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Low-complexity cross-validation design of a linear estimator

Abstract
Linear signal estimators have extensive applications. Under the minimum mean squared error (MMSE)
criterion, the linear MMSE (LMMSE) estimator is optimal but requires knowledge of the covariance
matrices. The sample matched filter generally performs worse but requires less a priori knowledge. A
composite estimator that combines the sample LMMSE estimator and matched filter is studied, which may
lead to noticeable improvements in performance. It is shown that such a gain can be achieved by low-
complexity parameter tuning methods based on cross-validation using training or out-oftraining data.
Numerical results are provided to demonstrate the effectiveness of the proposed approaches.
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Low-complexity cross-validation design of a
linear estimator

J. Tong, J. Xi, Q. Guo, and Y. Yu

Linear signal estimators have extensive applications. Under the
minimum mean squared error (MMSE) criterion, the linear MMSE
(LMMSE) estimator is optimal but requires knowledge of the covariance
matrices. The sample matched filter generally performs worse but
requires less a priori knowledge. In this letter, we study a composite
estimator that combines the sample LMMSE estimator and matched
filter, which may lead to noticeable improvements in performance. We
show that such a gain can be achieved by low-complexity parameter
tuning methods based on cross-validation using training or out-of-
training data. Numerical results are provided to demonstrate the
effectiveness of our proposed approaches.

Introduction: Consider the problem of linearly estimating an unknown,
zero-mean, unit-variance signal x from an observation y ∈CN under
the minimum mean squared error (MMSE) criterion. The linear MMSE
estimator [1] is given by x̂=w†y, where

w=R−1r, (1)

R,E[yy†] denotes the covariance matrix of y, r,E[yx∗] the cross-
covariance of y and x, and (·)† conjugate transpose. Note that a scalar
signal x is assumed here for simplicity but the techniques discussed in
this letter can be directly applied to estimating entries of a vector signal
from y.

In practice, R and r are unknown and may be estimated from a set of
training data. Using the sample covariance matrix (SCM) approach, (1)
is approximated by

w= R̂−1r̂, (2)

where the sample covariance matrices are computed as

R̂=
1

T

T∑
t=1

yty
†
t , r̂=

1

T

T∑
t=1

ytx
∗
t , (3)

T is the number of samples, and (xt,yt) are the t-th pair of training
samples. When T is large, such a sample LMMSE estimator may lead to
a low mean squared error (MSE) of signal estimation:

MSEx ,Ex[|x− x̂|2], (4)

where Ex[·] denotes expectation with respect to x. One key challenge
is that when the training data are limited, i.e., T is small relative to
the dimensionality N of y, the SCM R̂ can be ill-conditioned or even
singular, and the resulting sample estimator may result in a high MSE. In
this case, a scaled sample matched filter which does not rely on R̂ may
perform better, as will be illustrated later in Fig. 1.

Furthermore, the estimator below, which is a linear combination of the
sample LMMSE estimator and matched filter,

wρ,τ = ρR̂−1r̂+ τ r̂ (5)

may significantly outperform (2), as shown in [2]. However, the
coefficients (ρ, τ) must be carefully chosen to optimize performance. In
[2], low-complexity methods for choosing (ρ, τ) for cases with perfect
knowledge of r, i.e., r̂= r, were derived using the random matrix
theory (RMT). Other similar schemes have been discussed in [3]-[8]. In
particular, [2]-[4] assume r̂= r, while the schemes of [5]-[8] rely on a
grid search to tune the parameters, which incurs higher complexities.

In this letter, we derive cross-validation (CV) schemes to choose (ρ, τ)
for (5) using training and out-of-training data, respectively. The schemes
do not assume perfect knowledge of r and avoid the grid search required
in [5]-[8]. When training samples of both y and x are available, we
introduce a CV scheme for choosing (ρ, τ) that directly minimizes the
signal estimation error. For cases where x is unobservable, we propose
a scheme that optimizes a performance proxy based on a prediction
analysis of the out-of-training data. Our proposed methods give analytical
solutions to (ρ, τ ) and have low implementation complexities. Their
effectiveness is illustrated using numerical examples.

CV based on training data: The MSE of estimating x using (5) can be
computed as

MSEx = 1− r†R−1r+ (wρ,τ −w)†R(wρ,τ −w). (6)

It can be shown that the parameters for (5) that minimize the above MSE,
referred to as the oracle parameter choice, are given by[

ρ⋆

τ⋆

]
=

[
r̂†R̂−1RR̂−1r̂ r̂†R̂−1Rr̂

r̂†RR̂−1r̂ r̂†Rr̂

]−1[
r̂†R̂−1r

r̂†r

]
. (7)

Unfortunately, such oracle parameters can not be obtained in practice
because R and r are unknown. We now derive a practical scheme
based on leave-one-out cross-validation (LOOCV) to approximate the
oracle parameters. Similarly to [8], the length-T training block (x,Y)
consisting of {xt,yt} is repeatedly split into two sets with respect to
time. For the t-th split, T − 1 pairs of training symbols are used for
covariance matrix estimation and the remaining one pair (xt,yt) is
reserved for parameter validation. In total, T different splits are obtained
and the parameter that minimizes the average squared error of estimating
xt is chosen. Specifically, for the t-th split, the estimator is constructed
using SCM

R̂t =
1

T − 1

∑
i ̸=t

yiy
†
i , r̂t =

1

T − 1

∑
i̸=t

yix
∗
i (8)

as
ŵt = ρR̂−1

t r̂t + τ r̂t. (9)

The error of predicting xt using ŵ†
tyt is found as

ζt , xt − ŵ†
tyt. (10)

We use this error to estimate the MSE of signal estimation and choose
parameters (ρ, τ) to minimize the cost function

J(ρ, τ) =
1

T

T∑
t=1

|ζt|2. (11)

We can show that the above cost function can be rewritten as

J(ρ, τ) = ∥x− ρxP− τxQ∥2F , (12)

where ∥·∥F denotes Frobenius norm,

P, (B−DB)(I−DB)−1, (13)

B, 1

T
Y†R̂−1Y, (14)

Q,C−DC, (15)

C, 1

T − 1
Y†Y, (16)

and DX denotes the diagonal matrix that shares the diagonal entries of
X. The optimal ρ and τ are finally analytically calculated by[

ρ⋆

τ⋆

]
=

[
||xP||2F xPQx†

xQP†x† ||xQ||2F

]−1 [
xPx†

xQx†

]
. (17)

Note that this parameter choice is fully data-driven as the right-hand
side of (17) depends only on the training data (x,Y). It has a low
complexity as no grid search is required. We note that [2] provides a
RMT-based analytical solution to choose the composite filter (5) for the
case r̂= r. Here, an alternative approach based on CV is designed, which
is applicable when r̂ is estimated from SCM.

As a byproduct of (17), we can obtain the optimal choices of ρ and
τ for special cases with τ = 0 and ρ= 0, respectively. This leads to the
following scaled sample LMMSE estimator

w=
xPx†

||xP||2F
R̂−1r̂, (18)

and scaled macthed filter

w=
xQx†

||xQ||2F
r̂, (19)

which improve their original form w= R̂−1r̂ and w= r̂, respectively.
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Fig. 1 Performance comparison of different estimator designs. The LMMSE
estimator (1) with perfect knowledge of (R, r) achieves a normalized MSE of
about −5.7 dB.

CV based on out-of-training data: We now propose an alternative
method to choose (ρ, τ) based on a prediction analysis of a set of out-
of-training samples Υ of length D. Let y be a column of Υ, yn its n-th
entry, and y∼n the vector obtained by excluding yn from y. The sample
covaraince matrix R̂∼n of y∼n is a submatrix of R̂ with its n-th row
and n-th column both excluded. Similarly to [8], we choose (ρ, τ) to
minimize the average squared error of predicting yn from y∼n

J ′(ρ, τ) =
1

ND

∑
{y}

N∑
n=1

|yn − ŷn,ρ,τ |2 , (20)

where the first summation is over the D columns {y} of Υ. The
prediction of yn from y∼n follows the LMMSE principle, replacing
the true inverse covariance matrix of y∼n as ρR̂−1

∼n + τI and the cross-
covariance of y∼n and yn as the n-th column of R̂ with its n-th entry
excluded. After some manipulations using a block matrix version of the
Woodbury matrix identity that relates R̂−1

∼n and R̂−1, we can show that

J ′(ρ, τ) =
1

ND
||Υ− ρAΥ− τSΥ||2F , (21)

where
A= I−

(
D

R̂−1

)−1
R̂−1, (22)

S= R̂−D
R̂
. (23)

The optimal (ρ, τ) that minimize (21) are found as[
ρ⋆

τ⋆

]
=

[
tr(ATA†) R(tr(ATS†))

R(tr(STA†)) tr(STS†)

]−1[
tr(AT)
tr(ST)

]
, (24)

where R(·) denotes the real part of a complex number and T=ΥΥ†.
Note that (24) can be computed when the training data x is not observable
and the cost function of (12) can not be computed.

Generalization: The discussion above assumes that the SCM R̂ is
positive-definite, i.e., the length T of training data is not smaller than the
dimensionality N of y. For singular or ill-conditioned SCM R̂, we may
replace R̂ by a shrunk version β1R̂+ β2I which is better conditioned
than R̂ if (β1, β2) are properly chosen. The closed-form solutions to
(β1, β2) from [9]-[11], which do not involve grid search, can be used.
Then (ρ, τ) are found by directly plugging the shrunk estimator into (14),
(22) and (23), respectively, when the training and out-of-training data are
used for tuning the parameters.

Numerical Results: We now show an example of the above methods,
with N = 50

y= hx+ Sξ + z, (25)

where h∈C50×1 and S∈C50×49 are fixed for each Monte-Carlo trial,
x and ξ contain i.i.d. zero-mean Gaussian variables with unit variance,
and z is additive white Gaussian noise (AWGN) with variance 0.1. We
also assume that h and S consist of i.i.d. Gaussian variables with zero

mean and unit variance. For the parameter choice using out-of-training
data, we set D= 10. For the case where the SCM is shrunk, the Ledoit-
Wolf method [9] is applied. The MSE normalized by the average power
of x is shown for different estimators in Fig. 1. It is seen that our
proposed CV choices of parameters (ρ, τ) for (5) significantly improve
the performance compared to the sample LMMSE estimator (2) and can
approach the oracle performance achieved with (7). The method of [2],
which is based on random matrix theory and can perform very well for
perfect knowledge of r, does not work well here with r directly replaced
by r̂.

Applying the low-complexity shrinkage covariance matrix estimator
of [9] allows our methods to be used for low sample support with
T <N = 50. In this case, the performance achieved by the estimator (5)
with our proposed parameter choices is slightly worse than the signal
estimator of [8], which has a different form of wα,β = α(R̂+ βI)−1r̂.
Note, however, that the estimator of [8] requires a line search of the
parameter β based on a CV criterion and exhibits a significantly higher
complexity. Thus the approaches proposed in this letter may be attractive
for applications that require a low complexity.

Conclusions: In this letter, we studied the choice of parameters
for a composite filter using cross-validation. The proposed designs
can enhance the performance of the sample LMMSE estimator for
applications with low sample support and approach the optimal
performance of the composite structure studied. They also exhibit a low
complexity as no line search of the parameter is needed and may be
attractive for applications requiring low complexity.
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