3 a and b) exhibited irregular morphology and had a diameter of 100-400 nm. To carry out control experiment, S/N-C nanofibers were also obtained, and characterized by SEM and HR-TEM images (Figure 6.3 c and d), which indicated an amorphous structure of the S/N-C nanofibers.
Figure 6.3 (a) SEM image and (b) HR-TEM image of Fe$_7$S$_8$; (c) SEM image and (d) HR-TEM image of S/N-C.
Figure 6.4 (a) XRD patterns of as-prepared α-Fe$_2$O$_3$, Fe$_7$S$_8$, S/N-C and Fe$_7$S$_8$@S/N-C samples; (b) Raman spectra, (c) N$_2$ adsorption-desorption isotherms and (d) TGA data of as-prepared Fe$_7$S$_8$, Fe$_7$S$_8$@S/N-C and S/N-C samples.

XRD measurement was carried out to characterize the crystal phase of the as-prepared α-Fe$_2$O$_3$, Fe$_7$S$_8$, Fe$_7$S$_8$@S/N-C and S/N-C samples, as shown in Figure 6.4 a. The XRD patterns of Fe$_7$S$_8$, Fe$_7$S$_8$@S/N-C in Figure 6.4 a show four obvious peaks located at 30.0°, 33.9°, 44.0°, and 53.3°, respectively, which can be well indexed to pyrrhotite Fe$_7$S$_8$ (JCPDS No. 24-0220). This indicates that α-Fe$_2$O$_3$ was completely transformed into Fe$_7$S$_8$. Moreover, the sharp diffraction patterns of both Fe$_7$S$_8$ and Fe$_7$S$_8$@S/N-C with no other impurity peaks suggest the good crystallinity and high purity. The XRD pattern of S/N-C in Figure 6.4 a is ascribed to the typical carbon.

As displayed in Raman spectra (Figure 6.4 b), Fe$_7$S$_8$@S/N-C and S/N-C samples show D peak (1320 cm$^{-1}$) and G peak (1590 cm$^{-1}$). The intensity ratio of the D peak to
G peak for Fe$_7$S$_8$@S/N-C ($I_D : I_G$, 1.5) and S/N-C samples ($I_D : I_G$, 1.4) indicates that there are more defect sites in Fe$_7$S$_8$@S/N-C, which might be caused by more N and S doping.431 The Raman spectrum of pure Fe$_7$S$_8$ only shows some small peaks located around 1320 cm$^{-1}$, which are attributed to the small defect sites in Fe$_7$S$_8$.432 Figure 6.4c shows the N$_2$ adsorption-desorption isotherms of Fe$_7$S$_8$@S/N-C, S/N-C and Fe$_7$S$_8$ samples, and the Brunauer-Emmett-Teller (BET) specific surfaces of Fe$_7$S$_8$@S/N-C, S/N-C and Fe$_7$S$_8$ samples are 21.41, 14.47 and 7.22 g m$^{-2}$, respectively. The thermogravimetric analysis (TGA) was carried out in air atmosphere, as shown in Figure 6.4d. For Fe$_7$S$_8$, there is an obvious mass increasing below 400 °C because the oxidation of Fe$^{2+}$ to Fe$^{3+}$. In the range of 400 - 600 °C, most S was oxidized to SO$_3$ or SO$_2$, causing the weight loss of 14.4 %. Fe$_7$S$_8$@S/N-C composite suffered from a larger weight loss than Fe$_7$S$_8$. It can be calculated that the content of Fe$_7$S$_8$ in the composite is ~ 46.1%. Moreover, the content of sulfur doping in the carbon of Fe$_7$S$_8$@S/N-C and S/N-C samples is confirmed to be ~ 5.5 % and ~ 4.25% by EDS, respectively.
In order to understand the chemical status of Fe₇S₈@S/N-C, XPS measurement was conducted, as shown in Figure 6.5. The Fe 2p spectrum in Figure 6.5a shows that two valences of Fe existed in the sample. The peaks of Fe 2p₃/₂ at 711 eV and 715.7 eV (satellite peak) indicate the existence of Fe²⁺ while the Fe 2p₁/₂ peaks at 725 eV and 732.5 eV (satellite peak) can be assigned to Fe³⁺. In the S 2p spectrum (Figure 6.5b), the peaks at 163.6 eV and 164.8 eV can be attributed to the Fe-S bonding. The small peak at 161.7 eV suggests that some C-S bonds formed during sulfidation process. Besides, another peak located at 168.6 eV can be indexed to the S-O bond caused by the adsorbed oxygen on the active surface of Fe₇S₈ particles in the sample. In C 1s spectrum (Figure 6.5c), the peaks at 289.0, 286.0 and 284.6 eV are attributed to C=O, C-N/C-S and C-C bonds, respectively. In addition, N 1s spectrum...
in Figure 6.5 d reveals that there are pyridine, pyrrolic and graphitic N. In this work, N-, S- dual doping can bring following advantages for Fe₇S₈@S/N-C: First, the N and S atoms can enhance the electronic conductivity of carbon nanofibers; Second, the defect sites brought by N and S could offer much more absorption sites for Na ions to improve its capacitive capability. Third, the disorder honeycomb carbon caused by N, S-doping offers channels for the diffusion of Na⁺, which brings a high rate performance.

6.3.2 Electrochemical characterization

![Figure 6.5 CV curves of (a) Fe₇S₈@S/N-C, (b) Fe₇S₈ and (c) S/N-C electrodes at 0.2 mV s⁻¹. The charge-discharge profiles of (d) Fe₇S₈@S/N-C, (e) Fe₇S₈ and (f) S/N-C electrodes at 0.1 A g⁻¹. (g) Rate capability of Fe₇S₈@S/N-C, Fe₇S₈ and S/N-C](image)

![Figure 6.6 Specific Capacity](image)
electrodes at various current densities. (h) Cycling performance of Fe$_7$S$_8$@S/N-C, Fe$_7$S$_8$ and S/N-C electrodes at 1 A g$^{-1}$.

The Na storage performance of the Fe$_7$S$_8$@S/N-C, Fe$_7$S$_8$ and S/N-C electrodes was first evaluated by CV. **Figure 6.6 a** exhibits the initial three CV scans of Fe$_7$S$_8$@S/N-C electrode. During the first scan process, there exists a sharp cathodic peak at ~ 0.6 V, presenting the intercalation reaction (**Eqn. 1**) and the formation of electrolyte interphase (SEI) film. In the low potential range, the small cathodic peak is ascribed to the conversion reaction to form Fe and Na$_2$S (**Eqn. 2**). In the first anodic scan, the sharp peak at 1.4 V and broad peak at about 1.6-2.0 V indicate the counter reaction of conversion reaction (**Eqn. 3**) and the deintercalation reaction (**Eqn. 4**), respectively. According to previous work, only part of Na ions can be deintercalated out of the Fe$_7$S$_8$-based electrode, leading to the irreversible capacity in the initial cycle.

Sodiation:
$$Fe_7S_8 + 8 Na^+ + 8e^- \rightarrow 4 Na_2FeS_2 + 3 Fe$$ \hspace{1cm} (1)
$$Na_2FeS_2 + 2 Na^+ + 2 e^- \rightarrow 2 Na_2S + Fe$$ \hspace{1cm} (2)

Desodiation:
$$2 Na_2S + Fe \rightarrow Na_2FeS_2 + 2 Na^+ + 2 e^-$$ \hspace{1cm} (3)
$$Na_2FeS_2 \rightarrow Na_{2-x}FeS_2 + x Na^+ + x e^-$$ \hspace{1cm} (4)

In the subsequent cathodic scans, the sharp peak at 0.6 V became broader and shifted to 0.95 V because of the formation of SEI film. Besides, the CV profiles of the 2nd and 3rd cycles did not change obviously, demonstrating a good structural stability. For Fe$_7$S$_8$ electrode, as shown in **Figure 6.6 b**, it suffered a worse reversibility. During the second and third cycles, the intercalation reaction of Na$^+$ ion could hardly take place. This proves the N-doped carbon nanofibers can protect the Fe$_7$S$_8$ from
structure collapse, thus improving its cycling stability. In Figure 6.6 c, the reduction peak around at ~ 0.5 V in the first cycle is ascribed to the formation of an irreversible solid electrolyte interphase (SEI) film. In the following cycles, the curves are well overlapped, demonstrating good reversibility.

The charge-discharge profiles of the first three cycles for the Fe$_7$S$_8$@S/N-C, Fe$_7$S$_8$ and S/N-C electrodes are in good accordance with the CV curves. As displayed in Figure 6.6 d, during the first discharge process, a remarkable plateau located at 0.6-0.9 V was attributed to the irreversible intercalation reaction and formation of SEI film. In the subsequent cycles, two plateaus can be observed, caused by the reversible intercalation and conversion reactions. In contrast, for Fe$_7$S$_8$ and S/N-C electrodes (Figure 6.6 e and f), there was no remarkable plateau on the discharge profiles during the 2nd and 3rd cycles. Moreover, the coincidence of subsequent discharge/charge curves for Fe$_7$S$_8$@S/N-C and S/N-C electrodes indicates that S/N-C could afford Fe$_7$S$_8$ with a reversible and stable Na storage performance.

Benefited from the defect-decorated carbon nanofibers as conductive matrix with high ion diffusion rate, the Fe$_7$S$_8$@S/N-C electrode showed the best rate capability among three electrodes, as shown in Figure 6.6 g. With the current density increasing, the Fe$_7$S$_8$@S/N-C electrode delivered capacities of 470, 445, 415, 365, 280 and 220 mA h g$^{-1}$, at 0.1, 0.2, 0.5, 1, 2, 5 A g$^{-1}$, respectively. When the current density was adjusted back to 0.1 A g$^{-1}$, a capacity of 475 mA h g$^{-1}$ could still be obtained. The Fe$_7$S$_8$ electrode only showed the limited capacities of 272, 208, 137, 86, 53 and 26 mA h g$^{-1}$, at the current densities of 0.1, 0.2, 0.5, 1, 2, 5 A g$^{-1}$, respectively. Besides, when
current density was back to 0.1 A g\(^{-1}\), Fe\(_7\)S\(_8\) electrode only offered a capacity of 147 mA h g\(^{-1}\). This suggests that S/N-C nanofibers could improve the performance of Fe\(_7\)S\(_8\) in the stability and conductivity. Moreover, although S/N-C also exhibited good stability and rate capability, it sustained relatively lower capacities than Fe\(_7\)S\(_8\)@S/N-C at all current densities. As shown in Figure 6.6 h, Fe\(_7\)S\(_8\)@S/N-C still showed a high capacity of 347 mA h g\(^{-1}\) after 150 cycles at 1 A g\(^{-1}\), with the retention rate of about 94% (compared with the 2nd cycle). However, the Fe\(_7\)S\(_8\) and S/N-C displayed a capacity of 41 and 274 mA h g\(^{-1}\) at the same current density after 150 cycles, respectively. This is because the void space in carbon nanofibers can alleviate the volume change of Fe\(_7\)S\(_8\) particles during sodiation/desodiation and the carbon nanofibers can prevent the loss of active materials. Table 6.1 lists the contrasting cycling performance of Fe\(_7\)S\(_8\) anode for SIBs.

Table 6.1 Comparisons of electrochemical performances of this work with the reported Fe\(_7\)S\(_8\) for Sodium ion batteries.

<table>
<thead>
<tr>
<th>Materials</th>
<th>1(^{st}) discharge capacity (mA h g(^{-1}))</th>
<th>Cycle number</th>
<th>Capacity after the reported cycles (mA h g(^{-1}))</th>
<th>Refs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe(_7)S(_8)@S/N-C nanofibers</td>
<td>~ 480 (1 A g(^{-1}))</td>
<td>150</td>
<td>347 (1 A g(^{-1}))</td>
<td>480</td>
</tr>
<tr>
<td>Ultrafine Fe(_7)S(_8)@C nanocrystals</td>
<td>629 (180 mA g(^{-1}))</td>
<td>1000</td>
<td>447 (180 mA g(^{-1}))</td>
<td>436</td>
</tr>
<tr>
<td>Fe(_7)S(_8)/N-graphene</td>
<td>758.7 (0.4 A g(^{-1}))</td>
<td>500</td>
<td>393.1 (0.4 A g(^{-1}))</td>
<td>437</td>
</tr>
<tr>
<td>Fe(_7)S(_8)@C</td>
<td>620 (0.1 A g(^{-1}))</td>
<td>100</td>
<td>375 (0.1 A g(^{-1}))</td>
<td>438</td>
</tr>
<tr>
<td>Fe(_7)S(_8)@NC-PS</td>
<td>750 (2 A g(^{-1}))</td>
<td>150</td>
<td>600 (2 A g(^{-1}))</td>
<td>439</td>
</tr>
</tbody>
</table>
The EIS profiles of the Fe$_7$S$_8$@S/N-C and Fe$_7$S$_8$ electrodes are shown in Figure 6.7. Before and after galvanostatic tests, the charge transfer resistances of Fe$_7$S$_8$@S/N-C were both smaller than those of Fe$_7$S$_8$, indicating the higher electronic conductivity of Fe$_7$S$_8$@S/N-C.

Figure 6.7 Nyquist plots of the Fe$_7$S$_8$ and Fe$_7$S$_8$@S/N-C electrodes (a) before and (b) after 10 cycles.

To explore the sodium storage kinetics of Fe$_7$S$_8$@S/N-C electrode, CV measurements were carried out at various scan rates from 0.2 to 5 mV s$^{-1}$. As displayed in Figure 6.8
a, both the anodic and cathodic peaks became broader with the scan rate increasing. The curves at low and high scan rates show the similar shapes, indicating a small polarization voltage. As well known, the electrochemical energy storage contribution of metal sulfides is generally consisted of two parts: diffusion-controlled process and capacitance-controlled behaviour. The relationship between the peak current \((i)\) and sweep rate \((v)\) obeys the law as follows:\(^{447}\)

\[
i = av^b
\]

where \(a\) and \(b\) are adjustable parameters. When the \(b\)-value is close to 0.5, indicating the diffusion-controlled process. It reveals the capacitance-controlled behaviour as the value is equal to 1. The \(b\)-value can be calculated by fitting the \(\log(v)\) to \(\log(i)\). Surprisingly, depending on the calculation result, the \(b\)-values are 0.88 and 0.68 for anodic and cathodic peaks, respectively, as shown in Figure 6.8 b.
Figure 6.8 (a) CV curves at various sweep rates from 0.2 to 5 mV s$^{-1}$, (b) relationship between the peak currents and scan rates in logarithmic format, (c) capacitive contribution at a scan rate of 0.5 mV s$^{-1}$ and (d) contribution ratio of the capacitive and diffusion-controlled capacity of Fe$_7$S$_8$@S/N-C electrode.

The total capacitive contribution to the total capacity can be calculated by the following equations:

$$i = k_1v + k_2v^{1/2}$$ \hspace{1cm} (6)

where k_1v reveals the capacitive contribution and k_2v represents the diffusion-controlled contribution. As shown in Figure 6.8 c, 49.0% of the total capacity at the scan rate of 0.5 mV s$^{-1}$ come from capacitive controlled processes for Fe$_7$S$_8$@S/N-C electrode. From Figure 6.8 d, the contribution ratio of capacitance-controlled process gradually increased with the increase of the scan rates and finally a maximum value of 80.2% achieved at 5 mV s$^{-1}$. For pure Fe$_7$S$_8$ electrode, based on the calculation of CV curves (Figure 6.9 a), a higher ratio of
capacitive contribution in Figure 6.9 b reached. Based on above results, it indicates that the fast charge-discharge process not only occurs on the defect-site of S, N-doped carbon nanofibers, but also takes place on the surface of Fe$_7$S$_8$.

Figure 6.9 (a) CV curves at various sweep rates from 0.2 to 5 mV s$^{-1}$ and (b) contribution ratio of the capacitive and diffusion-controlled capacity of Fe$_7$S$_8$@S/N-C electrode.

6.4 Conclusion

In conclusion, we have successfully synthesized the Fe$_7$S$_8$@S/N-C nanofibers by electrospinning/sulfidation methods using α-Fe$_2$O$_3$ nanoparticles as the precursor. The Fe$_7$S$_8$@S/N-C demonstrated superior rate capability and stable cycling performance, which can be ascribed to S/N-C nanofibers because they can facilitate the stability of Fe$_7$S$_8$ during charge/discharge processes. This work will give useful guidance to design other metal sulfide anodes with the adjustment of structure and compositions.
7.1 General Conclusion

This thesis work is focused on preparing nanofiber-like functional carbon-based anode materials for SIBs, including nitrogen/sulfur co-doped carbon nanofibers (N/S-C), WS$_2$ coated nitrogen/sulfur co-doped carbon nanofibers (WS$_2$@N/S-C), and Fe$_7$S$_8$ embedded nitrogen/sulfur co-doped carbon nanofibers (Fe$_7$S$_8$@N/S-C). The preparation, structures, compositions and electrochemical performance of these materials were thoroughly studied. These materials exhibited excellent electrochemical performance in long-term cyclability and rate capability, which can be attributed to the synergistic effect of N, S-co-doping, the high conductivity of carbon nanofibers and metal sulfides embedded into the carbon nanofibers. These results were summarized as follows.

The cycling life of Na-ion batteries is limited by the volumetric changes of sodium anodes during the sodiation/desodiation processes. To solve the problem, we have used the electrospinning method to successfully fabricate mesoporous S/N-C nanofibers, which show a high capacity and high-rate capability as an anode material for Na-ion battery. The S/N-C nanofibers delivered a high reversible capacity of 552.5 and 355.3 mA h g$^{-1}$ at 0.1 and 5 A g$^{-1}$, respectively due to the high S-doping (27.95%) in the carbon nanofibers. The introduction of N and S in S/N-C nanofibers increases the active sites for Na$^+$ storage and reduces the energy required for Na$^+$ transfer, as
confirmed by *in situ* Raman spectroscopy and DFT calculations. Moreover, the mesoporous S/N nanofibers are wetted by liquid electrolyte, which facilitates the Na⁺ transport and increases the rate performance, thus making them a suitable anode material for SIBs and other electrochemical energy storage devices.

WS₂ nanosheets embedded lotus rhizome-like heteroatoms doped carbon nanofibers (WS₂@S/N-C) with abundant hierarchical tubes inside were designed. The prepared WS₂@S/N-C nanofibers exhibit a high discharge capacity of 381 mA h g⁻¹ at 100 mA g⁻¹, an excellent rate capacity of 108 mA h g⁻¹ at 30 A g⁻¹, and a stable capacity of 175 mA h g⁻¹ at 5 A g⁻¹ after 1000 cycles. The excellent performance of WS₂@S/N-C is attributed to the synergistic effect of WS₂ nanosheets with larger interlayer distance and stable lotus rhizome-like S/N-C nanofiber frameworks to alleviate the mechanical stress. Moreover, the WS₂@S/N-C electrode shows obvious pseudocapacitance effect at 1 mV s⁻¹ with a capacitive contribution of 86.5%. In addition, the DFT calculations further indicate that WS₂@S/N-C electrode is more favorable for Na storage. This novel synthetic strategy is a promising method, which can be applied to synthesize other electrode materials for energy storage devices in the future.

Iron sulfides have attained interest as electrode candidates for sodium-ion batteries (SIBs) owing to the rich chemical stoichiometries and high capacity. However, they usually exhibit poor cycling performance that is attributed to the large volume change during electrochemical sodiation process. We synthesized the Fe₇S₈@sulfur, nitrogen-doped carbon (S/N-C) nanofibers through electrospinning/sulfurization
processes with Fe$_2$O$_3$ particles as the precursor. The as-designed Fe$_7$S$_8@$S/N-C nanofibers presented a discharge capacity of 347 mA h g$^{-1}$ after 150 cycles at 1 A g$^{-1}$ and a high rate capacity of 220 mA h g$^{-1}$ at 5 A g$^{-1}$ in virtue of unique structural characteristics. The as-designed one-dimensional composites are promising anode materials for SIBs in the future.

7.2 Outlook

Although some advances have been achieved to develop high-performance anode materials for SIBs, it remains great challenge in meeting the practical applications of SIBs. The low initial Columbic efficiency, cycling performance and complicated preparing process of anode materials still hinder the development in SIBs. Therefore, developing Na storage anode materials with good electrochemical performance is in high demand. The research strategy to fabricate high-performance anodes in this thesis could be meaningful and give some insights into exploring new anode materials for SIBs to other researchers.

However, to meet the demands for practical applications, some future research directions should be carried out as follows:

7.2.1 Large-scale preparation of nanofibers

Our present electrospinning technology offers us with uniform nanofibers, which can be controlled from the porosity to components. This will provide us a good platform
to study the influence of active components on the Na storage performance as model samples. However, its preparation efficiency is low, which limits the potential application in large-scale battery industry. Therefore, it is necessary to develop advanced electrospinning technologies to prepare functional nanofibers in a large scale with high efficiency. Some strategies are proposed, such as using more nozzles in each time, speeding up the feeding rate while keeping the formation of nanofibers.

7.2.2 Pre-sodiation of the as-obtained nanofibers

Although the materials in our thesis work demonstrated excellent electrochemical performance in cycling stability and rate capability, there is still serious problem of low initial Coulombic efficiency for the anode materials, which hindered their practical application. One of the most possible reasons is the irreversible reaction in the first charge/discharge process. Thus, to improve the initial Coulombic efficiency, it is proven to be effective to pre-sodiate the as-obtained nanofibers by electrochemical methods.

7.2.3 Detailed Na storage mechanism study

Although many high-performance anode materials have been explored for SIBs, the detailed Na storage mechanisms are still unclear, which will hinder their further development. Although some techniques have been used, such as in-situ Raman spectrum, in-situ XRD and DFT calculations, some precise in-situ techniques are still needed to study the Na storage mechanism of some materials, such as in-situ TEM,
\textit{in-situ} synchrotron radiation, molecular dynamics and others. With the help of these techniques, detailed Na storage mechanism will be clearer, which can give some suggestions of designing novel anode materials for SIBs.

\textbf{7.2.4 Optimizing electrolyte formulations}

Electrolytes play crucial roles in determining the performance of the anode materials for SIBs, especially carbon materials. As we know, the electrolyte is composed of organic solvents, electrolyte salts, and functional additives. Thus, how to adjust the components of the electrolyte to match the anode material is important but complicated. Moreover, the optimized performance of anode materials can be obtained through optimizing the electrolyte formulations.
REFERENCES

44. W. Chen and D. Deng, *Carbon*, 2015, **87**, 70-77.

102. Y. Zhang, Y. V. Lim, S. Huang, M. E. Pam, Y. Wang, L. K. Ang, Y. Shi and H. Y. Yang, Small, 2018, 14, 1800898.

S. Peng, X. Han, L. Li, Z. Zhu, F. Cheng, M. Srinivasan, S. Adams and S. Ramakrishna, Small, 2016, 12, 1359-1368.

Q. Pan, J. Xie, S. Liu, G. Cao, T. Zhu and X. Zhao, RSC Advances, 2013, 3, 3899-3906.

214. Z. Zhang, Y. Fu, X. Yang, Y. Qu and Z. Zhang, ChemNanoMat, 2015, 1, 409-414.
262. F. Zhao, N. Han, W. Huang, J. Li, H. Ye, F. Chen and Y. Li, Journal of Materials Chemistry A, 2015, 3, 21754-21759.

A. Manthiram and X. Yu, Small, 2015, 11, 2108-2114.

APPENDIX A: LIST OF PUBLICATIONS

