2012

Bonding of Mg-base metallic glass through rapid resistive welding

Karl F. Shamlaye
University Of New South Wales

Kevin J. Laws
University of New South Wales

Bob De Jong
University Of Wollongong, rdejong@uow.edu.au

Michael Ferry
University Of New South Wales

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Bonding of Mg-base metallic glass through rapid resistive welding

Abstract
Efficient joining of Magnesium-base bulk metallic glass can be achieved via bonding through resistance welding using rapid heating rates. Bonding of Mg-base metallic glasses (as well as regular magnesium alloys) is a process hindered by the ease of oxide formation in these materials. In this work, resistance welding of Mg65Cu25Y10 metallic glass sheets was investigated up to 627 K, below the liquidus temperature; and also within the supercooled liquid region (443-483 K) of the metallic glass; during processing times of a few seconds, creating strong joins - even when processed in air. It is seen that a fluxing pre-treatment of the material surface aids in achieving effective bonding. Our work has also shown that Mg-base metallic glasses can be effectively and easily joined to other types of materials.

Keywords
metallic, base, welding, mg, resistive, bonding, rapid, glass

Disciplines
Engineering | Science and Technology Studies

Publication Details

This conference paper is available at Research Online: http://ro.uow.edu.au/eispapers/753
BONDING OF Mg-BASE METALLIC GLASS THROUGH RAPID RESISTIVE WELDING

Karl F. Shamlaye*, 1,2 Kevin J. Laws,1,2 Bob de Jong,3 Michael Ferry1,2

1 Australian Research Council Centre of Excellence for Design in Light Metals, UNSW, Sydney, NSW 2052, Australia
2 School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
3 University of Wollongong, Wollongong, NSW 2522, Australia

*corresponding author: k.shamlaye@unsw.edu.au

Keywords: Resistance welding, Magnesium-base metallic glass, rapid heating

Abstract

Efficient joining of Magnesium-base bulk metallic glass can be achieved via bonding through resistance welding using rapid heating rates. Bonding of Mg-base metallic glasses (as well as regular magnesium alloys) is a process hindered by the ease of oxide formation in these materials. In this work, resistance welding of Mg_{65}Cu_{25}Y_{10} metallic glass sheets was investigated up to 627 K, below the liquidus temperature; and also within the supercooled liquid region (443-483 K) of the metallic glass; during processing times of a few seconds, creating strong joins – even when processed in air. It is seen that a fluxing pre-treatment of the material surface aids in achieving effective bonding. Our work has also shown that Mg-base metallic glasses can be effectively and easily joined to other types of materials.

1. Introduction

Metallic glasses have useful properties due to their amorphous structure, such as high strength and nearly 100% elastic energy transfer [1]. In particular, industry is gearing towards strong, lightweight materials and Mg-base metallic glasses may provide a useful candidate. In addition joining of metallic glasses may become essential for assembling components for industrial applications [2]. Various attempts at joining metallic glasses have been trialled, such as various forms of welding, e.g. friction [3], laser [4] and electron [5]. But these methods usually left a partially or fully crystallized interface of often weak brittle products [6] creating possibility of subsequent failure at the joins. The challenge is that the join should be fully amorphous, without formation of brittle compounds due to full or partial recrystallization at interfacial zones of joins.

With this consideration, Wang et al [7] and Maeda et al [8] have had some success in joining similar metallic glasses without producing any crystalline interface however at long processing times (the former mentioned work involved joining two metallic glass surfaces for over 60 minutes) or insufficient bonding strengths.

Efficiency in joining of metallic glasses can be attempted by reducing the time required for joining. All the aforementioned processes for joining metallic glasses involve heating the
samples. Heating through the sample boundary does not allow uniform heating in short times (even between 1 to 10 seconds). Rapid heating requires that power is dissipated homogeneously and volumetrically to avoid temperature variations in the sample [9].

A current pulse can be used to achieve rapid and uniform heating through metallic glasses can be done [9] by taking advantage of their typically large and nearly temperature-independent electrical resistivity [10, 11].

A suitable Mg-base metallic glass to consider for rapid heating experiments is the Mg65Cu25Y10 alloy as it has a large processing window of approximately 60 K [12]. This processing window is called the supercooled liquid region (SCLR) and defined as $\Delta T = T_x - T_g$, where T_g is the onset of glass transition and T_x the onset of crystallization (all of which are heating-rate dependent). In this temperature region, metallic glasses can undergo significant plastic deformation as the viscosity drops significantly, whereby viscosities of 10^6 Pa.s and lower can be achieved. The larger the value of ΔT the higher the metastability of the supercooled liquid with respect to crystallization [13]. As seen in Figure 1. above a heating rate regime, crystallization can be avoided during heating.

![Figure 1: Time-temperature-transformation diagram including cooling curves from wedge casting of Mg65Cu25Y10, isothermal annealing data showing the onset and completion of crystallisation at given temperatures [14] and the C-curve predicted by the Takeuchi model [15] (Image)](image)

In a similar vein to work done by Kuroda et al [16], we aim to attempt joining of metallic glass plates using resistive welding, however to note, their experiments were on Zr-base glasses and conducted over a 20 s forming period. Additionally, if this method is successful this may generate further interest for combining conventional alloys to metallic glasses [17].

For our work a Gleeble 3500 system was considered for thermomechanical processing, given its capability for rapid heating (up to 10,000 °C /s), in addition to its usage of low voltage AC (at 50 Hz) which allows for excellent control for rapid heating; along with the capability for precise force application.

2. Experimental

Suction cast 70mm × 10 mm × 1 mm bars of Mg65Cu25Y10 bulk metallic glass were cut to 10 mm × 10 mm × 1 mm plates using a slow speed diamond saw and the surfaces polished using 1200 grit paper and further surface cleaned using acetone.
In the first part of the experiment, four plates were stacked together (Figure 2) to be joined via resistive heating between two copper platens in a Gleeble 3500 Thermomechanical simulator. To monitor the temperature of the arrangement, a type-K thermocouple was attached to the centre plate. In the second part, a copper sheet (having similar dimensions to the metallic glass plates) was put in between two metallic glass plates to be joined. The samples were heated from a low set temperature to a processing temperature between T_g and T_M (the melting temperature) in less than 1 second.

A thermomechanical program (as summarised in Table 1) was imputed for rapid heating in the Gleeble 3500, which involved five stages: (i) Heating the sample to a ‘stabilising temperature’ of 125 °C; (ii) holding at for 5 seconds in order to remove possibility of heating localisation during (iii) rapid heating. A heating rate of 320 °C per second was applied, with heating to a processing temperature of 400 °C with subsequent (iv) holding at for 5 s followed by (v) quenching.

In order to minimise possible arcing between the plates, a compressive holding force of 245 N was applied during period (i) to minimise any gaps caused by misalignment of the plate surfaces. To accommodate the drop in viscosity at the processing temperature (during period (iii), the compressive force was lowered to 177 N.

Table 1. Thermal cycle input

<table>
<thead>
<tr>
<th>Stage</th>
<th>Temperature</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i) Heat stabilization</td>
<td>Heat to 125 °C</td>
<td>To avoid heat localization</td>
</tr>
<tr>
<td>(ii) Holding period</td>
<td>Hold at 125 °C</td>
<td>5 s holding time</td>
</tr>
<tr>
<td>(iii) Rapid heating</td>
<td>Heat to 400 °C</td>
<td>Heating rate at 320 °C/s</td>
</tr>
<tr>
<td>(iv) Hold at process temp</td>
<td>Hold at 400 °C</td>
<td>5 s holding time</td>
</tr>
<tr>
<td>(v) Quench</td>
<td>To ambient temperature</td>
<td>Water quenching</td>
</tr>
</tbody>
</table>

Figure 2: Stack of four metallic glass plates with a type-k thermocouple attached
3. Results and Discussion

3.1 Formed specimens

Figure 3: Set up of stacked material to be welded between copper platens in the chamber of a Gleeble 3500. A blue pipe from overhead releases a water jet at 40 ksi to quench the samples. A type-k thermocouple is attached to the centre of the arrangement to monitor sample temperature throughout the process.

Figure 4: Two specimens of joined metallic glass made up of four plates each. Region (A) shows parts which have bulged out during processing as the viscosity of the glass drops during heating through ΔT under compressive force (The original width was 10 mm, and the average final width was 12.58 mm).

Figure 5: Cu sheet encapsulated between two metallic glass plates: (a) A square outline of the Cu sheet can be seen through the covering plate, as the metallic glass has flowed through processing and 'bulged out'. (b) A part of the Cu sheet is revealed after removal of part of the formed sample.
3.2. Thermomechanical processing

The results of the thermal profile of welding 4 metallic glass plates are shown in Figure 7.
3.3. Microstructure

3.3.1 Joined metallic glass plates

Figure 8: Thermal cycle profile (TC1) of a copper sheet inserted between two metallic glass plates. The sample temperature builds up from 380°C to the set processing temperature, indicating some power loss to the sample.

Figure 9: (a) Polished cross section of 4 plate welded Mg-base metallic glass. (b) SEM image showing the disappearance of an interface region (between two plates) going towards the centre of the welded metallic glass.

Figure 100: Surface cleaning and immersion in acetone for several minutes enable the interface regions between the four plates to be seen. To note, no defects are present at the interfaces and region (A) even shows disappearance of part of the interface.
3.3.2. Copper sheet sandwiched between metallic glass plates

Figure 11: (a) Sectioned tip of encapsulated copper sheet, with good contact between metallic glass and copper; (b) backscattered electron micrograph showing a close-up of an edge of the copper sheet (light coloured region) in contact with the metallic glass (dark coloured region).

4. Conclusion

A method of rapidly heating metallic glasses through and above the SCLR to cause joining was investigated. The time for rapid heating was calculated to be close to 0.87 s.

Efficient joining of Mg-base metallic glass plates was achieved, with up to four plates joined together. Additionally, joining of conventional crystalline copper to Mg-base metallic glass was possible.

The process ensued that the occurrence of oxidation was minimised with X-ray diffraction showing amorphous halo traces similar to the as-cast metallic glass. The encapsulated copper specimen did show crystalline peaks associated with Cu-crystalline peaks.

The interface between metallic glass plates showed no defects and revealed a successful welding between plates.

In conclusion, it is seen how the Gleeble 3500 Thermomechanical simulator makes the possibility of rapid resistive welding of metallic glasses possible, even through processing in air.

References

