Teaching strategies that support student development of conceptual understanding of chemical equilibrium using visualization software

K. W. P. Anula Weerawardhana

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Teaching Strategies that Support Student Development of Conceptual Understanding of Chemical Equilibrium Using Visualization Software

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

From

University of Wollongong

By

K. W. P. Anula Weerawardhana

B Sc, PG Dip Ed, M Ed (IT in Ed & Training), M Phil

Faculty of Education

2006
Declaration

I declare that this thesis submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Education, University of Wollongong, represents my original work unless it has been otherwise referenced or acknowledged, and the document has not been previously submitted for qualifications at any other university or academic institution.

K.W. P. Anula Weerawardhana
Acknowledgements

I wish to express my sincerest gratitude to Associate Professor Brian Ferry and Dr Christine Brown, my supervisors, for their valuable scholarly guidance, insightful comments, continuous encouragement and support provided throughout this research.

I would like to thank the chemistry teachers, pre-service science teachers and participant students of the schools, and my colleague Ekanayake who supported me in my data collection.

Special thanks are due to my husband Chandana for his warm support and continuous encouragement, and my son Lakshitha and my daughter Madusha for their love and understanding during this effort.

My sincere thanks are also due to all academic and administrative staff of the Faculty of Education, and Mr Peter Keeble for his contribution in final editing of the thesis.
Abstract

Many researchers and examiners report that senior high school students often have an inadequate understanding of fundamental chemical concepts. Chemical equilibrium is an example of one of these concepts and researchers suggest that the abstract and dynamic nature of chemical equilibrium is one reason why learning/teaching difficulties occur.

For the purpose of this study, conceptual understanding of chemistry is defined as a blend of conceptual knowledge, the ability to translate among different representations, and the application of this knowledge to new situations.

The study focused on the contribution of multiple representations to learning and teaching strategies that assist senior high school students and teachers to develop conceptual understanding of chemical equilibrium. This purpose was achieved progressively through answering four research questions.

1. What difficulties do students face when developing conceptual understanding of abstract chemistry concepts, particularly chemical equilibrium?

2. What difficulties do teachers face when developing students' understanding of abstract chemistry concepts, particularly chemical equilibrium?

3. What features of computer-based visualization software support the development of conceptual understanding of chemical equilibrium?

4. What strategies do teachers employ when they use these features of computer-based visualisation software in classroom teaching?

An investigation of students' performance in the HSC Chemistry examination found lower performance in two areas: use of language; and factual, conceptual and procedural knowledge. Three possibilities for students' lower performance were explored here through the literature review. In addition, two major areas of teachers' difficulties in facilitating students' conceptual understanding of chemical equilibrium were identified from the literature review.

Two instructional software programs, SMV: CHEM - Synchronized Multiple Visualisations of Chemistry and VisChem - Visualising the Molecular World, that focus on teaching chemistry with macroscopic, sub-microscopic and symbolic
representations, were reviewed. The review identified specific computer-based visual techniques and appropriate software elements that could be used to address some of the learning/teaching difficulties previously identified. Two studies were then designed to develop and implement teaching strategies that integrated software elements and other resources to address targeted areas of teaching/learning difficulties.

The results from these studies revealed that teacher demonstration of software could contribute to the development of students’ representational competence, however the integration of multiple representations into other learning/teaching strategies were more likely to effectively develop conceptual understanding. The study found that effective teaching strategies were often blends of teachers’ sound knowledge of: subject matter with thorough conceptual understanding; computer-based technologies; and learners’ needs.

The study has implications for science/chemistry teachers, pre-service science teachers, senior high school science students, software designers/resource producers, and Chemistry curriculum evaluation and assessment.
Publications

The following publications emerged from the study as a part of the thesis.

Table of Contents

Declaration ... i
Acknowledgements .. ii
Abstract .. iii
Publications .. v
Table of contents ... vi
List of appendices .. xi
List of tables .. xiii
List of figures .. xv

Chapter 1
Introduction
 1.1 Chemistry, learning and teaching .. 1
 1.2 The Study .. 3
 1.3 Background to the study .. 4
 1.4 Significance of the study .. 5
 1.5 Purpose of the study .. 7
 1.6 Research questions .. 7
 1.7 Overview of theories discussed in future chapters 10
 1.8 Definitions of important terms used in the study 10
 1.9 Limitations of the study .. 13
 1.10 Outline of the rest of the thesis .. 13

Chapter 2
Problems associated with the development of students’ understanding of chemical equilibrium
 2.1 Introduction .. 15
 2.2 Part 1- Investigation of students’ performance in the HSC chemistry examination . 15
 2.2.1 Identification of HSC chemistry examination questions 16
 2.2.1.1 Classification based on Johnstone’s work 17
 2.2.1.2 Classification based on Anderson et al.’s work 18
 2.2.1.3 Classification based on Zoller et al.’s work 22
 2.2.1.4 Core thinking skills in problem solving 23
 2.2.1.5 Relationships among classifications ... 26
 2.2.2 Analysis of HSC examination questions ... 28
 2.2.2.1 Results of the analysis of HSC chemistry examination questions 31
 2.2.3 Review of comments in the HSC reports on chemistry 32
 2.2.3.1 Summary of general comments ... 33
 2.2.3.2 Performance difficulties identified from general comments 34
 2.2.3.3 Review of specific comments on chemical equilibrium 38
2.2.4 Part I – Summary ... 45
2.3 Part II - Review of research that provides explanations for learning difficulties ... 47
 2.3.1 Possible factors that create students’ difficulties in learning chemistry 47
 2.3.1.1 Nature of chemistry .. 51
 2.3.1.2 Traditional methods of teaching 61
 2.3.1.3 Students’ methods of learning 73
 2.3.2 Part II – Summary .. 76
2.4 Summary of the chapter ... 77

Chapter 3
Theories that inform our understanding of learning chemistry

3.1 Introduction .. 80
3.2 Part I - Conceptual knowledge in science and chemistry 80
 3.2.1 Representational competence in chemistry 84
 3.2.2 Conceptual understanding in chemistry 85
3.3 Part II - The contribution of learning theories to developing conceptual
 understanding in chemistry .. 87
 3.3.1 Behavioural views of learning .. 87
 3.3.1.1 Influence of behavioural views on developing conceptual understanding
 in chemistry ... 87
 3.3.2 Cognitive views of learning .. 88
 3.3.2.1 Information processing ... 88
 3.3.2.2 Some mechanisms that help information acquisition 89
 3.3.2.3 Influence of information processing on developing conceptual
 understanding in chemistry ... 92
 3.3.3 Social constructivist view of learning .. 94
 3.3.3.1 Some mechanisms in the zone of proximal development 96
 3.3.3.3 Influence of social constructivist views on developing conceptual
 understanding in chemistry ... 102
3.4 Part III - Learning chemistry through multiple representations 105
 3.4.2 How do multiple representations promote learning chemistry 108
 3.4.2.1 Types of dynamic representations in chemistry 109
 3.4.3 Difficulties in achieving representational competencies 111
 3.4.2.2 Models and analogies .. 113
3.5 Summary .. 115

Chapter 4
Approaches to teaching chemistry

4.1 Introduction .. 117
4.2 Why is chemistry difficult to teach? .. 117
4.3 Difficulties associated with how chemistry is taught in schools 118
4.4 Approaches to teaching .. 121
 4.4.1 Teacher-centred instruction .. 121
 4.4.1.1 Pragmatic reasons for teacher-centred approaches 123
 4.4.1.2 Difficulties with teacher-centred approach 125
 4.4.2 Student-centred instruction .. 126
4.4.2.1 Student-centred learning environments .. 126
4.4.2.2 Implications of constructivism .. 127

4.5 What knowledge teachers need to effectively teach chemistry 130
 4.5.1 Pedagogical content knowledge (PCK) ... 131
 4.5.1.1 The pedagogical reasoning activities of teaching 131
 4.5.1.2 Integrative model of PCK ... 133
 4.5.1.3 Teachers' knowledge of subject matter and pedagogy 134
 4.5.2 Difficulties associated with inadequate subject-matter knowledge 134
 4.5.3 Difficulties associated with limited pedagogical strategies 136

4.6 Summary .. 138

Chapter 5
Use of multimedia software to develop understanding of 'chemical equilibrium'
 5.1 Introduction .. 141
 5.2 Part I - Multimedia information and learning 142
 5.2.1 Principles of learning through the use of multimedia 142
 5.2.1.1 Dual-coding principles of multimedia learning 143
 5.2.1.2 Cognitive load theory applied to multimedia learning 146
 5.2.1.3 Active processing of information or cognitive constructivist learning ... 148
 5.3 Part II - Multimedia learning environments in chemistry 150
 5.3.1 What makes an effective multimedia learning environment in chemistry 151
 5.3.2 How visual representations support learner construction of mental models in chemistry .. 154
 5.3.3 The impact of software visualization tools in chemistry 159
 5.3.3.1 Animations and simulations in chemistry 160
 5.3.3.2 Videos in chemistry .. 161
 5.3.3.3 The accompanying use of sound in software learning environments ... 163
 5.4 Part III - The analysis of two software packages in chemistry: SMV: CHEM and VisChem ... 163
 5.4.1 SMV: CHEM – Synchronized Multiple Visualizations of Chemistry 164
 5.4.1.1 Program navigation of SMV: CHEM .. 165
 5.4.1.2 Screen layout of SMV: CHEM .. 166
 5.4.2 VisChem – Visualising the Molecular World 169
 5.4.3 Significant features of SMV: CHEM .. 172
 5.5 Summary .. 178

Chapter 6
Methodology
 6.1 Introduction .. 181
 6.2 Methodologies used in similar studies .. 181
 6.2.1 Summary .. 185
 6.3 The Study ... 186
 6.4 Study One – Methodology ... 188
 6.4.1 Purpose of Study One ... 188
 6.4.2 Participants .. 188
Chapter 8
Results of Study Two – pre-service teachers’ use of software resources in the classroom

8.1 Introduction ... 226
8.2 The focus of two workshops .. 228
8.3 Observations of workshops ... 228
 8.3.1 Observations of first workshop .. 228
 8.3.2 Survey of the pre-service teachers’ perceptions of the software program 232
 8.3.3 Observations of second workshop .. 233
8.4 Classroom observations of teaching ... 237
 8.4.1 Observations of preparation and implementation of lessons 237
 8.4.2 Pre-service teachers’ use of different teaching strategies 239
 8.4.3 Pre-service teachers’ use of different resources ... 240
 8.4.4 Observations on the use of different teaching strategies and activities 242
 8.4.5 Students’ feedback about the use of software elements 260
8.5 The interviews with pre-service teachers ... 262
 8.5.1 Difficulties pre-service teachers found when they were learning chemical ... 263
 8.5.2 Pre-service teachers’ reflections on their lessons ... 264
 8.5.3 Contribution of teaching strategies to pre-service teachers’ professional ... 271
 development ... 271
8.6 Summary .. 273

Chapter 9
Discussion

9.1 Introduction ... 275
9.2 Summary of the findings of chapters two, four and five .. 275
9.3 Discussion of teaching strategies in Studies One and Two 285
 9.3.1 Teacher-designed strategies - Study One ... 285
 9.3.2 Teacher-designed strategies - Study Two ... 286
 9.3.3 Impact of teaching strategies on participants .. 301
 9.3.3.1 Study One - impact of teaching strategies on students 301
 9.3.3.2 Study One - impact of software use on experienced teachers 302
 9.3.3.3 Study Two - impact of teaching strategies on pre-service science ... 303
 teachers ... 303
 9.3.3.4 Study Two - impact of teaching strategies on students 305
9.4 Summary .. 306

Chapter 10
Revisiting purpose and implications

10.1 Introduction ... 308
10.2 Revisiting the purpose .. 308
10.3 Implications and possible future research considerations 310
10.3.1 implications for chemistry/science/pre-service science teachers and possible research directions ... 310
 10.3.1.1 Teachers should have sound knowledge in chemistry 311
 10.3.1.2 Teachers should have sound knowledge of computer-based applications ... 311
 10.3.1.3 Teachers’ awareness of learning/teaching difficulties 312
 10.3.1.4 Teachers’ understanding about pedagogical strategies is vital in designing teaching strategies ... 312
 10.3.2 Implications for teachers’ professional development and possible research directions ... 315
 10.3.2.1 Focus on skill development ... 316
 10.3.2.2 Recommended strategies that promote skill development 317
 10.3.3 Implications for senior high school chemistry students and possible research directions ... 317
 10.3.4 Implications for software designers/resource production people and possible research directions ... 319
 10.3.5 Implications for curriculum and assessment, and possible future considerations ... 321
 10.4 Challenge for the future .. 322

References .. 323 - 342

Appendices
 Appendix 1 – Analysis of examination questions from 1999 to 2000 A1 - i-ii
 Appendix 2 – Approval of the Ethics Committee.. A2 - i
 Appendix 3a – Information sheet – experienced teachers.......................... A3a - i
 Appendix 3b – Information sheet – pre-service teachers............................. A3b - i-ii
 Appendix 3c – Information sheet – Students.. A3c - i
 Appendix 3d – Information sheet - Parents... A3d - i-ii
 Appendix 4 – Covering letter, Information sheet and Consent form – Principals. A4 - i-iii
 Appendix 5 – Handout 1 – Outline of research.. A5 - i
 Appendix 6 – Handout 2 – Teaching and learning difficulties.................... A6 - i-iii
 Appendix 7 – Guidelines to follow SMV: CHEM A7 - i-vii
 Appendix 8 – Pre-test question paper.. A8 - i-iii
 Appendix 9 – Post-test question paper.. A9 - i-vi
 Appendix 10 – Background materials for pre-service teachers................ A10 - i-ix
 Appendix 11 – Activity booklet for pre-service teachers........................ A11 - i-xiii
 Appendix 12 – Interview questions.. A12 - i
 Appendix 13 – Sample of interview transcript.. A13 - i
 Appendix 14 – Teacher survey questionnaire.. A14 - i
Appendix 15 – Student survey questionnaire... A15 - i
Appendix 16 – Pre- and post-test item analysis... A16 - i-ii
Appendix 17 – Test marks and calculations (SPSS analysis).......................... A17 - i
Appendix 18 – Pre-service teachers’ guide to writing initial thoughts.......... A18 - i-vi
Appendix 19a – Researcher-designed Lesson one...................................... A19a - i-ii
Appendix 19b – Researcher-designed Lesson two..................................... A19b - i-ii
Appendix 19c – Researcher-designed Lesson three.................................... A19c - i-ii
Appendix 20 – Classroom observation schedule....................................... A20 - i-ii
Appendix 21a – Student worksheet – Lesson one.. A21a - i
Appendix 21b – Student worksheet – Lesson two....................................... A21b - i
Appendix 21c – Student worksheet – Lesson three A21c - i
Appendix 22 – Lesson three - evaluation sheet ... A22 - i
Appendix 23a – Pre-service teachers’ PowerPoint presentation one............ A23a - i-ii
Appendix 23b – Pre-service teachers’ PowerPoint presentation two............ A23b - i
Appendix 24 – A sample – Pre-service teacher reflections............................ A24 - i
List of Tables

<table>
<thead>
<tr>
<th>Table Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Research questions, data sources, processing methods and rationale for each processing method</td>
<td>8</td>
</tr>
<tr>
<td>Table 1.2</td>
<td>Focus of chapters and their relationship to research questions</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Johnstone's Classification of problems (Johnstone, 1993b)</td>
<td>17</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Cognitive processes, sub-categories of cognitive processes, and examples involved in student learning based on Bloom's revised taxonomy</td>
<td>19</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Major types and subtypes of knowledge dimensions (Anderson et al., 2001)</td>
<td>21</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Knowledge-based core thinking skills in the problem-solving process (Marzano et al., 1988, pp. 68-109)</td>
<td>24</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>The researcher's interpretation of relationships among the three classifications</td>
<td>26</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Analysis of HSC chemistry examination questions of chemical equilibrium from 2004 to 2002</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.7</td>
<td>Course (Syllabus) outcomes assessed in HSC Chemistry Examination</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.8</td>
<td>Summary of general comments from 1999 to 2004</td>
<td>33</td>
</tr>
<tr>
<td>Table 2.9</td>
<td>Performance difficulties due to the language: examples from General Comments</td>
<td>35</td>
</tr>
<tr>
<td>Table 2.10</td>
<td>Performance difficulties due to inadequate factual, conceptual and procedural knowledge: examples from general comments</td>
<td>37</td>
</tr>
<tr>
<td>Table 2.11</td>
<td>Performance difficulties on chemical equilibrium due to inadequate factual, conceptual and procedural knowledge: examples from specific comments</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.12</td>
<td>Possible causes and consequences due to the abstract nature of chemical equilibrium</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.13</td>
<td>Possible causes and consequences due to the use of multilevel representations of chemical concepts</td>
<td>58</td>
</tr>
<tr>
<td>Table 2.14</td>
<td>Possible causes and consequences due to the use of common language and the language specific to chemistry</td>
<td>60</td>
</tr>
<tr>
<td>Table 2.15</td>
<td>Possible causes and consequences of the use of traditional methods of teaching</td>
<td>69</td>
</tr>
<tr>
<td>Table 2.16</td>
<td>Students' methods of learning and possible consequences</td>
<td>75</td>
</tr>
<tr>
<td>Table 2.17</td>
<td>Three major factors, possible cause</td>
<td>76</td>
</tr>
<tr>
<td>Table 4.3</td>
<td>Difficulties associated with inadequate subject matter knowledge and examples</td>
<td>135</td>
</tr>
<tr>
<td>Table 4.4</td>
<td>Difficulties associated with limited pedagogical strategies and examples</td>
<td>137</td>
</tr>
<tr>
<td>Table 5.1</td>
<td>Seven principles of multimedia presentations and their applications (Mayer, 2001; Mayer & Moreno, 2002)</td>
<td>151</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Relationship between Study One and Study Two</td>
<td>187</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Workshop activity, action steps, and purpose of the activity</td>
<td>189</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Three major parts of the problem</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Interrelation among three factors influencing how a problem is perceived (Johnstone, 1983, p. 969)</td>
<td>49</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Three basic components of chemistry concepts (Johnstone, 1993a, p. 703)</td>
<td>52</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Tetrahedral chemistry education (Mahaffy, 2004a, p. 231)</td>
<td>54</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Interrelations among three major factors and assessment</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>The pedagogical activities involved in teaching developed by the researcher, adapted from Shulman (1987, p. 15)</td>
<td>132</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>A model to explain processing of pictures, spoken words, and printed words (Mayer, 2001, p.59)</td>
<td>144</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>SOI model for constructivist learning from words and pictures (Mayer, 1999b, p 149)</td>
<td>148</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Contents of SMV: CHEM on four discs</td>
<td>164</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Main menu screen of SMV: CHEM (Russell et. al., 2000)</td>
<td>165</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>Two screen captures of SMV: CHEM to show ‘ON’ and ‘OFF’ buttons and buttons on the navigation tool bar</td>
<td>165</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>A screen capture of SMV: CHEM shows the experiment – ‘Qualitative temperature change of N_2O_4 / NO_2 system’ (Russell et al., 2000)</td>
<td>167</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Sub-microscopic animation of temperature change experiment (Russell et al., 2000)</td>
<td>169</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>A screen capture shows subject content of VisChem (Tasker et al., 1997)</td>
<td>170</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Frame from the VisChem program on ‘Ice Melting’, showing the three thinking levels (Tasker et al., 1997)</td>
<td>170</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Screen capture of an individual video clip of SMV: CHEM</td>
<td>175</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Time-persistent and time-implicit graphs of SMV: CHEM</td>
<td>177</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Different representations of N_2O_4 dominant mixture</td>
<td>208</td>
</tr>
<tr>
<td>Figure 8.1</td>
<td>The graph in slide No. 9 in the first lesson</td>
<td>235</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Water boiling demonstration</td>
<td>242</td>
</tr>
<tr>
<td>Figure 8.3</td>
<td>Movements of water molecules when boiling (VisChem animation – Tasker et al., 1997)</td>
<td>242</td>
</tr>
<tr>
<td>Figure 8.4</td>
<td>Phase equilibrium analogy</td>
<td>243</td>
</tr>
<tr>
<td>Figure 8.5</td>
<td>Graph 1 - FeCl_3 and KCNS and Graph 2 - Fe^{3+} + SCN^- = FeCNS^{2+}</td>
<td>244</td>
</tr>
<tr>
<td>Figure 8.6</td>
<td>Analogical explanation of increase and decrease of concentrations</td>
<td>245</td>
</tr>
<tr>
<td>Figure 8.7</td>
<td>The second analogy to explain Le Chatelier’s principle</td>
<td>245</td>
</tr>
<tr>
<td>Figure 8.8</td>
<td>Unfried and fried egg analogy to show irreversible reactions</td>
<td>246</td>
</tr>
</tbody>
</table>
Figure 8.9 A glass 2/3 filled with water .. 247
Figure 8.10 Liquid water and water evaporation and condensation (SMV: CHEM – Russell et al., 2000) ... 247
Figure 8.11 i. Experimental representation; ii. molecular level; and iii. dynamic graph of water evaporation and condensation (SMV: CHEM – Russell et al., 2000) .. 248
Figure 8.12 Diagrammatic representation of the simulation activity 248
Figure 8.13 Dynamic equilibrium task (SMV: CHEM – Russell et al., 2000) 249
Figure 8.14 Multiple representations illustrate the effects of temperature change (SMV: CHEM – Russell et al., 2000) .. 250
Figure 8.15 Experimental observations of increasing pressure and its effects on molecules (animation)(SMV: CHEM – Russell et al., 2000) 251
Figure 8.16 Diluted CuSO₄ solution to show vaporization and condensation (SMV: CHEM- Russell et al., 2000) .. 252
Figure 8.17 Demonstration of Gas – water equilibrium .. 253
Figure 8.18 Analogical activity with sand .. 254
Figure 8.19 Catching of golf balls by four students ... 255
Figure 8.20 N₂O₄ dominant system at equilibrium (SMV: CHEM – Russell et al., 2000) .. 257
Figure 8.21 NO₂ dominant system at equilibrium (SMV: CHEM – Russell et al., 2000) 257
Figure 8.22 N₂O₄ / NO₂ system at equilibrium (SMV: CHEM – Russell et al., 2000) ... 258
Figure 9.1 Sequence of action steps of part 1 of lesson one 287
Figure 9.2 Sequence of action steps of part 2 of lesson one 289
Figure 9.3 Sequence of action steps of part 1 of lesson 3 294
Figure 9.4 Sequence of action steps of part 3 of lesson 3 296
Figure 10.1 Diagrammatic representation of three components of conceptual understanding in chemistry .. 308
Figure 10.2 Diagrammatic representation of three pillars of effective teaching strategies ... 312