An evaluation of automated dietary assessment: a case study into the development, implementation and evaluation of Computer-Assisted Survey Technology as an adjunct to professional dietary consultation

Yasmine Probst
Smart Foods Centre, yasmine@uow.edu.au

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation
AN EVALUATION OF AUTOMATED DIETARY ASSESSMENT:
A Case Study into the Development, Implementation and Evaluation of
Computer-Assisted Survey Technology as an Adjunct to Professional
Dietary Consultation

A thesis submitted in fulfilment of the
requirements for the award for the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

YASMINE CHRISTA PROBST

BSc(Nutr), MSc(NutrDiet), GradCertBus, APD

SMART FOODS CENTRE
SCHOOL OF HEALTH SCIENCES
2006
I, Yasmine Probst hereby declare that the work comprising this thesis submitted in fulfilment of the requirements for the award of Doctor of Philosophy for the School of Health Sciences, University of Wollongong, is my own work and the result of original research. To the best of my knowledge it does not contain work previously published by another author unless due acknowledgement has been made in the text. This material has not been submitted for a higher degree at any other University or Institution.

Yasmine Probst

October 2006
This thesis is dedicated to my grandparents
 Günter & Dagmar Meschede
 and
 Wolfgang & Christel Probst

For all the happy times we have shared together
I would like to thank my supervisor Professor Linda Tapsell for her continuing support both academically and professionally throughout the past years. Your assistance has allowed me to grow both as a dietitian and as a researcher and I cannot thank you enough.

Thank you the entire CAST team for their efforts and hard work, you have been a great group to work with, I could not have asked for a better group.

I am very grateful to Professor David Steel and Sandy Burden for their statistical assistance and guidance during the development of the studies of this thesis and also in answering my many questions.

To Dr Lori Lockyer, Professor Barry Harper, Rob Wright, Karl Rudd, Karl Mutimer, Owen McKerrow, David Elsner, David Samboukis and Claire Krnavek for their wonderful multimedia abilities and amazing creativity in producing www.DietAdvice.net. Without your many talents I’m sure the successes of the program would not have been what they are today.

To Chester Goodsell, for reminding me to think from differing perspectives and for teaching me the true challenges of working with nutrient database data.

To Linda Blackmore and Dr Andrew Dalley for showing me the perspective of the GP and the complexity of working in primary healthcare. Your continuous work and support allowed this project not only to have a smooth progress into its implementation phase, but also a triumphant one.

To Ken Lynch, Troy Smith, Peter Feltham, Greg Hubbard, Ray Fitch, Nigel Maddock and Min Jin Hwang for their IT support. My knowledge in this area has greatly improved as I have learnt key phasing and terminology alongside the many possibilities of computing. To the remainder of the H&BS IT support team (Angus, Igor, Vishal,
Brian, Paul, Melissa and Trevor), thank you for always responding so quickly to my many requests throughout the project and being so cheerful each time.

To Dr Marijka Batterham thank you for your dietetic and statistical support. Your positive attitude and interpretive skill helped me to learn an area that I had previously limited knowledge. I would also like to thank Marian Baré, Theresa O’Sullivan, Pieta Autenzio and Rachel Cavanagh for their nutritional viewpoints during the development of the food hierarchy. Our numerous discussions allowed me to see the varied perspectives of interstate dietitians despite working toward a similar goal.

Thank you to Stuart Parker and John Walter for your assistance during the installation phase of this project. Your handy man skills during the installations were highly appreciated. To Serina Faraji, your help during the implementation phase was priceless and I am forever grateful for your positive attitude and willingness to learn.

Also I am very thankful for the advice and captivating conversations throughout my studies from Dr Craig Patch, Dr Lynda Gillen and Karen Walton. The value of coffee breaks was never as high as it was in the past few years! To Nicole Smede and Petra Olbrechtova your opinions and happiness gave balance to the project and to all the students who have been involved with the project, thank you.

This project would not have been possible without the support of the ARC linkage grant between the University of Wollongong, the Illawarra Division of General Practitioners and Xyris Software. Thank you for your kind contributions.

And lastly my greatest thanks to my family especially my mother and father and to my fiancé Greg whose support and understanding have been invaluable throughout the past years, I cannot thank you enough.
Conferences and publications

Peer-reviewed abstracts supporting this thesis

Non peer-reviewed abstracts supporting this thesis

Peer-reviewed papers supporting this thesis

Other peer-reviewed papers

Prizes and awards

- Best Oral Presentation: 2005 Dietitians Association of Australia Conference
- 1st place poster presentation for H&BS: 2005 University of Wollongong Higher Degree Student Research Conference
- Best research student for 2005: Smart Foods Centre, University of Wollongong
Table of Contents

LIST OF TABLES .. XVI

LIST OF FIGURES .. XVIII

GLOSSARY OF TERMINOLOGY ... XXII

EXECUTIVE SUMMARY .. XXIV

1 **COMPUTER-ASSISTED SURVEY TECHNOLOGY (CAST) DEVELOPMENT, IMPLEMENTATION AND EVALUATION** .. 27

1.1 Introduction .. 27

1.2 The process of dietary assessment .. 27

1.3 The significance of automating healthcare ... 28

1.4 A model of the CAST project ... 30

1.4.1 Development Phase ... 31

1.4.2 Testing Phase .. 32

1.4.3 Implementation Phase .. 32

1.4.4 Evaluation Phase ... 32

1.4.5 Delimitations of scope and key assumptions ... 32

1.5 Thesis outline ... 32

1.5.1 Thesis structure .. 33

2 **AUTOMATED DIETARY ASSESSMENT IN THE PRIMARY HEALTHCARE SETTING** ... 36

2.1 Introduction .. 36

2.2 Automating healthcare practice .. 36

2.2.1 Computers in general practice ... 36

2.2.2 Computers in dietetics .. 38

2.3 Automated dietary assessment .. 39

2.3.1 Programs in population surveys .. 40

2.3.2 Nutrition education programs.. 41

2.3.3 Nutrition programs in clinical management ... 42

2.3.4 Availability of assessment programs ... 51

2.3.5 Program structure .. 53

2.4 Computers and the general public .. 58

2.4.1 Access to computers .. 58
DEVELOPMENT OF A FOOD HIERARCHY & USER INTERFACE 116

4.1 Introduction .. 116
4.2 Aims ... 117
4.3 Process overview ... 118
4.4 Focus groups .. 118
4.5 Program structure ... 119
 4.5.1 Multiple pass approach ... 119
 4.5.2 Meal mapping .. 120
 4.5.3 Open vs. closed questioning sequence ... 120
4.6 Statistical analyses ... 121
 4.6.1 Minimum number of food questions .. 123
 4.6.2 Commonly consumed food items ... 123
 4.6.3 Foods eaten together ... 125
 4.6.4 Re-grouping foods ... 126
4.7 Face-validity testing ... 133
4.8 Interface development ... 137
 4.8.1 Meal selection ... 137
 4.8.2 Eating pattern questions ... 137
 4.8.3 Demographic data questions ... 138
 4.8.4 Food item selection .. 139
 4.8.5 Foods eaten together ... 141
 4.8.6 Food portion size and frequency selection ... 141
4.9 Discussion .. 142
 4.9.1 Overview ... 143
 4.9.2 Limitations and areas for further research ... 144
 4.9.3 Relevance to the thesis and implications for practice 145

5 VIDEO RECORDED USABILITY TESTING .. 148

5.1 Introduction ... 148
5.2 Aims .. 149
5.3 Methods ... 149
 5.3.1 Data collection .. 150
 5.3.2 Data analysis ... 153
5.4 Results .. 156
 5.4.1 Phase 1 Testing .. 157
 5.4.2 Website modifications ... 166
 5.4.3 Phase 2 Testing .. 166
5.5 Discussion

5.5.1 Overview

5.5.2 Limitations and areas for further research

5.5.3 Relevance to the thesis and implications for practice

6 CROSS-SECTIONAL STUDY OF AUTOMATED DIETARY ASSESSMENT IN THE PRIMARY HEALTHCARE SETTING

6.1 Introduction

6.2 Aims

6.3 Methods

6.3.1 Data collection

6.3.2 Data analysis

6.4 Results

6.4.1 GP recruitment

6.4.2 Patient characteristics

6.5 Discussion

6.5.1 Overview

6.5.2 Limitations and areas for further research

6.5.3 Relevance to the thesis and implications for practice

7 TRADITIONAL VERSES AUTOMATED ASSESSMENT

7.1 Introduction

7.2 Aims

7.3 Methods

7.3.1 Data collection

7.3.2 Data analysis

7.4 Results

7.4.1 Profile of patients

7.4.2 Repeatability

7.4.3 Relative validity

7.4.4 Dietary change

7.4.5 Patient preferences

7.5 Discussion

7.5.1 Overview

7.5.2 Limitations and areas for further research

7.5.3 Relevance to the thesis and implications for practice

8 PERSPECTIVES OF KEY STAKEHOLDERS
List of tables

Table 2-1 Review of nutrition programs, adapted from Probst et al. (2005) (11) 44
Table 2-2 Availability of selected nutrition programs, taken from Probst et al. (2005) (11) 52
Table 2-3 1998 WHO criteria for metabolic syndrome .. 62
Table 2-4 2001 ATP NCEP definition of metabolic syndrome .. 63
Table 2-5 2005 IDF criteria for metabolic syndrome ... 63
Table 2-6 Defining central obesity .. 64
Table 3-1 Advantages of computerised interviewing, taken from Probst et al. (2005) (11)...... 97
Table 3-2 Forms of automated interviewing, adapted from Probst et al. (2005) (11) 98
Table 4-1 ABS NNS95 Food grouping structure (149) .. 122
Table 4-2 Example of a comparison of ABS and AUSNUT listing .. 124
Table 4-3 Foods commonly reported in NNS95 showing percentage of all food items reported ... 124
Table 4-4 List of foods eaten with other foods (associated foods) used in prompting questions in the CAST website... 126
Table 4-5 Sample of cluster analysis for NNS95 group 194 (Cheese) showing macronutrients, results for each separate cluster technique, and areas of professional judgement 131
Table 4-6 First level food groups showing the original NNS95 food groups from which they were formed .. 135
Table 4-7 Number of food groups in each level of the new food database............................... 136
Table 5-1: Profile of lab testing participants... 157
Table 5-2 Sample of positive and negative experiences related to feelings.............................. 159
Table 5-3: Action classes created to analyse time data from participant interaction with the website ... 161
Table 5-4: Summary of total time data for each action class .. 163
Table 6-1 Stage of completion of the dietary assessment questionnaire (n=200) 175
Table 6-2 Demographic profile of patients using the website 180
Table 6-3 Computer experience and comfort of DietAdvice website users (n=188) 180
Table 6-4 Odds between demographic variables (n=188) ... 181
Table 6-5 Association between computer experience, age and location of computer use (n=188) .. 181
Table 6-6 Cross tabulation of reporting status with age, BMI and gender (n=143) 182
Table 7-1 Demographic profile of all patients at t=0 .. 194
Table 7-2 Anthropometric data for t=0, 2 and 8 ... 194
Table 7-3 Computer experience for t=0, 2 and 8 ... 195
Table 7-4 Computer comfort for t=0, 2 and 8 .. 195
Table 7-5 Computer ownership for t=0, 2 and 8 ... 196
Table 7-6 Under- and over-reporting behaviour for t=0 and t=2 196
Table 7-7 T-tests and Pearson’s correlation coefficients for food record and diet history for t=0 and t=2 ... 198
Table 7-8 Percentage dietary change per group between t=2 and t=8 200
Table 7-9 Repeated measures ANOVA for evaluation questionnaires (n=30) 202
Table 8-1 Profile of stakeholder interview participants .. 216
Table 8-2 Key categories within patient stakeholder interviews 218
Table 8-3 Key categories within dietitian stakeholder interviews 219
Table 8-4 Key categories within ‘recruiting’ GP stakeholder interviews 221
Table 8-5 Key categories within ‘non-recruiting’ GP stakeholder interviews 222
List of figures

Figure 1-1 Overview of the CAST case study ... 30
Figure 1-2 Model of the CAST case study ... 31
Figure 3-1 Relationship between research methodology and research methods 70
Figure 3-2 Overview of the CAST case study ... 72
Figure 3-3 Feed forward and feedback mechanisms between phases of the CAST case study.. 75
Figure 3-4 The technology acceptance model .. 78
Figure 3-5 Rules for interface design... 108
Figure 3-6 Study design of the CAST project showing phases and studies within each phase 112
Figure 4-1 Overview of the CAST case study showing development phase 116
Figure 4-2 Cluster analysis for NNS95 group 127 (Breakfast cereals)......................... 129
Figure 4-3 Screen shot of 'Meals you eat' section.. 137
Figure 4-4 Screen shot of 'Your eating pattern ' section ... 138
Figure 4-5 Screen shot of 'Information about you' section ... 139
Figure 4-6 Screen shot showing categories and subcategories from food hierarchy 140
Figure 4-7 Screen shot showing associated foods as probing questions...................... 141
Figure 4-8 Screen shot of food portion size and frequency section........................... 142
Figure 5-1 Overview of the CAST case study showing the testing phase 148
Figure 5-2 Observational study design for phase 1 testing .. 150
Figure 5-3 Laboratory room set up ... 152
Figure 5-4 Example of edited video footage... 154
Figure 5-5 Assistance level by level of computer experience...................................... 158
Figure 5-6 Interaction of non-verbal communication with website usability testing........ 160
Figure 5-7 Behaviours of unspoken emotion when selecting food items 160
Figure 5-8 Behaviours of uncertainty when selecting food items............................... 161
Figure 5-9 Box plots for key stages of the website for both phase 1 and phase 2. 165
Figure 6-1 Overview of the CAST case study showing study 3 of the implementation phase 172
Figure 6-2 Number of patients for which data was available ... 175
Figure 6-3 Actual (n=224) & predicted (n=200) patient recruitment rates per month 177
Figure 6-4 Actual (n=224) & predicted (n=2000) recruitment trends per month 178
Figure 6-5 Age groups of website users (years) ... 179
Figure 7-1 Overview of the CAST case study showing study 4 of the implementation phase 187
Figure 7-2: Study design indicating repeatability, validity testing and dietary change 190
Figure 7-3 Patient recruitment process .. 193
Figure 7-4 Bland Altman plots showing mean and 1.96SD for automated assessment......... 199
Figure 8-1 Overview of the CAST case study showing the evaluation phase 212
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line</td>
</tr>
<tr>
<td>AIHW</td>
<td>Australian Institute of Health and Welfare</td>
</tr>
<tr>
<td>APA(I)</td>
<td>Australian Postgraduate Award – Industry scholarship</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>BMR</td>
<td>Basal Metabolic Rate</td>
</tr>
<tr>
<td>CAPI</td>
<td>Computer-Assisted Personal Interviewing</td>
</tr>
<tr>
<td>CASI</td>
<td>Computer-Assisted Self Interviewing</td>
</tr>
<tr>
<td>CAST</td>
<td>Computer-Assisted Survey Technology</td>
</tr>
<tr>
<td>CATI</td>
<td>Computer-Assisted Telephone Interviewing</td>
</tr>
<tr>
<td>CD</td>
<td>Compact Disk</td>
</tr>
<tr>
<td>CEO</td>
<td>Chief Executive Officer</td>
</tr>
<tr>
<td>CHO</td>
<td>Carbohydrate</td>
</tr>
<tr>
<td>CURF</td>
<td>Confidential Unit Record Files</td>
</tr>
<tr>
<td>DAA</td>
<td>Dietitians Association of Australia</td>
</tr>
<tr>
<td>DASH</td>
<td>Dietary Approaches to Stop Hypertension</td>
</tr>
<tr>
<td>DH</td>
<td>Diet History</td>
</tr>
<tr>
<td>DI</td>
<td>Dietitians Interface</td>
</tr>
<tr>
<td>DVD</td>
<td>Digital Video Disk</td>
</tr>
<tr>
<td>EE</td>
<td>Energy Expenditure</td>
</tr>
<tr>
<td>EI</td>
<td>Energy Intake</td>
</tr>
<tr>
<td>FFQ</td>
<td>Food Frequency Questionnaire</td>
</tr>
<tr>
<td>FR</td>
<td>Food Record</td>
</tr>
<tr>
<td>FSANZ</td>
<td>Food Standards Australia and New Zealand</td>
</tr>
<tr>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>GB</td>
<td>Gigabyte</td>
</tr>
<tr>
<td>GI</td>
<td>Glycaemic Index</td>
</tr>
<tr>
<td>GP</td>
<td>General Practitioner</td>
</tr>
<tr>
<td>HREC</td>
<td>University of Wollongong Human Research Ethics Committee</td>
</tr>
<tr>
<td>IDF</td>
<td>International Diabetes Federation</td>
</tr>
<tr>
<td>IFG</td>
<td>Impaired Fasting Glucose</td>
</tr>
<tr>
<td>IGT</td>
<td>Impaired Glucose Tolerance</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>IMM</td>
<td>Interactive Multimedia</td>
</tr>
<tr>
<td>KB</td>
<td>Kilobyte</td>
</tr>
<tr>
<td>kJ</td>
<td>Kilojoule</td>
</tr>
<tr>
<td>L</td>
<td>Litre</td>
</tr>
<tr>
<td>Ltd</td>
<td>Limited</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>mg</td>
<td>Milligrams</td>
</tr>
<tr>
<td>mL</td>
<td>Millilitre</td>
</tr>
<tr>
<td>mmHg</td>
<td>Millimetres of Mercury</td>
</tr>
<tr>
<td>mmol/L</td>
<td>Millimoles per litre</td>
</tr>
<tr>
<td>MUFA</td>
<td>Monounsaturated Fatty Acid</td>
</tr>
<tr>
<td>n</td>
<td>Sample Size</td>
</tr>
<tr>
<td>n-3</td>
<td>Omega-3 fatty acid</td>
</tr>
<tr>
<td>n-6</td>
<td>Omega-6 fatty acid</td>
</tr>
<tr>
<td>NNS95</td>
<td>National Nutrition Survey of Australia 1995</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>PAL</td>
<td>Physical Activity Level</td>
</tr>
<tr>
<td>Pty</td>
<td>Proprietary</td>
</tr>
<tr>
<td>PUFA</td>
<td>Polyunsaturated Fatty Acid</td>
</tr>
<tr>
<td>QLD</td>
<td>Queensland</td>
</tr>
<tr>
<td>RDI</td>
<td>Recommended Dietary Intake</td>
</tr>
<tr>
<td>SAQ</td>
<td>Self-Administered Questionnaire</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SES</td>
<td>Socio-Economic Status</td>
</tr>
<tr>
<td>TAFE</td>
<td>Technical and Applied Further Education</td>
</tr>
<tr>
<td>TAM</td>
<td>Technology Acceptance Model</td>
</tr>
<tr>
<td>T2DM</td>
<td>Type 2 Diabetes Mellitus</td>
</tr>
<tr>
<td>UI</td>
<td>User Interface</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>UOW</td>
<td>University of Wollongong</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual Analogue Scale</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organisation</td>
</tr>
</tbody>
</table>
Glossary of terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABS codes</td>
<td>Codes given to food items and food groups from the NNS95</td>
</tr>
<tr>
<td>2-digit</td>
<td>= equivalent to CAST categories</td>
</tr>
<tr>
<td>3-digit</td>
<td>= equivalent to CAST subcategories</td>
</tr>
<tr>
<td>4-digit</td>
<td>= equivalent to CAST food types</td>
</tr>
<tr>
<td>Associated food type</td>
<td>A more detailed but still broad grouping of food items that are eaten with the food type items selected</td>
</tr>
<tr>
<td>Associated subcategory</td>
<td>A less coarse grouping of foods that are eaten with the subcategory food items selected</td>
</tr>
<tr>
<td>Associated food</td>
<td>A food item eaten with or on another food item</td>
</tr>
<tr>
<td>AUSNUT</td>
<td>Database of food and nutrient data of 4500 foods consumed in Australia updated regularly by FSANZ.</td>
</tr>
<tr>
<td>Automated assessment</td>
<td>Dietary assessment utilising computer technology</td>
</tr>
<tr>
<td>CAST codes</td>
<td>Unique codes given to food items and food groups for the CAST project to aid with identification</td>
</tr>
<tr>
<td>Category</td>
<td>Very coarse level food grouping for display only on screen. These foods will not be selected by the patient they will simply be a means for sorting on screen</td>
</tr>
<tr>
<td>Computer literacy</td>
<td>The ability to use and/or understand basic concepts relating to computer use and function</td>
</tr>
<tr>
<td>CURF</td>
<td>Confidential Unit Record Files used for the statistical analysis. These files can only be accessed by limited parties and have been obtained from the National Nutrition Survey (NNS95).</td>
</tr>
<tr>
<td>Demographic data</td>
<td>Questions to give a profile of the user including education, SES, anthropometry and computer use. Questions are to be asked after the introduction prior to assessment of intake</td>
</tr>
<tr>
<td>Diet</td>
<td>Intake of foods rather than the restriction of particular food items</td>
</tr>
<tr>
<td>Dietary prescription</td>
<td>Dietary advice prepared by a dietitian sent to the GP of the patient</td>
</tr>
<tr>
<td>Dietitian interface</td>
<td>Nutrient analysis program which accepts the information from the website and analyses the nutrient composition. To be referred to be dietitian during follow up interview.</td>
</tr>
<tr>
<td>Eating pattern questions</td>
<td>Limitations/changes people have made to their food intake e.g. Vegetarian eating. This will also include questions about default types of foods used as a checklist for the dietitian eg milk, oil.</td>
</tr>
<tr>
<td>Follow up interview</td>
<td>Telephone call between the dietitian and the patient to revise/edit information that had been entered into the UI by the patient</td>
</tr>
<tr>
<td>Food frequency</td>
<td>The amount of times a Food Type is eaten during the period of one week. (3w indicates 3 times per week, 3d indicates 3 times per day)</td>
</tr>
<tr>
<td>Food literacy</td>
<td>The level of understanding of foods and their nutrient interactions</td>
</tr>
<tr>
<td>Food type</td>
<td>A more detailed but still broad grouping of food items based on the identifying different types of the same food item. These items will be selected by the user during Pass 3. Not all subcategories will be required to have a food type.</td>
</tr>
<tr>
<td>Introduction</td>
<td>An introduction/welcome to the CAST interface, identification of the user and eating pattern questions</td>
</tr>
<tr>
<td>Meal</td>
<td>Breakfast, lunch, dinner, snacks (morning tea, afternoon tea, supper)</td>
</tr>
<tr>
<td>Pass</td>
<td>Time taken to complete one complete cycle of the meals for one day at varying levels of detail</td>
</tr>
<tr>
<td>Pass 1</td>
<td>Meal frequency questioning</td>
</tr>
<tr>
<td>Pass 2</td>
<td>Sub-category questioning</td>
</tr>
<tr>
<td>Pass 3</td>
<td>Food Type questioning</td>
</tr>
<tr>
<td>Pass 4</td>
<td>Food frequency and portion size questioning</td>
</tr>
<tr>
<td>Portion size</td>
<td>The amount of food that is eaten using the most common measure for the food item e.g. Bread = Slices</td>
</tr>
<tr>
<td>Recipe</td>
<td>A combination of food items or ingredients to compose a dish or meal. To be used in the dietitian interface with default versions that may be modified. These will link with the eating pattern questions to ensure individualisation of the recipe for the specific user</td>
</tr>
<tr>
<td>Subcategory</td>
<td>A less coarse grouping of food items based on common characteristics. These items will be selected by the user during Pass 2.</td>
</tr>
<tr>
<td>Traditional assessment</td>
<td>The manual pen and paper face-to-face dietary interview of the dietitian with a patient</td>
</tr>
<tr>
<td>User interface</td>
<td>Website into which patients enter their dietary information in the GP practice/at home</td>
</tr>
</tbody>
</table>
Executive Summary

Dietary assessment has changed dramatically with time, progressing from face-to-face interviews and hand calculated nutrient intakes to the use of computer technology to automate various parts of the process. The most common application is the use of software packages to calculate nutrient intake data obtained from dietary interviews. The development of technology to automate the interview process will allow for clinicians to spend more time focussing on patient education and counselling. The central hypothesis tested in this thesis was that automated dietary assessment would prove to be a feasible adjunct to the professional consultation in the primary healthcare setting.

Development phase
A series of studies were conducted examining various aspects of computer-assisted survey technology (CAST) applied to dietary advice in the primary healthcare setting. The research is presented as a case study, using action research methodology. Items in the dietary survey were developed from data reduction of food lists reported in the 1995 Australian National Nutrition Survey (NNS95), in conjunction with professional interpretation and judgement. The opinions and beliefs of patients from focus group interviews shaped development of the user interface and a dynamic website was developed to best allow for a diversity of eating patterns.

Testing phase
Video-recorded usability testing found the website to be user friendly with the time taken to complete the survey comparable to the time taken for a dietitian to interview and assess a patient’s food intake. The website was then implemented in the primary healthcare setting over a period of twelve months. Computers were set-up in fourteen medical practices in the Illawarra region of NSW, Australia. Doctors recruited patients with metabolic syndrome to use the website. Data was sent to a dietitian in the research team for development of an individualised dietary prescription, which was then sent back to the doctor to discuss with the patient.
Implementation phase

A cross-section of 200 patients revealed the majority of users were aged between 46 and 65 years, overweight and physically inactive. Computer ownership was identified in 80% of the users, with only 8% of patients having never used a computer previously. The computer located in the medical practice was the least preferred location of use and patients with a higher BMI were 1.9 times (p=0.04) more likely to use the computer in the home or an alternate location than at the medical practice. Reported nutrient data was highly variable. Under-reporting was observed in 46 patients (32.2%), over-reporting in 31 (21.7%) of patients and 66 patients (46.2%) reported their intakes on target. No relationships were found for the reporting status of the patients and their age, BMI or gender.

A repeatability study with n=38 patients revealed a learning effect which led to increased understanding of the website functions with time. Compared to a 3-day weighed food record, data from the website produced stronger correlations than a face-to-face diet history assessment. Patients using the website achieved an average 25% of their dietary goals within six weeks, despite a preference for face-to-face contact with the dietitian. Stakeholder evaluation established acceptance of the technology by dietitians, doctors and patients and provided insights into their positions within the healthcare system.

Evaluation phase

The research found that computerised assessment of dietary intake was a feasible addition to daily practice in the primary healthcare setting. Automating the diet history interview via the internet allowed increased patient access to dietitians whilst improving the doctors’ awareness of the nutrition needs of their patients. This is especially important in the growing light of metabolic syndrome worldwide.