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Abstract
A highly diastereoselective synthesis ofanti-a-allyl-b-fluoroamineshas been developed involving
enantioselectivea-fluorination ofaldehydes followed by a diastereoselective Petasis allyl borono-Mannich
reaction. The products are obtained generally in goodoverall yields for the two steps and with drs of 97 : 3-99 :
1 and eesof 86-92%. Selected products were converted to 3-, 5- and6-membered ring heterocycles, the latter
two types incorporatingan exo-cyclic fluorine.
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Highly diastereoselective synthesis of enantioenriched anti--

allyl--fluoroamines 

Philip J. Chevis, ‡a Sirilak Wangngae, ‡a,b Thanaphat Thaima,a Anthony W. Carroll,a Anthony C. 
Willis,c Mookda Pattarawarapanb and Stephen G. Pyne*a

A highly diastereoselective synthesis of anti--allyl--fluoroamines 

has been developed involving enantioselective -fluorination of 

aldehydes followed by a diastereoselective Petasis allyl borono-

Mannich reaction. The products are obtained generally in good 

overall yields for the two steps and with drs of 97:3–99:1 and ees 

of 86-92%. Selected products were converted to 3-, 5- and 6-

membered ring heterocycles, the latter two types incorporating an 

exo-cyclic fluorine. 

Fluorine plays an important role in the development of 

pharmaceutical drugs, chiral ligands and organocatalysts1 as it 

can modulate the electronic and conformational properties of 

molecules without imposing severe steric effects. The inductive 

effect of fluorine results in reduced basicity of neighbouring 

amines, which often leads to more desirable pharmacokinetic 

(PK) properties in amine based drugs, including increased 

bioavailability, enhanced metabolic stability, and desirable drug 

lipophilicity. In the case of PF-06459988 (Fig. 1 (a)), an 

irreversible and selective inhibitor of oncogenic EGFR mutants, 

the inductive effect of the fluoro substituent is essential for the 

enhanced reactivity of the acrylamide “warhead” moiety.2 The 

neuroprotective agent P7C3-A20 (X = F) was significantly more 

potent than its hydroxy (X = OH) analogue (Fig. 1 (a)), with the 

F-substituent leading to reduced toxicity and better PK 

properties.3 A recent survey of clinical candidates published in 

the Journal of Medicinal Chemistry (2016-2017) indicated that 

43 out of 65 had at least one heterocyclic nitrogen while 20 had 

at least one fluorine atom.4 Thus new methods to prepare cyclic 

and acyclic fluoro-substituted amines, are of significant 

importance in pharmaceutical drug development, including - 

fluoroamines, as exemplified in the drug structures in Fig. 1 (a).    

 Several methods have been developed to prepare these 

compounds in enantioenriched form using chiral substrates or  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (a) Structures of -fluoroamine drugs. (b) Known borono-Mannich 

reaction. (c) Proposed chemistry in this study. 
 

catalysts and nucleophilic5 and electrophilic6 fluorine regents, 

the Mannich7 and aza-Henry reactions,8 the hydrogenation of -

fluoro-enamines and enamides,9 and the aminofluorination of 

alkenes.10 

 We report here a straightforward method of preparing -

allyl--fluoroamines (II, R4 = allyl) with excellent anti-

diastereoselectivities (dr 97:3–99:1) and high enantiomeric 

purities (ee 84−92%) using the three component Petasis 

borono-Mannich reaction (BMR) of chiral -fluoroaldehydes, 

primary amines and pinacol allylboronate (Fig. 1 (b) and (c)). The 
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products have been converted to novel, 3-, 5- and 6-membered 

ring heterocycles. 

 

Table 1 Scope of the boronate and amine componentsa 

 ___________________________________________________ 
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a Reaction conditions; Step 1: octanal (1.5 equiv), NFSI (1.0 equiv), (S)-α,α-bis[3,5-
bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol trimethylsilyl ether (0.001 
equiv). Step 2: amine (2 equiv), organoboron reagent (2 equiv). 

___________________________________________________ 

 

The BMR works most efficiently on substrates having a proximal 

hydroxy group (e.g. -hydroxyaldehydes) which can activate 

the boron component by coordination.11 Based on the strong 

inductive effect of fluorine we reasoned that -fluoroaldehydes 

should also be productive components in the BMR. The report 

by Lindsley6(a) on the reductive amination of chiral -

fluoroaldehydes to give -substituted--fluoroamines in high 

enantiomeric purities provide strong evidence for the 

stereochemical integrity and stability of the intermediate -

fluoroimines which would be a requirement for their successful 

BMRs to give enantioenriched ,-disubstituted--

fluoroamines (II) . 

 In this study we used the method of Jørgensen12 to prepare 

(S)--fluorooctanal 1 (R = n-Hex) using (S)-α,α-bis[3,5-

bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol 

trimethylsilyl ether as the chiral organocatalyst, and N-

fluorobenzenesulfonimide (NFSI) as the fluorinating agent. We 

initially encountered isolation problems because of the 

volatility of this fluorinated product. To circumvent this, the 

reaction mixtures were diluted with pentane to precipitate 

unwanted by products and the solution was filtered then 

diluted with methanol (1:1) and treated directly with a primary 

or secondary amine (2.0 equiv, based on the amount of NFSI 

used) and a boronic acid, boronate ester or potassium 

trifluoroborateboronate (2.0 equiv) at ambient temperature. 

Those reactions using benzylamine and -styrenylboronic acid, 

pinacol -styrenylboronate or potassium -styrenyl 

trifluoroborateboronate were unsuccessful and none of the 

desired BMR product 2a (R2 =H, R3 = Bn) could be isolated (Table 

1). The combination of dibenzylamine and -styrenyl boronic 

acid was also ineffective at producing 2a (R2 =Bn, R3 = Bn). The 

combination of 4-methoxyphenylboronic acid and benzylamine 

failed to produce the desired product 2b. Other solvents 

(dichloromethane, or acetonitrile) were examined however 

these proved to be unsuccessful. The more reactive pinacol 

allylboronate13 however, smoothly provided the desired -

fluoroamine 2c in 73% yield as a 97:3 mixture of anti and syn 

diastereomers, respectively from 19F NMR analysis (SI) (Table 1, 

entry 1).14 Surprisingly, the BMR of 1 (R = n-Hex), pinacol 

allylboronate and secondary amines (Bn2NH, Me2NH and 

morpholine) or the hindered primary amine Ph2CHNH2 were 

unsuccessful in producing their respective products 2d. An 

almost identical yield and dr of 2c was obtained using potassium 

allyltrifluoroborateboronate. Lesser amounts (1.0 or 1.5 equiv) 

of either the amine or organoboron reagent or both resulted in 

reduced yields of product 2c. The reaction involving pinacol 

allenylboronate15 and benzylamine produced the propargyl 

product 2e in modest yield (33%) but with high regiochemistry 

and diastereoselectivity (dr = 97:3). The enantiomeric purities 

of the anti-products of 2c and 2e were determined as 90% and 

86%, respectively from 1H and 19F NMR analysis of their 

corresponding (1S)-camphorsulfonamide derivatives (SI).16 This 

analysis method was validated for 2c, and the latter compounds 

2h, 2i, 2k, 2l, 2m and 2o, from the synthesis and NMR analysis 

of their corresponding enantiomeric compounds (e.g. ent-2c, 

Table 3) and their diastereomeric (1S)-camphorsulfonamide 

derivatives. The ee values of anti-2c and 2e were slightly less 

than the reported 96% ee of (S)--fluorooctanal,12 determined 

on its more stable alcohol derivative, indicating some erosion of 

the stereochemical integrity of 1 (R = n-Hex) had occurred. The 

major diastereomer of the (1S)-camphorsulfonamide derivative 

3 of 2e provided suitable crystals for X-ray structure 

determination which identified its absolute configuration and 

the anti-stereochemical relationship of the vicinal heteroatoms 

(Fig. 2).17 

 

 

 

 

 

 

 

 

Fig. 2 ORTEP plot of (1S)-camphorsulfonamide derivative 3 of 2e. 

___________________________________________________ 

 

The generality of this diastereoselective allylation reaction with 

pinacol allylboronate, non-hindered primary amines and other 

(S)- (1) and (R)--aldehydes (ent-1) was further examined and 

the results are presented in Tables 2 and 3, respectively. Similar 

yields and diastereomeric ratios to 2c were obtained for the 

products 2f-2m starting with straight chain aldehydes and using 

benzylamine, allylamine or p-methoxybenzylamine (Table 2). 

Diastereomeric ratios were generally high (dr 97:3−99:1).14 The 

enantiomeric purities (ee 86−92%) of the products derived from 

these aldehydes were similar, but slightly lower than those 

reported for the parent (S)--fluoroaldehydes (ee 91-96%).12  
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Table 2 Synthesis of (4R,5S) β-fluoroamines 2 and their (4S, 5R)-
enantiomers (ent-2)a 

___________________________________________________ 
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___________________________________________________ 
aSee Table 1 for general conditions. Yields based on NFSI as the limiting reagent. 

Ent-2 compounds were prepared using the (R)-organocatalyst. 

 

These reactions were also successful for the more hindered 

aldehydes, (S)-(-)-citronellal and racemic 2-phenylpropanal. The 

former aldehyde gave 2n in a lower diastereoselectivity (2n:2p 

= 93:7) than obtained for its diastereomer 2p (2p:2n = 98:2, 

Table 3) using the enantiomeric (R)-organocatalyst, likely 

reflecting a minor mismatching of catalyst and substrate in the 

asymmetric fluorination step in the former case. The latter, 

more hindered substrate, gave a relatively low yield of 2o as a 

63:37 mixture of diastereomers. An enantiomeric series of -

allyl--fluoroamines (ent-2) could be formed from (R)--

fluoroaldehydes ent-1 which, as expected, were formed in 

similar yields with comparable drs and ees (Table 2). 

 To demonstrate the potential utility of these anti--allyl-β-

fluoroamine products, compound 2k was treated with KOH in 

EtOH/H2O under refluxing conditions.18 This gave the expected 

trans-aziridine 4 as a 1:1 mixture of N-invertomers.19 A ring-

closing metathesis reaction of the N-tosyl derivative of 2h gave 

the unsaturated piperidine 5 bearing a fluorinated side chain at 

C-2. The structure of this compound was secured by a single-

crystal X-ray diffraction analysis (SI).17 While cyclization of 2i 

using Hg(OAc)2
20 gave the analogous pyrrolidine derivative 6 in 

an unoptimized yield of 23%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Synthesis of 3-, 5- and 6-membered heterocycles 

 

 The success of only pinacol allylboronate and 

allenylboronate and primary amines, and the anti-

diastereoselective outcomes in these BMRs can be readily 

rationalized by invoking the reactive imine intermediate A, 

involving B-N coordination (Scheme 2). Such coordination and 

activation of allenyl boronic acid and pinacol allenyl boronate 

has been suggested previously to explain the formation of 

propargyl products from their BMR reactions with -

hydroxyaldehydes and primary amines.15 Intermediate A (R1 = 

n-Hex) can reactive to give the allylic or propargylic products 2c 

or 2d via a favourable six-membered ring transition state 

involving a polar Felkin-Ahn model.21 Clearly, an analogous 

intermediate for the unsuccessful -styrenyl organoboron 

reagents and 4-methoxyphenylboronic acid (Table 1) would 

require a highly unfavourable four-membered ring transition 
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state. Interestingly, this stereochemical outcome is opposite to 

that found in the BMR of an -hydroxy aldehyde with pinacol 

allylboronate which resulted in exclusive formation of the syn 

1,2-amino alcohol product,13 and not the expected anti one 

when aryl,- allenyl- or aryl-organoboron reagents are used.11,15 

 

  

 

 

 

 

Scheme 2. Possible reactive intermediate A  

 

In contrast, the analogous -chloroaldehyde to 1 (R1 = n-Bu, see 

SI for Scheme), gave, under similar BMR conditions using 

benzylamine, followed by treatment with KOH/EtOH/H2O, a 

separable mixture of 4 (32%) and its cis-aziridine isomer (10%), 

thus indicating significantly poorer diatereoselectivity in the 

BMR than its fluoro counterpart. 
 In conclusion, we have developed a direct method for 

preparing anti--allyl--fluoroamines in two easily manipulated 

steps from aldehydes with excellent diastereoselectives (dr = 

97:3–99:1) and high enantiomeric purities (ee 86-92%). These 

compounds would be difficult to prepare using many of the 

existing methods due to incompatibly of the allyl substituent to 

hydrogenation,9 or electrophilic fluorine reagents,6 or 

regioselectivity issues when using ring-opening of 2-allyl-3-alkyl 

aziridines with nucleophilic fluorine,18 or would otherwise 

require a more lengthy synthesis. Thus, this work offers a 

complementary and practical method towards these important 

compounds. 
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