Teaching strategies that support student development of conceptual understanding of chemical equilibrium using visualization software

K. W.P. Anula Weerawardhana

University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following.

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Teaching Strategies that Support Student Development of Conceptual Understanding of Chemical Equilibrium Using Visualization Software

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

From

University of Wollongong

By

K. W. P. Anula Weerawardhana

B Sc, PG Dip Ed, M Ed (IT in Ed & Training), M Phil

Faculty of Education

2006
Declaration

I declare that this thesis submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Education, University of Wollongong, represents my original work unless it has been otherwise referenced or acknowledged, and the document has not been previously submitted for qualifications at any other university or academic institution.

K.W. P. Anula Weerawardhana
Acknowledgements

I wish to express my sincerest gratitude to Associate Professor Brian Ferry and Dr Christine Brown, my supervisors, for their valuable scholarly guidance, insightful comments, continuous encouragement and support provided throughout this research.

I would like to thank the chemistry teachers, pre-service science teachers and participant students of the schools, and my colleague Ekanayake who supported me in my data collection.

Special thanks are due to my husband Chandana for his warm support and continuous encouragement, and my son Lakshitha and my daughter Madusha for their love and understanding during this effort.

My sincere thanks are also due to all academic and administrative staff of the Faculty of Education, and Mr Peter Keeble for his contribution in final editing of the thesis.
Abstract

Many researchers and examiners report that senior high school students often have an inadequate understanding of fundamental chemical concepts. Chemical equilibrium is an example of one of these concepts and researchers suggest that the abstract and dynamic nature of chemical equilibrium is one reason why learning/teaching difficulties occur.

For the purpose of this study, conceptual understanding of chemistry is defined as a blend of conceptual knowledge, the ability to translate among different representations, and the application of this knowledge to new situations.

The study focused on the contribution of multiple representations to learning and teaching strategies that assist senior high school students and teachers to develop conceptual understanding of chemical equilibrium. This purpose was achieved progressively through answering four research questions.

1. What difficulties do students face when developing conceptual understanding of abstract chemistry concepts, particularly chemical equilibrium?

2. What difficulties do teachers face when developing students' understanding of abstract chemistry concepts, particularly chemical equilibrium?

3. What features of computer-based visualization software support the development of conceptual understanding of chemical equilibrium?

4. What strategies do teachers employ when they use these features of computer-based visualisation software in classroom teaching?

An investigation of students' performance in the HSC Chemistry examination found lower performance in two areas: use of language; and factual, conceptual and procedural knowledge. Three possibilities for students' lower performance were explored here through the literature review. In addition, two major areas of teachers' difficulties in facilitating students' conceptual understanding of chemical equilibrium were identified from the literature review.

Two instructional software programs, SMV: CHEM - Synchronized Multiple Visualisations of Chemistry and VisChem - Visualising the Molecular World, that focus on teaching chemistry with macroscopic, sub-microscopic and symbolic
representations, were reviewed. The review identified specific computer-based visual techniques and appropriate software elements that could be used to address some of the learning/teaching difficulties previously identified. Two studies were then designed to develop and implement teaching strategies that integrated software elements and other resources to address targeted areas of teaching/learning difficulties.

The results from these studies revealed that teacher demonstration of software could contribute to the development of students’ representational competence, however the integration of multiple representations into other learning/teaching strategies were more likely to effectively develop conceptual understanding. The study found that effective teaching strategies were often blends of teachers’ sound knowledge of: subject matter with thorough conceptual understanding; computer-based technologies; and learners’ needs.

The study has implications for science/chemistry teachers, pre-service science teachers, senior high school science students, software designers/resource producers, and Chemistry curriculum evaluation and assessment.
Publications

The following publications emerged from the study as a part of the thesis.

Table of Contents

Declaration .. i
Acknowledgements ... ii
Abstract .. iii
Publications ... v
Table of contents .. vi
List of appendices ... xi
List of tables .. xiii
List of figures ... xv

Chapter 1

Introduction

1.1 Chemistry, learning and teaching .. 1
1.2 The Study ... 3
1.3 Background to the study ... 4
1.4 Significance of the study ... 5
1.5 Purpose of the study ... 7
1.6 Research questions ... 7
1.7 Overview of theories discussed in future chapters .. 10
1.8 Definitions of important terms used in the study .. 10
1.9 Limitations of the study ... 13
1.10 Outline of the rest of the thesis ... 13

Chapter 2

Problems associated with the development of students’ understanding of chemical equilibrium

2.1 Introduction ... 15
2.2 Part 1 - Investigation of students’ performance in the HSC chemistry examination .. 15
 2.2.1 Identification of HSC chemistry examination questions 16
 2.2.1.1 Classification based on Johnstone’s work .. 17
 2.2.1.2 Classification based on Anderson et al.’s work 18
 2.2.1.3 Classification based on Zoller et al.’s work 22
 2.2.1.4 Core thinking skills in problem solving 23
 2.2.1.5 Relationships among classifications ... 26
 2.2.2 Analysis of HSC examination questions ... 28
 2.2.2.1 Results of the analysis of HSC chemistry examination questions 31
 2.2.3 Review of comments in the HSC reports on chemistry 32
 2.2.3.1 Summary of general comments .. 33
 2.2.3.2 Performance difficulties identified from general comments 34
 2.2.3.3 Review of specific comments on chemical equilibrium 38
6.4.3 Gaining access and ethical considerations .. 188
6.4.4 Awareness meeting with teachers ... 189
6.4.5 Design of students’ pre-test and post-test .. 190
 6.4.5.1 Item types of pre-test and post-test ... 190
 6.4.5.2 Construction considerations of items ... 193
6.4.6 Administration of pre-test .. 194
6.4.7 Teachers’ use of software resources with students .. 194
6.5 Study Two – Methodology .. 195
 6.5.1 Purpose of Study Two .. 195
 6.5.2 Participants .. 195
 6.5.3 Objectives of the workshops .. 196
 6.5.4 Rationale for workshop activities .. 196
 6.5.5 Design and procedure .. 197
 6.5.5.1 Workshop process - first workshop .. 197
 6.5.5.2 Workshop process - second workshop .. 199

Chapter 7
Results of Study One – experienced teachers’ use of software resources in the classroom
 7.1 Introduction ... 201
 7.2 Results of the workshop .. 201
 7.2.1 Experienced teachers’ views on their students’ learning of chemistry 201
 7.2.1.1 Teachers’ views on the abstract nature of chemical equilibrium 202
 7.2.1.2 Teachers’ views on problem solving in chemistry and achieving learning outcomes .. 203
 7.2.1.3 Teachers’ views on the use of multiple representations, analogies and models for learning ... 203
 7.2.1.4 Teachers’ views on the use of common and the symbolic language of chemistry .. 204
 7.2.1.5 Teachers’ views on laboratory learning ... 204
 7.2.2 The researcher’s observations of workshop ... 204
 7.2.3 Teachers’ views on software program in workshop discussion 205
 7.2.4 Post-workshop survey of the SMV: CHEM software program 205
 7.3 Researcher’s observation of classroom use of software resources 207
 7.3.1 Patterns of the experienced teachers’ intervention 207
 7.3.2 Students’ interactions with the software and their comments 208
 7.3.3 Students’ attitudes towards the software program 211
 7.4 Results of the pre- and post-tests ... 212
 7.4.1 Item analysis ... 212
 7.4.2 Results of the analysis of pre-test items ... 214
 7.4.3 Results of the analysis of post-test items ... 216
 7.4.4 Means of the pre- and post-test scores .. 217
 7.4.5 Qualitative analysis of students’ performance in pre- and post-tests 219
 7.4.5.1 Students’ performance according to cognitive levels 220
7.4.5.2 Students’ performance associated with the representational competencies ... 221
7.5 Summary ... 223

Chapter 8
Results of Study Two – pre-service teachers’ use of software resources in the classroom

8.1 Introduction .. 226
8.2 The focus of two workshops .. 228
8.3 Observations of workshops ... 228
 8.3.1 Observations of first workshop .. 228
 8.3.2 Survey of the pre-service teachers’ perceptions of the software program ... 232
 8.3.3 Observations of second workshop 233
8.4 Classroom observations of teaching 237
 8.4.1 Observations of preparation and implementation of lessons ... 237
 8.4.2 Pre-service teachers’ use of different teaching strategies .. 239
 8.4.3 Pre-service teachers’ use of different resources 240
 8.4.4 Observations on the use of different teaching strategies and activities .. 242
 8.4.5 Students’ feedback about the use of software elements 260
8.5 The interviews with pre-service teachers 262
 8.5.1 Difficulties pre-service teachers found when they were learning chemical equilibrium in high schools 263
 8.5.2 Pre-service teachers’ reflections on their lessons 264
 8.5.3 Contribution of teaching strategies to pre-service teachers’ professional development ... 271
8.6 Summary ... 273

Chapter 9
Discussion

9.1 Introduction .. 275
9.2 Summary of the findings of chapters two, four and five 275
9.3 Discussion of teaching strategies in Studies One and Two 285
 9.3.1 Teacher-designed strategies - Study One 285
 9.3.2 Teacher-designed strategies - Study Two 286
 9.3.3 Impact of teaching strategies on participants 301
 9.3.3.1 Study One - impact of teaching strategies on students 301
 9.3.3.2 Study One - impact of software use on experienced teachers .. 302
 9.3.3.3 Study Two - impact of teaching strategies on pre-service science teachers .. 303
 9.3.3.4 Study Two - impact of teaching strategies on students 305
9.4 Summary ... 306

Chapter 10
Revisiting purpose and implications

10.1 Introduction ... 308
10.2 Revisiting the purpose ... 308
10.3 Implications and possible future research considerations 310
10.3.1 implications for chemistry/science/pre-service science teachers and possible research directions .. 310
10.3.1.1 Teachers should have sound knowledge in chemistry 311
10.3.1.2 Teachers should have sound knowledge of computer-based applications .. 311
10.3.1.3 Teachers' awareness of learning/teaching difficulties 312
10.3.1.4 Teachers' understanding about pedagogical strategies is vital in designing teaching strategies .. 312
10.3.2 Implications for teachers' professional development and possible research directions ... 315
10.3.2.1 Focus on skill development .. 316
10.3.2.2 Recommended strategies that promote skill development 317
10.3.3 Implications for senior high school chemistry students and possible research directions .. 317
10.3.4 Implications for software designers/resource production people and possible research directions .. 319
10.3.5 Implications for curriculum and assessment, and possible future considerations .. 321
10.4 Challenge for the future ... 322
References ... 323 - 342

Appendices
Appendix 1 – Analysis of examination questions from 1999 to 2000 A1 - i-ii
Appendix 2 – Approval of the Ethics Committee .. A2 - i
Appendix 3a – Information sheet – experienced teachers.................................. A3a - i
Appendix 3b – Information sheet – pre-service teachers................................ A3b - i-ii
Appendix 3c – Information sheet – Students.. A3c - i
Appendix 3d – Information sheet - Parents... A3d - i-ii
Appendix 4 – Covering letter, Information sheet and Consent form – Principals. A4 - i-iii
Appendix 5 – Handout 1 – Outline of research.. A5 - i
Appendix 6 – Handout 2 – Teaching and learning difficulties........................ A6 - i-iii
Appendix 7 – Guidelines to follow SMV: CHEM .. A7 - i-vii
Appendix 8 – Pre-test question paper ... A8 - i-iii
Appendix 9 – Post-test question paper ... A9 - i-vi
Appendix 10 – Background materials for pre-service teachers A10 - i-ix
Appendix 11 – Activity booklet for pre-service teachers A11 - i-xiii
Appendix 12 – Interview questions ... A12 - i
Appendix 13 – Sample of interview transcript ... A13 - i
Appendix 14 – Teacher survey questionnaire .. A14 - i
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Research questions, data sources, processing methods and rationale for each processing method</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Focus of chapters and their relationship to research questions</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Johnstone’s Classification of problems (Johnstone, 1993b)</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Cognitive processes, sub-categories of cognitive processes, and examples involved in student learning based on Bloom’s revised taxonomy</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Major types and subtypes of knowledge dimensions (Anderson et al., 2001)</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Knowledge–based core thinking skills in the problem-solving process (Marzano et al., 1988. pp. 68-109)</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>The researcher’s interpretation of relationships among the three classifications</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Analysis of HSC chemistry examination questions of chemical equilibrium from 2004 to 2002</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Course (Syllabus) outcomes assessed in HSC Chemistry Examination</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Summary of general comments from 1999 to 2004</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Performance difficulties due to the language: examples from General Comments</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Performance difficulties due to inadequate factual, conceptual and procedural knowledge: examples from general comments</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Performance difficulties on chemical equilibrium due to inadequate factual, conceptual and procedural knowledge: examples from specific comments</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>Possible causes and consequences due to the abstract nature of chemical equilibrium</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Possible causes and consequences due to the use of multilevel representations of chemical concepts</td>
<td>58</td>
</tr>
<tr>
<td>Table 2.14</td>
<td>Possible causes and consequences due to the use of common language and the language specific to chemistry</td>
<td>60</td>
</tr>
<tr>
<td>Table 2.15</td>
<td>Possible causes and consequences of the use of traditional methods of teaching</td>
<td>69</td>
</tr>
<tr>
<td>Table 2.16</td>
<td>Students’ methods of learning and possible consequences</td>
<td>75</td>
</tr>
<tr>
<td>Table 2.17</td>
<td>Three major factors, possible cause</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Difficulties associated with inadequate subject matter knowledge and examples</td>
<td>135</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Difficulties associated with limited pedagogical strategies and examples</td>
<td>137</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Seven principles of multimedia presentations and their applications (Mayer, 2001; Mayer & Moreno, 2002)</td>
<td>151</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Relationship between Study One and Study Two</td>
<td>187</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Workshop activity, action steps, and purpose of the activity</td>
<td>189</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Three major parts of the problem ..</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Interrelation among three factors influencing how a problem is perceived (Johnstone, 1983, p. 969)</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Three basic components of chemistry concepts (Johnstone, 1993a, p. 703) ...</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Tetrahedral chemistry education (Mahaffy, 2004a, p. 231)</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Interrelations among three major factors and assessment</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The pedagogical activities involved in teaching developed by the researcher, adapted from Shulman (1987, p. 15)</td>
<td>132</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>A model to explain processing of pictures, spoken words, and printed words (Mayer, 2001, p.59)</td>
<td>144</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>SOI model for constructivist learning from words and pictures (Mayer, 1999b, p. 149) ...</td>
<td>148</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Contents of SMV: CHEM on four discs</td>
<td>164</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Main menu screen of SMV: CHEM (Russell et. al., 2000)</td>
<td>165</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Two screen captures of SMV: CHEM to show ‘ON’ and ‘OFF’ buttons and buttons on the navigation tool bar ...</td>
<td>165</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>A screen capture of SMV: CHEM shows the experiment – ‘Qualitative temperature change of N$_2$O$_4$ / NO$_2$ system’ (Russell et. al., 2000)</td>
<td>167</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Sub-microscopic animation of temperature change experiment (Russell et al., 2000) ..</td>
<td>169</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>A screen capture shows subject content of VisChem (Tasker et al., 1997) ..</td>
<td>170</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Frame from the VisChem program on ‘Ice Melting’, showing the three thinking levels (Tasker et al., 1997)</td>
<td>170</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Screen capture of an individual video clip of SMV: CHEM</td>
<td>175</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Time-persistent and time-implicit graphs of SMV: CHEM</td>
<td>177</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Different representations of N$_2$O$_4$ dominant mixture</td>
<td>208</td>
</tr>
<tr>
<td>Figure 8.1</td>
<td>The graph in slide No. 9 in the first lesson</td>
<td>235</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Water boiling demonstration ..</td>
<td>242</td>
</tr>
<tr>
<td>Figure 8.3</td>
<td>Movements of water molecules when boiling (VisChem animation – Tasker et al., 1997) ..</td>
<td>242</td>
</tr>
<tr>
<td>Figure 8.4</td>
<td>Phase equilibrium analogy ...</td>
<td>243</td>
</tr>
<tr>
<td>Figure 8.5</td>
<td>Graph 1 - FeCl$_3$ and KCNS and Graph 2 - Fe$^{3+}$ + SCN$^{-}$ ⇌ FeCNS$_2^{2-}$...</td>
<td>244</td>
</tr>
<tr>
<td>Figure 8.6</td>
<td>Analogical explanation of increase and decrease of concentrations</td>
<td>245</td>
</tr>
<tr>
<td>Figure 8.7</td>
<td>The second analogy to explain Le Chatelier’s principle</td>
<td>245</td>
</tr>
<tr>
<td>Figure 8.8</td>
<td>Unfried and fried egg analogy to show irreversible reactions</td>
<td>246</td>
</tr>
</tbody>
</table>

xv