Indigenous plant recruitment limitation by bitou bush (Chrysanthemoides monilifera spp. rotundata): effect on life history stages and allelopathic mechanisms

Emilie-Jane Ens

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Indigenous plant recruitment limitation by bitou bush (*Chrysanthemoides monilifera* spp. *rotundata*): effect on life history stages and allelopathic mechanisms

A thesis submitted in fulfillment of the requirements for the award of the degree of

Doctorate of Philosophy

From the School of Biological Sciences

University of Wollongong

by

Emilie-Jane Ens B. Sc. (Hons)

2007

Indigenous coastal vegetation Bitou bush invasion Regenerating bitou bush
Table of Contents

Abstract ... xi

Acknowledgements .. xvii

Chapter 1: General Introduction .. 1
 1.1 The phenomenon of exotic plant invasion ... 1
 1.1.1 Definitions .. 1
 1.1.2 History and modes of exotic invasive plant introduction ... 1
 1.2 Impacts of plant invasion ... 3
 1.2.1 Detection and difficulty of impact assessment ... 3
 1.2.2 Effects on resident plants .. 6
 1.2.3 Effects on ecosystem function ... 8
 1.3 Mechanisms of plant invasion ... 9
 1.3.1 Exploitation competition ... 13
 1.3.2 Interference competition ... 18
 1.3.3 Occupation of free space ... 20
 1.4 Bitou bush invasion in Australia ... 21
 1.4.1 History of invasion ... 21
 1.4.2 Biodiversity impacts .. 22
 1.4.3 Mechanisms of invasion ... 22
 1.5 Research aims ... 24
 1.6 Thesis outline ... 25

Chapter 2: Exotic woody invader limits the recruitment of three indigenous plant species ... 27
 2.1 Introduction ... 27
 2.2 Methods .. 31
 2.2.1 Study location and study species ... 31
 2.2.2 Population structure .. 33
 2.2.3 Morphological and physiological responses ... 33
 2.2.4 Statistical analysis ... 34
2.3 Results .. 35
 2.3.1 Population structure .. 35
 2.3.2 Morphological and physiological responses of mature indigenous species 37
2.4 Discussion ... 40

Chapter 3: Seasonal photosynthetic patterns of mature Australian coastal
plants and physiological tolerance to exotic woody weed
invasion. ... 47
3.1 Introduction ... 47
3.2 Materials and methods .. 50
 3.2.1 Study location ... 50
 3.2.2 Microhabitat physico-chemical characteristics ... 51
 3.2.3 Seasonal in-situ Φ_{PSII} and Pmax of $C. \text{alba}$, $M. \text{elliptica}$ and $L. \text{longifolia}$ in
 invaded and non-invaded habitats... 52
 3.2.4 Seasonal Fv/Fm of $C. \text{alba}$, $M. \text{elliptica}$ and $L. \text{longifolia}$ in invaded and non-
 invaded habitats.. 53
 3.2.5 Statistical analysis ... 53
3.3 Results .. 54
 3.3.1 Climate .. 54
 3.3.2 Microhabitat physico-chemical characteristics ... 56
 3.3.2 Seasonal in-situ Φ_{PSII} and Pmax of mature $C. \text{alba}$, $M. \text{elliptica}$ and $L. \text{longifolia}$
 .. 59
 3.3.4 Seasonal Fv/fm of $C. \text{alba}$, $M. \text{elliptica}$ and $L. \text{longifolia}$ in invaded and non-
 invaded habitats.. 60
3.4 Discussion ... 64

Chapter 4: Determination of potential allelopathy and indirect soil
chemical interference by an exotic invasive plant using a
comprehensive bioassay protocol .. 68
4.1 Introduction ... 68
 4.1.1 Protocol for determination of phytotoxicity, allelopathy and indirect soil
 effects ... 70
Chapter 5: Identification of volatile compounds released by roots of an invasive plant, bitou bush (*Chrysanthemoides monilfera* spp. *rotundata*), and their potential biological role

5.1 Introduction

5.2 Materials and methods

5.2.1 Root collection and extraction

5.2.2 Soil collection and extraction

5.2.3 GC-MS analysis of organic extracts

5.2.4 Column chromatography fractionation of bitou bush root DCM extract

5.2.5 Bioassay of fractions – seed germination and seedling growth

5.2.6 Statistical analyses

5.3 Results

5.3.1 GC-MS of bitou bush root hydrophobic extract

5.3.2 Column chromatography fractionation of bitou bush root hydrophobic extract

5.3.3 Bioassay of bitou bush root column fractions

5.4 Discussion
Chapter 6: Detection of soil chemical interference competition: a novel and rapid technique .. 111

6.1 Introduction ... 111

6.2 Materials and methods ... 112
 6.2.1 Resin bags .. 112
 6.2.2 Study site .. 113
 6.2.3 Compound extraction and GC-MS identification ... 113
 6.2.4 Seedling growth bioassay ... 114
 6.2.5 Statistical analysis ... 115

6.3 Results ... 115
 6.3.1 Comparison of the chemical composition of each extract ... 115
 6.3.2 Seedling growth bioassay ... 118

6.4 Discussion .. 120

Chapter 7: General discussion ... 123
 7.1.1 Potential population, physiological and evolutionary impacts and mechanisms of plant invasion ... 123
 7.1.2 Soil chemical interference and allelopathy as mechanisms of invasion .. 127
 7.1.3 Conclusions ... 130
 7.1.4 Management implications .. 131
 7.1.5 Future directions .. 131

References ... 133
List of Tables

Table 2.1: F ratios and p values of flower abundance, vegetative buds, the ratio of reproductive: vegetative buds and physiological stress traits (Fv/Fm) of each species between non-invaded and bitou bush invaded habitats…….. 38

Table 2.2: Results of the F tests comparing the variability within traits among sites, and within sites, between the bitou bush invaded and non-invaded habitats for C. alba, M. elliptica and L. longifolia. * P<0.05. Five sites in each habitat and five individuals in each site were assessed…………………… 39

Table 3.1: Comparison of various physico-chemical parameters of C. alba, M. elliptica and L. longifolia between habitats, and sites within habitats (site (habitat))…………………………………………………………………... 56

Table 3.2: Mean in-situ Pmax and Φ_{PSII} for each species in each season in the invaded and non-invaded habitats. SEM: Standard error of the mean…….. 60

Table 4.1: Protocol for assessing the presence of phytotoxicity, allelopathy and indirect soil effects from plant roots, leaves and soil extracts of native compared to exotic species (E) using the dose response curve (C), a 2-factor ANOVA testing the effects of E, C and C x E and attainment of LC$_{50}$ for ecological relevant concentrations of extracts…………………… 72

Table 4.2: Mean pH range of extract concentrations (10 to 2000ppm) and the significance values of an ANOVA testing whether the pH differed with extract concentrations. * P<0.05, **P<0.01………………………………... 79

Table 4.3: Coefficients, parallelism tests and goodness of fit of the probit regression comparing the relationship between increasing concentrations of extracts from each extract source species (acacia and bitou bush) and the germination success of 6 species. Values in bold are significant at $\alpha = 0.05$. 81
Table 4.4: Probability values from an ANOVA testing the effect of extract species (E), concentration (C) and the interaction between extract species and concentration (E x C) on seedling shoot and root length of six species for each solvent extract of each plant part. Values in bold are significantly different at $\alpha=0.05$. Influential species from post hoc analyses and occurrence of LC$_{50}$ in dose response curves (*) are also shown..................

Table 4.5: Summary of inhibition by extract phytotoxicity, allelopathy or indirect soil effects (+ denotes stimulatory effect) on the test species. A = $A. longifolia$ var. $sophorae$; Ac = $A. megalocarpa$; B = $B. integrifolia$; I = $I. nodosa$; L = $L. longifolia$; Le = $L. sativa$... 83

Table 5.1: The number and relative percent contribution of compounds in different chemical functional groups in the bitou bush and acacia root and soil hydrophobic extracts.. 85

Table 5.2: Components of the bitou bush and acacia root and soil hydrophobic extracts.. 99

Table 5.3: Weights and percentage weights of each column chromatography fraction obtained from the bitou bush root hydrophobic (DCM) extract... 100

Table 5.4: GC-MS detection of compounds in each column fraction of the bitou bush root hydrophobic extract. Compounds greater than 1% relative abundance (RA) are shown, except for those that were unique to the bitou bush invaded soil.. 102

Table 5.5: Two-factor ANOVA results testing the effect of column fraction (Cf) and concentration (C) on the germination and root and shoot lengths (as percentages of the control) of $I. nodosa$ after 23 days of incubation. Significance level $\alpha=0.05$.. 103

Table 5.6: Regression results and mean pH (standard errors) showing that there was no difference ($p>0.05$) in the pH of increasing concentrations of each column fraction... 104

Table 6.1: Mean percentage of, and ANOVA results comparing the proportional composition of each compound found to significantly differ between conditions.. 106
List of Figures

Figure 1.1: Conceptual framework for the macro (double lined boxes) and micro-mechanisms (single lined boxes) of invasion.. 11
Figure 1.2: Flow chart highlighting the interactions between the micro-mechanisms (solid line) operating at a population level of detection (dashed line) and ecosystem property level (dotted line) as a result of organic acid secretion. 12
Figure 1.3: Bitou bush in flower and fruit (left); invading coastal hindunes (centre); and invading coastal fordunes (right). .. 21
Figure 2.1: a. *C. alba* flower (top) and surrounded by bitou bush (bottom). b. *M. elliptica* in fruit (top) and surrounded by bitou bush (bottom). c. *L. longifolia* plant (top) and surrounded by bitou bush (bottom)............. 32
Figure 2.2: Mean density (+ SE) of each study species in bitou bush invaded (black bars) and non-invaded (open bars) habitats... 35
Figure 2.3: Frequency histograms showing the number of (a) *C. alba* (b) *M. elliptica* and (c) *L. longifolia* individuals within 1500m² of the bitou bush invaded (black bars) and non-invaded (open bars) habitats........................ 36
Figure 2.4: Mean (+ SE) size of the mature (reproductive) individuals of each species in the bitou bush invaded habitat (black bars) and in the non-invaded habitat (open bars). The size of *C. alba* and *M. elliptica* was measured as the diameter (mm) and the size of *L. longifolia* was measured as circumference (cm).. 37
Figure 2.5: Mean (+SE) *C. alba* flower abundance at each site in the invaded (black bars) and non-invaded (open bars) habitats.. 39
Figure 2.6: Mean (+SE) ratio of *C. alba* reproductive: vegetative buds at each site in the invaded (black bars) and non-invaded (open bars) habitats............. 40
Figure 3.1: Monthly rainfall (a and d) and monthly mean daily maximum (b and e) and minimum (c and f) temperatures at the Southern end (Ulladulla) and Northern end (Norah Head) of the study range during 2004 and 2005 (broken line). The long term monthly averages (unbroken line) are from 94 years at Jervis Bay (near Ulladulla) and the last 30 years at Norah Head. Arrows show sampling dates. 55

Figure 3.2: Mean NH4 (mg/kg), NO3 (mg/kg), P (mg/kg), pH (pH units) and litter depth (cm) associated with *C. alba* (diagonal pattern), *M. elliptica* (horizontal pattern) and *L. longifolia* (no pattern) in the invaded (grey bars) and non-invaded (white bars) habitats. 57

Figure 3.3: Mean percentage canopy cover above *C. alba* (diagonal pattern) and *M. elliptica* (no pattern) in the invaded (grey bars) and non-invaded sites (white bars). Errors bars represent one standard error. 57

Figure 3.4: Mean ground incident light in the invaded (grey bar) and non-invaded (white bar) habitats at Corrimal beach. Error bars represent one standard error. 58

Figure 3.5: Daily maximum (solid line) and minimum (broken line) ground level temperatures under the invaded canopy (open square) and the non-invaded (closed triangle) canopy during early 2007. 59

Figure 3.6: Mean Fv/Fm of *C. alba* individuals at each of six sites in invaded (grey bars) and non-invaded (white bars) habitats in each season. Bars represent one standard error. 61

Figure 3.7: Mean Fv/Fm of *M. elliptica* in each site in the non-invaded (white bars) and invaded (grey bars) habitats for each season. Bars represent one standard error. 62

Figure 3.8: Mean Fv/Fm of *L. longifolia* in each site in the non-invaded (white bars) and invaded (grey bars) habitats for each season. Bars represent one standard error. 62
Figure 3.9: The within site variability (mean square, MS) for each *C. alba* (diagonal pattern), *L. longifolia* (horizontal pattern) and *M. elliptica* (no pattern) in the invaded (grey bars) and non-invaded (white bars) habitats in each season……………………………………………………………………… 63

Figure 4.1: *Acacia longifolia* var. *sophorae* (left) is a dominant indigenous shrub of the eastern Australian foredunes (right).…………………………………… 73

Figure 4.2: The bioassays were run in an incubator (left) and seedling shoot and root lengths were measured (right).……………………………………………… 77

Figure 4.3: Percentage weights (w/w) of the DCM (black bars), acetone (dark grey bars), methanol (light grey bars) and water (white bars) solvent extracts of the leaves, roots and soil of the acacia and bitou bush………………… 78

Figure 5.1: Gas chromatograms of the hydrophobic extracts of a.) bitou bush root b.) bitou bush soil c.) acacia root and d.) acacia soil. Numbered peaks are annotated in Table 5.2……………………………………………………. 99

Figure 5.2. Primary constituents of the hydrophobic bitou bush root extract. Compound numbers refer to those in Table 5.2……………………………………. 102

Figure 5.3: Mean dose response curves of *I. nodosa* to each column fraction (1 to 7) of the hydrophobic bitou bush root extract. Closed circles indicate the germination response, open triangles the shoot length and open squares the root length expressed as a percentage of the control after 23 days of incubation. Error bars represent one standard error……………………… 106

Figure 6.1: Photograph of calico, resin-filled bags………………………………….. 113

Figure 6.2: Mean weights of each extract from the acacia, bitou bush and bare sand conditions. Error bars represent one standard error…………………………… 116

Figure 6.3: Representative gas chromatograms of the extracts from the resin bags placed in the bitou bush soil (top), acacia soil (middle) and bare sand (bottom)…………………………………………………………………… 117
Figure 6.4: The germination percentages (a), shoot lengths (b) and root lengths (c) of *I. nodosa* (expressed as a percentage of the DCM control) with increasing concentrations of the bare sand (closed square), acacia soil (open circle) and bitou bush soil (open triangle) extracts.
Abstract

Exotic plant invasion, the consequent displacement of indigenous flora and subsequent effects on ecosystem health has become of increasing concern to land managers, conservationists and government agencies. Despite the concomitant attention of ecologists and invasion biologists, our empirical understanding of the impacts and mechanisms of exotic plant invasion remains rudimentary and fragmented and further complicated by species and site specific effects. Exotic plant invasion is of paramount concern in Australia due to the high species endemism and the recent settlement of Europeans (in 1788) which has been paralleled by vast, rapid modification of the landscape. Large expanses of land have subsequently been cleared for agriculture, residential and industrial areas and many exotic species have been introduced, both intentionally and accidentally. As a result, exotic species invasion has become an issue of national significance.

In attempt to further our ecological understanding of the impacts, and macro and micro-mechanisms of exotic plant invasion, I have focused my research on the bitou bush (Chrysanthemoides monilifera spp. rotundata (DC.) T. Norl.) invasion of the eastern Australian coastal dune systems. Bitou bush has been declared Australia’s sixth worst weed based on its invasibility and impacts on the environment. However there is a paucity of quantitative evidence to support these claims with substantiation being primarily anecdotal. Therefore I aimed to investigate the plant demographic impacts and soil chemistry changes imposed by the invasion and determined whether allelopathy and indirect soil chemical interference are mechanisms facilitating bitou bush invasion in Australia.
The demographic response of indigenous plants to the invasion of exotic woody plants has rarely been quantified. I therefore aimed to determine which life history stages of three indigenous plant species: *Correa alba* var. *alba* (Andrews; Rutaceae), *Monotoca elliptica* ((Sm.) R.Br.; Epacridaceae) and *Lomandra longifolia* (Labill.; Lomandraceae), were more susceptible to the invasion of bitou bush. I also assessed whether various morphological and physiological parameters of the mature stage of these species were affected by the presence of bitou bush. Populations of all three indigenous species in bitou bush invaded habitats had significantly fewer small individuals and a lower population density than populations in non-invaded habitats. The mean flower production, growth, ratio of reproductive: vegetative buds and physiological stress of mature individuals of each of these species in bitou bush invaded habitat did not differ from those in the non-invaded habitat. However, the flower production of *C. alba* was significantly more variable in the bitou bush invaded habitat which suggested plasticity in resource allocation in response to the invasion. Increased trait variability was not found for *M. elliptica* and *L. longifolia* suggesting mature plant tolerance to the new neighbour. We therefore propose that bitou bush affected indigenous plant populations primarily by preventing recruitment through the germination or seedling growth stages and that older plants typically tolerated the presence of the exotic. The reduction in indigenous plant recruitment is likely to create space that would facilitate bitou bush monoculture formation in the new host environment.

A more detailed assessment of the physiological health of mature indigenous plants in invaded habitats was conducted to determine whether there was seasonal effect of the invasion. The photosynthetic efficiency of plants was adopted as an indicator of physiological health. The seasonal photosynthetic patterns of *C. alba*, *M. elliptica* and *L. longifolia* in invaded and non-invaded habitats were assessed using chlorophyll
fluorescence. I also examined whether bitou bush altered the habitat physico-chemical parameters which may have lead to any observed changes in the physiological health of mature individuals. All three species exhibited photosynthetic maxima during winter and minima in summer, in contrast to most other Northern hemisphere studies on seasonal photosynthetic patterns. Winter photosynthetic maxima are likely to be facilitated by the autumn rains and cooler winter temperatures of the eastern Australian coast. Differences in the photosynthetic capacity of individuals of all three species among different sites were also detected. Although the invasion of bitou bush significantly altered the canopy cover of *C. alba* and *M. elliptica* and moderated the ground level microclimate, I detected no effect on the seasonal photosynthetic patterns of the three species studied, suggesting physiological tolerance to the invasion by mature plants. The reductions in ground incident light and daily maximum temperatures associated with the invasion were likely to be responsible for the reduction in variability of Fv/Fm (physiological stress parameter) detected in autumn for all species. Therefore, I suggest that the photosynthetic patterns of Australian native plants is a function of seasonal climatic and site variability, which was not significantly affected by the microhabitat changes induced by the invasion of bitou bush.

Chemical interference is increasingly suggested as a mechanism facilitating exotic plant invasion. I therefore devised a comprehensive bioassay technique that promoted detection and differentiation of phytotoxicity, allelopathy and indirect soil effects of exotic plants by comparing extract inhibition with that of a dominant indigenous plant. Comparison of the bioactivity of comparable extracts from plant parts and soil was integral to the technique. Hydrophilic to hydrophobic solvent extracts of indigenous acacia and exotic bitou bush leaves and roots all exhibited differential phytotoxic effects on a range of
indigenous plants. Chemical interference, or allelopathy, between co-evolved plants was found by the hydrophobic extracts of the roots and soil of acacia against a sedge, *Isolepis nodosa* (Rott.) R. Br. Hydrophobic and hydrophilic extracts of the roots and soil from the exotic bitou bush elicited allelopathic effects against four indigenous species. Additionally, the hydrophobic soil extracts of bitou bush inhibited the germination and growth of *Banksia integrifolia* and *A. longifolia* var. *sophorae*, while the acacia soil extract inhibited the germination of *B. integrifolia* and *Lomandra longifolia*. Therefore I suggest that both the indigenous acacia and exotic bitou bush have the potential to chemically inhibit the establishment of indigenous plants, with an additive effect. Eventual monoculture formation by bitou bush is likely to be facilitated by allelopathy against indigenous species and the residual soil inhibition of dominant *A. longifolia* var. *sophorae* establishment.

To determine whether bitou bush exuded novel compounds into the soil that were not present in the acacia dominated indigenous system, I compared the root and soil chemical profiles of these species. I focused on the hydrophobic extracts of the roots and soil as these were found to be most inhibitory in the laboratory based bioassays. Using solvent based extraction and gas chromatography – mass spectrometry (GC-MS) techniques, I detected three compounds that were exclusive to the bitou bush root and soil, and seven compounds that were common to the bitou bush and acacia roots but only present in the bitou bush soil. The compounds unique to the bitou bush invaded soil were all sesqui- and diterpenes. Several of these compounds were found to inhibit the seedling growth of a native sedge, *Isolepis nodosa*. Of particular interest were the sesquiterpenes: β-maaliene, α-isocomene, β-isocomene, δ-cadinene, 5-hydroxycalamenene and 5-methoxycalamenene which were found in high concentrations in the bitou bush root and soil and exhibited phytotoxic activity.
To confirm that bitou bush alters the soil chemistry of the sand dunes of the eastern Australian coast, we also designed a novel technique to assess the field soil chemical profile. The technique employed adsorbent resin filled bags intended to trap hydrophobic compounds in-situ which were then tested for bioactivity in the laboratory. I compared the hydrophobic chemical profile of soil below bitou bush and acacia to that of unvegetated soil. Similar GC profiles were found to those detected via the solvent extraction method; however, the resin bag technique showed that the alkane series was present in both the bitou bush and acacia soils. Using the resin bag technique, the chemical profile of the bitou bush invaded soil was characterised by a high concentration of sesquiterpenes and was distinct from the indigenous plant soil and bare sand, which were similar except for the presence of a higher concentration of phenolic compounds in the acacia soil and a higher concentration of hexadecanoic acid in the un-vegetated soil. Bioassays of these hydrophobic mixtures showed that the soil inhabited by plants, whether exotic or native, was inhibitory to the growth of an indigenous sedge, compared to the unvegetated soil.

Based on the series of experiments conducted, and described above, I suggest that the bitou bush invasion of the eastern Australian coast is likely to affect the recruitment limitation of indigenous species, rather than effects on fecundity and mature plant health. Bitou bush was found to induce a unique soil hydrochemical chemical profile, via two different techniques, which was characterised by high concentrations of several sesquiterpenes and low concentrations of a phenolic compound compared to the acacia profile. Although hydrophobic extracts both the bitou bush and acacia soils inhibited the growth of some indigenous species, the bitou bush inhibited more, including the dominant acacia, which is likely to result in the creation of vacant space and increased opportunities for bitou bush establishment and hence proliferation. Therefore, I suggest that allelopathy is
a key mechanism driving the recruitment limitation of indigenous flora and invasion of bitou bush on the eastern Australian coast.
Acknowledgements

Wow!!! What a huge experience!! I could write another thesis on the people I need to thank and the reasons why…maybe one day, but not now…so I will keep it brief.

Primarily I must thank my enduring supervisors: Kris French for drawing me down to Wollongong where I have enjoyed awesome times, being an inspirational, successful woman in science and an undeniable role model for many young women interested in scientific careers, and also for giving me space, time, good times, laughs, tears and most importantly intellectual stimulation; John Bremner for his perpetual patience, lab space, invaluable chemistry advice and knowledge and active support of my academic and extracurricular pursuits; and Sharon Robinson also for being a great role model, supportive and stretching my thoughts all the way to Antarctica!

On par, I must acknowledge my dear family and close friends whom I certainly could not live without…you are my soul and have my eternal love, respect and honour. I am sorry if I have caused any of you grief or sadness and hope to enjoy many more happy days with you - Mum, Granny, Gramps, Ev and James, Isabelle, PJ and Dallas, Han, Charlotte, Sean and Connor, Aunty Lizzie, Aunty Bridget, Uncle Albert, Charlie, Daniel and Richard, Tante Heddy, Tante Janny, Oom Cor, Uncle Albert, Zec, Helena and my dad for encouraging me to plant thousands of trees and developing my early appreciation of the Australian bush.

Thanks to all the following people for technical, lab or field assistance – John Korth, Ken Russell, Phurpa Wangchuk, Julie Locke, Joey Ambrus, Nat Sullivan, Steve Lunniss, Rebekah Zechner, Helena Nord, and Shengrong (Nancy) Bu and Jodie Dunn.
Also I would like to thank my work colleagues, past and present, for accepting me a friend and sharing and encouraging my passion for invasive plants and the conservation of biodiversity – Tanya Mason, Brendon Neilly, Nick Dexter, Nat Sullivan, Jean Clarke, Belinda Pellow, Pete Barnes, Beth Mott, Holly Parsons, Dave Bain, James Wallman, Bill Buttemer, Todd Minchinton, Markeeta Freeman, Scott Mooney, all the people at Australian Bushland Restoration Inc., and all of the UoW biology postgrads and staff. Cheers, to all of my other mates whom I have met in the Gong – Jason Hart, Sophie Williams, Josh Dubrau, Hardy, the Unibar flies, Kate and Matt, Scottee and Jill, Siani; people I have met through my Wollongong Uni Postgrad student representative roles – Ken Finlayson, Shengrong Bu, Ben Teeuwen, Dan Morgan, Katya Pechenkina, Mark Havryliv; and UoW staff - Kim Roser, Margaret Sheil, David Griffiths, Chris Grange and Lee Astheimer for inspiration. And finally thanks to my kitty cats, plants and bicycle for keeping me sane!!