January 2002

Solution structure of μ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels

Katherine J. Nielsen
Xenome Ltd

Michael Watson
University of Queensland

David J. Adams
University of Queensland, djadams@uow.edu.au

Anna K. Hammarström
Australian National University

Peter W. Gage
Australian National University

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/ihmri

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Solution structure of μ-conotoxin PIIIA, a preferential inhibitor of persistent tetrodotoxin-sensitive sodium channels

Abstract
μ-Conotoxins are peptide inhibitors of voltage-sensitive sodium channels (VSSCs). Synthetic forms of μ-conotoxins PIIIA and PIIIA-(2-22) were found to inhibit tetrodotoxin (TTX)-sensitive VSSC current but had little effect on TTX-resistant VSSC current in sensory ganglion neurons. In rat brain neurons, these peptides preferentially inhibited the persistent over the transient VSSC current. Radioligand binding assays revealed that PIIIA, PIIIA-(2-22), and μ-conotoxin GIIIB discriminated among TTX-sensitive VSSCs in rat brain, that these and GIIIC discriminated among the corresponding VSSCs in human brain, and GIIIA had low affinity for neuronal VSSCs. 1H NMR studies found that PIIIA adopts two conformations in solution due to cis/trans isomerization at hydroxyproline 8. The major trans conformation results in a three-dimensional structure that is significantly different from the previously identified conformation of μ-conotoxins GIIIA and GIIIB that selectively target TTX-sensitive muscle VSSCs. Comparison of the structures and activity of PIIIA to muscle-selective μ-conotoxins provides an insight into the structural requirements for inhibition of different TTX-sensitive sodium channels by μ-conotoxins.

Publication Details

Authors
Katherine J. Nielsen, Michael Watson, David J. Adams, Anna K. Hammarström, Peter W. Gage, Justine M. Hill, David J. Craik, Linda Thomas, Denise Adams, Paul F. Alewood, and Richard J. Lewis

This journal article is available at Research Online: https://ro.uow.edu.au/ihmri/698
Solution Structure of μ-Conotoxin PIIIA, a PreferentialInhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels

Received for publication, February 17, 2002, and in revised form, April 29, 2002
Published, JBC Papers in Press, May 2, 2002, DOI 10.1074/jbc.M201611200

Katherine J. Nielsen‡, Michael Watson§, David J. Adams§, Anna K. Hammarström¶, Peter W. Gage¶, Justine M. Hill‡, David J. Craik‡, Linda Thomas‡, Denise Adams‡, Paul F. Alewood‡, and Richard J. Lewis‡§**

From the ‡Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia, the §School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia, and the ¶Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory 2601, Australia

μ-Conotoxins are peptide inhibitors of voltage-sensitive sodium channels (VSSCs). Synthetic forms of μ-conotoxins PIIIA and PIIIA-(2–22) were found to inhibit tetrodotoxin (TTX)-sensitive VSSC current but had little effect on TTX-resistant VSSC current in sensory ganglion neurons. In rat brain neurons, these peptides preferentially inhibited the persistent over the transient VSSC current. Radioligand binding assays revealed that PIIIA, PIIIA-(2–22), and μ-conotoxin GIIB discriminated among TTX-sensitive VSSCs in rat brain, that these and GIIC discriminated among the corresponding VSSCs in human brain, and GIIL had low affinity for neuronal VSSCs. 1H NMR studies found that PIIIA adopts two conformations in solution due to cis/trans isomerization at hydroxyproline 8. The major trans conformation results in a three-dimensional structure that is significantly different from the previously identified conformation of μ-conotoxins GIIA and GIIB that selectively target TTX-sensitive muscle VSSCs. Comparison of the structures and activity of PIIIA to muscle-selective μ-conotoxins provides an insight into the structural requirements for inhibition of different TTX-sensitive sodium channels by μ-conotoxins.

Voltage-sensitive sodium channels (VSSCs)1 underlie the influx of sodium ions responsible for action potentials in excitable cells (1). Based on their susceptibility to block by tetrodotoxin (TTX), VSSCs can be divided into TTX-sensitive (TTX-S) and TTX-resistant (TTX-R) classes. Members of both classes share considerable sequence homology and are closely related structurally (2). These include the neuronal TTX-S type I/Nav1.1, type II/Nav1.2, type III/Nav1.3, PN1/Nav1.7 and PN4/Nav1.6, and the skeletal muscle TTX-S μ1/Nav1.4. The TTX-R sodium channels include the cardiac H1/Nav1.5, which is partially TTX-resistant, and the neuronal TTX-R channels SNS/PN3/Nav1.8 and NaV/PN5/Nav1.9 (2). A number of these VSSC subtypes are implicated in clinical states such as pain (3–6), stroke (7, 8), and epilepsy (9, 10). Persistent (noninactivating) forms of the TTX-S sodium channel current that underlie repetitive firing (11, 12) have less well defined origins but may involve Na1.3 (13) or Na1.6 (11) and are enhanced by hypoxia (14–16) and nitric oxide (17). Most TTX-S sodium channels types have a heterogeneous distribution in human brain (18).

VSSCs are inhibited by local anesthetics and modulated by toxins that act at one inhibitory site (site 1) and at least four other sites that result in excitative actions. μ-Conotoxins from the venom of marine cone snails act selectively to occlude the pore of the VSSC by competing with TTX and saxitoxin (STX) for binding to site 1 in the P-loop region of the α subunit. To date, sequences for four members of the three-loop μ-conotoxin class have been published (Table I). GIIA–GIIC from Conus geographus venom are potent blockers of skeletal muscle but not neuronal VSSCs. The three-dimensional structures of selected μ-conotoxins (19, 20) have been used to describe the architecture of the outer vestibule of the VSSC (21–25). The most recently described member of this class is μ-conotoxin PIIIA (26) from C. purpurescens (Fig. 1). PIIIA is notable for its ability to inhibit neuronal as well as muscle TTX-S sodium channels (26) and to discriminate among VSSCs in rat brain (27). Thus, PIIIA is the first peptide toxin for investigating the architecture of site 1 of neuronal VSSCs.

Previous studies on GIIA (21, 22) have revealed that the cationic residues, particularly Arg23, are important for the high potency of this peptide at Na1.4 (see Fig. 1). The high sequence identity and similarities in the three-dimensional structures of GIIA and GIIB (19, 20) provide a rational basis for comparison with PIIIA, which also contains a number of conserved residues and the same disulfide connectivities as GIIA and GIIB (and GHIC). However, a number of primary structural differences are apparent between PIIE and other μ-conotoxins, which may affect the relative position and orientation of backbone loops and their projecting side chains and thus allow PIIIA to interact with both neuronal and muscle forms of TTX-sensitive VSSCs.

To further investigate the potential of PIIIA as a probe of VSSCs, we determined its structure by 1H NMR spectroscopy and characterized its mode of action on native tissues using electrophysiological and ligand binding approaches. These studies revealed that PIIIA and PIIIA-(2–22) preferentially inhibited the persistent TTX-S currents in rat hippocampal neurons, whereas in rat DRG the TTX-R current was spared. Comparisons of the three-dimensional structures of PIIIA, GIIA, and GIIB revealed important structural differences,
Structure-Activity of \(\mu \)-Conotoxin PIIIA

Electrophysiological Recordings

All NMR experiments were recorded on a Bruker ARX 500 spectrometer equipped with a \(z \)-gradient unit or on a Bruker DMX 750 spectrometer equipped with an \(x,y,z \)-gradient unit. Peptide concentrations were \(\approx 1 \mathrm{mM} \) except for Ca1 neurons where concentrations were \(\approx 30-50 \mu \mathrm{M} \). Spectra were processed using UWXMR as described previously (29) and using Aurelia; subtraction of background was used to minimize T1 noise. Chemical shift values were referenced internally to 4,4-dimethyl-4-silapentane-1-sulfonate at 0.00 ppm. Secondary \(\text{H} \) shifts were measured using random coil shift values of Wishart et al. (42). \(\Delta J_{\text{NH}}-\text{H} \) coupling constants were measured as previously described (29).

Distance Restraints and Structure Calculations

Peak volumes in NOESY spectra were classified as strong, medium, weak, and very weak, corresponding to upper bounds on interproton distance of 2.7, 3.5, 5.0, and 6.0 Å, respectively. Lower distance bounds were set to 1.8 Å. Appropriate pseudoatom corrections were made (43), and distances and 2D NOESY constraints were carefully moved. The ganglia were placed in physiological saline solution containing collagenase (~1.0 mg/ml type 2; Worthington-Biochemical) and incubated for 1 h at 37 °C in 95% air and 5% CO\(_2\) for 24–48 h. Neurons from the nodose ganglia that were clear and round were selected for experiments. Small diameter cells (~10 μm) were used, and cells that were flat, swollen, or grainy in appearance were avoided.

Electrophysiological Experiments

Dissociation of Nodose and DRG Neurons—Sensory neurons from rat nodose ganglia and dorsal root ganglia (DRG) were isolated as previously described (32, 33). Briefly, young rats (10–21 days) were killed by cervical dislocation, and the nodose and DRG were carefully removed. The ganglia were placed in physiological saline solution containing collagenase (~1.0 mg/ml type 2; Worthington-Biochemical) and incubated for 1 h at 37 °C in 95% air and 5% CO\(_2\) for 24–48 h. Neurons from the nodose ganglia that were clear and round were selected for experiments. Small diameter cells (~10 μm) were used, and cells that were flat, swollen, or grainy in appearance were avoided.

Dissociation of Hippocampal CA1 Neurons—Young rats (14–21 days) were anesthetized under \(\text{CO}_2 \) and decapitated with an animal guillotine. The brain was removed and transferred to ice-cold artificial cerebrospinal fluid (containing 124 mM NaCl, 26 mM NaH\(_2\)PO\(_4\), 3 mM KCl, 1.3 mM MgS\(_2\)O\(_4\), 2.5 mM NaH\(_2\)PO\(_4\), and 20 mM glucose). The brain was mounted in a vibrotome and bathed in ice-cold artificial cerebrospinal fluid equilibrated with 5% O\(_2\) and 5% CO\(_2\) while the 500-μm thick slices were prepared. Brain slices were incubated for 30 min with 200 units/ml papain (Worthington), 1.1 mM cysteine (Sigma), 0.2 mM EDTA, and 13.4 mM mercaptoethanol at 35 °C. Following incubation, the CA1 region was located, removed, and gently triturated using a fire-polished Pasteur pipette. Neurons of 10–15 μm were used, and cells that were flat, swollen, or grainy in appearance were avoided.

Peptides were prepared by Boc chemistry (29) using methods described for \(\omega \)-conotoxin (29). The side chain protection chosen was Arg(tos), Asp(OcHex), Lys(CIZ), Ser(Bzl), and Cys(MeBzl). The crude reduced peptides were purified by preparative reverse phase high pressure liquid chromatography.

Peptide Synthesis

The ganglia were placed in physiological saline solution containing EDTA, and 13.4 mM mercaptoethanol at 35 °C. The reduced peptides were oxidized at a concentration of 0.02 mM in pH 7.4 for 30 min, centrifuged, and resuspended in 50 mM HEPES (pH 7.4). Centrifugation and resuspension were repeated in 50 mM HEPES (pH 7.4). Radioligand binding studies were conducted in assay buffer (130 mM choline chloride, 5.4 mM KCl, 5.5 mM glucose, 0.8 mM MgSO\(_4\), 1.8 mM CaCl\(_2\), 50 mM HEPES (pH 7.4 with Tris base)). Filters were dried, scintillant was added, and radioactivity measured on a Microbeta counter (Wallac).

All NMR experiments were recorded on a Bruker ARX 500 spectrometer equipped with a \(z \)-gradient unit or on a Bruker DMX 750 spectrometer equipped with an \(x,y,z \)-gradient unit. Peptide concentrations were ~1 mM except for Ca1 neurons where concentrations were ~30-50 μM. Spectra were processed using UWXMR as described previously (29) and using Aurelia; subtraction of background was used to minimize T1 noise. Chemical shift values were referenced internally to 4,4-dimethyl-4-silapentane-1-sulfonate at 0.00 ppm. Secondary \(\text{H} \) shifts were measured using random coil shift values of Wishart et al. (42). \(\Delta J_{\text{NH}}-\text{H} \) coupling constants were measured as previously described (29).

Solution and Toxins—To record Na\(^+\) currents from DRG and nodose neurons, patch pipettes were filled with the following solution: 135 mM CsF, 10 mM NaCl, 5 mM HEPES, with pH adjusted to 7.2 with CsOH. The bath solution contained 50 mM NaCl, 3 mM KCl, 90 mM tetraethyammonium chloride, 0.1 mM CaCl\(_2\), 7.7 mM glucose, 10 mM HEPES, with pH adjusted to 7.4 with TEA-2\(\text{O} \). To record Na\(^+\) currents from Ca1 neurons, the patch pipette solution contained the following solution: 125 mM CsF, 5 mM NaF, 10 mM KCl, 10 mM TES, with pH adjusted to 7.4 with NaOH.

Data Analysis—Three distinct Na\(^+\) currents were measured: a transient TTX-sensitive Na\(^+\) current (TTX-S \(I_{\text{NaS}}\)), a persistent TTX-resistant Na\(^+\) current (TTX-R \(I_{\text{NaR}}\)), and a persistent TTX-sensitive Na\(^+\) current (TTX-S \(I_{\text{NaS}}\)). The amplitude of evoked TTX-S \(I_{\text{NaS}}\) was measured at its peak after subtraction of the current evoked in the presence of TTX (0.5–1 μM). The amplitude of the TTX-R \(I_{\text{NaR}}\) was measured as least 2 min following the addition of 0.5–1 μM TTX. The amplitude of TTX-S \(I_{\text{NaS}}\) was measured at the end of a 400-ms voltage step after subtraction of the current evoked in the presence of TTX (0.5–1 μM). All values are expressed as means ± S.E. with n indicating the number of cells in a given series of experiments. Comparisons of two means were made using Student’s two-tailed paired t test.
Na+ gate the transient TTX-resistant sodium current (TTX-R) and the effects of PIIIA on the transient TTX-sensitive Na+ neurons (Fig. 2). In contrast, in rat DRG neurons (TTX-resistant Na+ currents recorded from nodose neurons (E), DRG neurons were used to investigate the transient TTX-sensitive voltage-dependent sodium current, being slightly more potent at reducing the peak amplitude of the TTX-S I$_{NaT}$ during 20 depolarizing pulses from a holding potential of ~80 mV to a test potential of ~30 mV for 25 ms delivered at a frequency of 20 Hz ($n=6$). In rat hippocampal CA1 neurons, the addition of PIIIA-(2–22) to the bathing solution caused a concentration-dependent reduction in the peak amplitude of the TTX-S I$_{NaT}$ and the TTX-S I$_{NaP}$ (Fig. 3). Interestingly, PIIIA-(2–22) had a greater effect on the TTX-S I$_{NaP}$ than on the TTX-S I$_{NaT}$ (Fig. 3, inset). At 1 μM, the peak amplitude of the TTX-S I$_{NaT}$ was unaffected, whereas the amplitude of the TTX-S I$_{NaP}$ was reduced by ~70%.

The native μ-conotoxin, PIIIA, also reduced the TTX-S I$_{NaT}$ in rat nodose ($n=12$), DRG ($n=3$), and CA1 ($n=3$) neurons (data not shown) with a similar potency to PIIIA-(2–22). PIIIA had a preferential effect on the persistent compared with the transient sodium current, being slightly more potent at reducing the peak amplitude of the TTX-S I$_{NaP}$ current in CA1 neurons than PIIIA-(2–22). In preliminary experiments, 10-min bath application of GIIB (1–10 μM) had no effect on either the TTX-S or TTX-R I$_{NaT}$ in rat nodose or DRG neurons, respectively ($n=3$; data not shown).

Radioligand Binding Studies—The ability of μ-conotoxins to displace [3H]STX from VSSCs in human and rat brain and rat skeletal muscle is shown in Fig. 4. All peptides were more potent at the rat skeletal muscle than rat brain VSSCs, with GIIB and GIIIC showing most selectivity and PIIIA least selectivity. The pIC$_{50}$ values and percentage inhibition for these peptides are given in Table I. The data show that PIIIA and PIIIA-(2–22) have greater potency at rat and human brain VSSCs, GIIB has intermediate potency, and GIIT and GIIIC have least potency. These peptides were less potent than TTX, with none able to fully displace [3H]STX from rat or human brain (relative to TTX displacement). PIIIA and PIIIA-(2–22) produced the largest displacement of [3H]STX, and GIIB and GIIIC produced the least displacement. GIIB was more effective at displacing [3H]STX from rat compared with human brain (Fig. 4, A and B). All displacement curves were best fitted with a Hill slope of ~1.

[1H NMR Spectroscopy]—PIIIA was examined by 1H NMR spectroscopy in a range of different solvent conditions. In aqueous solution at pH 2.5–5.5 over 275–298 K, it was apparent that two conformations of PIIIA were present in a ~3:1 ratio. In aqueous solution at low pH over 283–298 K, the NH resonances of several residues, including 4–7, 10–12, 20, and 22...
proved by the addition of up to 50% CD3CN, where the set of formations was possible. The assignment of PIIIA was im-
ment of the major and a partial assignment of the minor con-
(residues 6 and 7, 10
(residues 4 and 5) or separated into two distinct sets of peaks
values and lower temperatures (275 K), these peaks sharpened
trans
as
peaks arising from the minor conformation was less evident,
stronger H
versus
, neuronal
Displacement of [3H]STX from brain and skeletal mus-
H
i
. FIG. 4.

Fig. 4. Displacement of [3H]STX from brain and skeletal muscle VSSC by TTX and \(\mu \)-conotoxins PIIIA, PIIIA-(2–22), GIIIA, GIIIB, and GIIC. A, human brain; B, rat brain; C, rat skeletal muscle; D, neuronal versus skeletal muscle selectivity in rat tissue. Legend refers to A, B, and C.

were broad, and that of Cys
was not observable. At higher pH values and lower temperatures (275 K), these peaks sharpened (residues 4 and 5) or separated into two distinct sets of peaks (residues 6 and 7, 10–12, 20, and 22) so that complete assignment of the major and a partial assignment of the minor con-
formations was possible. The assignment of PIIIA was im-
proved by the addition of up to 50% CD3CN, where the set of peaks arising from the minor conformation was less evident, and all resonances from the major conformation were present. Chemical shift assignments for PIIIA are given in Table II.

The two hydroxyproline (Hyp) residues in PIIIA are assigned as \textit{trans} from the observation of strong H\textsubscript{\textDelta}-H\textsubscript{\textDelta+1} NOEs in the case of Hyp8 and weak to medium H\textsubscript{\textDelta}-H\textsubscript{\textDelta+1}, together with the stronger H\textsubscript{\textDelta}-H\textsubscript{\textDelta+1} NOEs in the case of Hyp18 (52). The minor conformation of PIIIA results from a \textit{cis} conformation of Hyp8, indicated by a H\textsubscript{\textDelta}-H\textsubscript{\textDelta+1} NOE to the preceding residue. PIIIA-(2–22) was also examined under similar conditions and found to have almost identical chemical shifts and to adopt two con-
formations in proportions similar to those observed for PIIIA. The remainder of this paper describes the major conformation observed for both PIIIA and PIIIA-(2–22), unless otherwise specified.

Secondary H\textalpha shifts were used to examine the effects of solvent conditions on the backbone structure of PIIIA (Fig. 5). The shifts of PIIIA-(2–22) are also shown. These results clearly indicate that the backbone conformation is the same over a range of pH and solvent conditions for the native and truncated sequences. Similarly, the differences in H\beta shifts for AMX-bearing side chains, the H\delta shifts of the two Hyp residues, and the H\alpha shifts of Gly6 remain largely unchanged over these conditions for PIIIA and PIIIA-(2–22) (data not shown), indicating that the conformations of the side chains are not signif-
cantly affected by changes in the solution environment. One exception is the H\beta protons of Cys4, where the chemical shift differences between the H\beta/H\beta3 protons increase with pH from 0.22 ppm at pH 3 to 0.66 ppm at pH 5. This is likely to arise from the ring current effect of an aromatic ring in prox-
imity to the side chain of Cys4 at higher pH.

Comparison of the H\alpha shifts of the minor conformation of PIIIA show significant differences from residues 7–11, indicating differences in backbone conformation in these regions. This is supported by differences in H\beta shifts that are evident from residues 6–11, and also at Cys18. Due to low signal intensities, it was not possible to observe peaks for both H\beta and protons of Cys4, Cys5, and Cys21. The ring current effects observed for H\beta protons of the major conformations of PIIIA were not present in the minor conformations, indicating a difference in the posi-
tions of either Phe7 or His19 relative to Cys4.

Fig. 5 also compares the secondary H\alpha shifts of PIIIA with those of GIIB, which adopts the same structure in solution as GIIIA (20). Overall, the trends are similar, indicating that the global fold of PIIIA and GIIB are similar, as may be expected based on their identical disulfide pairings and loop sizes (Fig. 1). However, differences observed at residues 5–11 and 19–20 indicate that in some regions significant structural divergence exists. To directly address potential structural differences, we determined the three-dimensional structure of the major conformation of PIIIA (see below). Interestingly, the secondary shifts of the minor conformation of PIIIA at residue 10 are more like those of GIIB than the major form of PIIIA (Fig. 5), suggesting that the structure of the minor conformation of PIIIA is similar to the major conformation of GIIB and GIIC.

The local medium range NMR data that provide information on the secondary structure of PIIIA are given in Fig. 6. The presence of several H\textalpha-NH\textalpha, 2, NH-NH\textalpha, 2, and H\textalpha-NH\textalpha, 3 NOEs are indicative of the presence of several turns over the entire peptide and perhaps helix over residues 13–17. Although several long range NOEs are present, these did not correspond to the long range NOEs prescribing the \(\beta \)-hairpin of GIIB (20). In fact, a number of long range NOEs were present that preclude a corresponding \(\beta \)-hairpin in the major conformation of PIIIA.

At higher pH values (>4.0 at 293 K) in aqueous solution or in 50% aqueous CD\textsubscript{3}CN, the hydroxyl proton of Ser31 side chain was observed. This resonance sharpened considerably with the lowering of temperature (275 K in H\textsubscript{2}O; 260 K in CD\textsubscript{3}CN) to reveal several medium range NOEs to residues 15 and 16, indicative of a hydrogen bond involving the side chain of Ser31. These flanking residues apparently stabilize the position of Arg14, which has been shown to be crucial to the potency of
PIIIA (26). No equivalent interaction has been observed previously for either GIIIA or GIIIB, although an Asp in the equivalent position could conceivably stabilize the crucial Arg13 through the formation of a hydrogen bond with Gln15 (GIIIA) or through a salt bridge with Arg14 (GIIIB).

Three-dimensional Structure of PIIIA—A total of 372 NOE-derived distance restraints (149 intraresidual, 98 sequential, 125 long/medium range) and 27 dihedral (16 φ and 11 χ) were used to generate a set of 50 structures of PIIIA. Of these, 46 converged to a similar fold with no NOE violations greater than 0.2 Å and no dihedral violations greater than 3°. The structural analysis and data indicating the quality of the structures are summarized in Table III. From this, it is apparent that the backbone structure is highly defined over residues 3–22, a conclusion that is supported by high average angular order parameters (S = 0.96) over this region for the φ and ψ backbone dihedral angles and low backbone r.m.s. deviations (Fig. 7A). Fig. 8A shows an overlay of the 20 lowest energy structures, which indicate that PIIIA is dominated by a series of turns over the N-terminal part of the molecule. From Ser13 to the C terminus, the structure adopts a distorted helix, with deviations from ideality at residues 18 and 19. Fig. 8B shows the positions of the side chains of residues 13–15, where it is clear that the exposure of Arg14 is facilitated by the proximity of Ser13 and Gln15. Analysis of the structures indicate the presence of hydrogen bonds between the side chain oxygen of Ser13 and the backbone NH proton of Cys16 (1 of 20 structures) or the side chain amide protons of Arg15 (11 of 20 structures) and Gly16 (16 of 20 structures) or the side chain amide protons of Gly15 (12 of 20 structures) or the side chain amide protons of Gly15 (1 of 20 structures), which would assist in stabilizing this configuration.

Examination of the structures of PIIIA reveals that the positions of some side chains are less precisely defined than others. Although there has been no quantitative investigation of the correlation between surface exposure and geometric precision within families of NMR-derived structures, it might be expected that more surface-exposed residues are less conformationally constrained than buried residues. To investigate this correlation for PIIIA, the surface area of each residue is measured in H2O at pH 5.0 and 285 K.

Table I

<table>
<thead>
<tr>
<th>μ-Conotoxin</th>
<th>Human brain</th>
<th>Rat brain</th>
<th>Rat muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIIIA</td>
<td>7.1 (6.6–6.6)</td>
<td>6.5 (6.8–6.3)</td>
<td>6.8 (7.1–6.5)</td>
</tr>
<tr>
<td>Inhibition</td>
<td>47 (34–61)%</td>
<td>79 (68–91)%</td>
<td>81 (67–96)%</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Residue</th>
<th>NH</th>
<th>Hα</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>pGlu¹</td>
<td>7.98</td>
<td>(4.29)</td>
<td>(4.33)</td>
</tr>
<tr>
<td>Arg²</td>
<td>(8.53) [8.59]</td>
<td>3.93</td>
<td>(4.25) [4.19]</td>
</tr>
<tr>
<td>Leu³</td>
<td>8.47 [8.45] [8.48]</td>
<td>4.40</td>
<td>(4.41) [4.32]</td>
</tr>
<tr>
<td>Cys⁴</td>
<td>8.41 [8.43]</td>
<td>4.47</td>
<td>(4.58)</td>
</tr>
<tr>
<td>Cys⁵</td>
<td>7.97 [8.03]</td>
<td>4.14</td>
<td>(4.28)</td>
</tr>
<tr>
<td>Gly⁶</td>
<td>8.39 [8.65] [7.84]</td>
<td>3.83</td>
<td>(3.81) [3.82]</td>
</tr>
<tr>
<td>Phe⁷</td>
<td>7.38 [7.43] [8.35]</td>
<td>4.98</td>
<td>(5.05) [4.72]</td>
</tr>
<tr>
<td>Hyp⁸</td>
<td>6.55 [6.82]</td>
<td>4.37</td>
<td>(4.49) [4.28]</td>
</tr>
<tr>
<td>Lys⁹</td>
<td>8.55 [9.02]</td>
<td>3.98</td>
<td>(4.07) [4.11]</td>
</tr>
<tr>
<td>Ser¹⁰</td>
<td>7.78 [7.92] [8.63]</td>
<td>3.98</td>
<td>(4.05) [4.79]</td>
</tr>
<tr>
<td>Cys¹¹</td>
<td>8.08 [8.25]</td>
<td>4.39</td>
<td>(4.51) [4.62]</td>
</tr>
<tr>
<td>Arg¹²</td>
<td>7.50 [7.52] [8.43]</td>
<td>4.19</td>
<td>(4.28) [4.31]</td>
</tr>
<tr>
<td>Ser¹³</td>
<td>7.73 [7.86] [7.90]</td>
<td>4.48</td>
<td>(4.53) [4.43]</td>
</tr>
<tr>
<td>Arg¹⁴</td>
<td>9.04 [9.19]</td>
<td>3.95</td>
<td>(4.01) [3.99]</td>
</tr>
<tr>
<td>Gln¹⁵</td>
<td>8.51 [8.77] [8.72]</td>
<td>4.10</td>
<td>(4.15) [4.16]</td>
</tr>
<tr>
<td>Cys¹⁶</td>
<td>7.46 [7.62] [7.62]</td>
<td>4.81</td>
<td>(4.81) [4.88]</td>
</tr>
<tr>
<td>Lys¹⁷</td>
<td>8.06 [7.99] [8.66]</td>
<td>4.21</td>
<td>(4.20) [4.16]</td>
</tr>
<tr>
<td>Hyp¹⁸</td>
<td>6.58 [6.47]</td>
<td>4.58</td>
<td>(4.70)</td>
</tr>
<tr>
<td>Arg²⁰</td>
<td>8.99 [8.92] [8.96]</td>
<td>4.05</td>
<td>(4.12) [4.11]</td>
</tr>
<tr>
<td>Cys²¹</td>
<td>4.47</td>
<td>(4.48)</td>
<td></td>
</tr>
<tr>
<td>Cys²²</td>
<td>7.87 [8.13]</td>
<td>4.86</td>
<td>(4.91) [4.89]</td>
</tr>
</tbody>
</table>

Struct-Activity of μ-Conotoxin PIIIA

Potency (pIC50) and extent of inhibition (%) of [3H]STX binding to VSSCs by μ-conotoxins and TTX

95% confidence interval range for pIC50 and percentage of inhibition are given in parenthesis.
vides an additional means of checking and comparing NMR-derived structures, beyond a comparison of r.m.s. deviation values alone.

DISCUSSION

The present study confirms that \(\mu\)-conotoxins PIIIA and PIIIA-(2–22) are potent blockers of neuronal VSSCs. It has been previously shown in radioligand binding studies that PIIIA and GIIIA discriminate among subtypes of the TTX-sensitive VSSC found in rat brain (26). This discrimination now extends to PIIIA-(2–22) and GIIIB in rat brain and to all \(\mu\)-conotoxins except GIIIA in human brain. These differences in potency and extent of inhibition of rat and human brain VSSCs arise from relatively small sequence differences, with positions 14 and 18 influencing neuronal activity among the muscle-selective \(\mu\)-conotoxins. Despite differential effects on neuronal TTX-S sodium channels in brain, GIIIA, GIIIB, and GIIIC have similar potency at skeletal muscle VSSCs. In the peripheral nervous system, PIIIA-(2–22) and PIIIA inhibit TTX-S VSSCs without significantly affecting the TTX-R sodium current. Since \(\mu\)-conotoxins have been shown to bind higher in the pore of Nav1.4 than TTX (53), it would appear that in addition to residue differences deep within the pore of the VSSC that render the channel TTX-R (54), additional changes occur further out in the pore to render TTX-R VSSCs insensitive to block by \(\mu\)-conotoxins.

PIIIA and its analogue PIIIA-(2–22) are the first \(\mu\)-conotoxins shown to distinguish between transient and persistent TTX-sensitive subtypes. Selective inhibition of persistent over transient VSSCs may control seizures, where the accompanying slow persistent sodium currents might be blocked without affecting the transient action potentials (7). It has been postulated that the persistent sodium channels are the same as those that generate transient sodium currents and that a small fraction of these channels enter a noninactivating mode to generate the persistent sodium current (55, 56). This type of persistent current has been observed in cell lines transfected...
with cDNA for Na\textsubscript{v}1.6 (11), Nav1.3 (13), or Nav1.2 (57). The persistent Na+/H+ current is also thought to play an important role in pacemaking currents and setting rhythmicity in central neurons (58). During hypoxia or in the presence of free radicals (oxidative stress), these channels become more active (15, 17, 35) and could thus serve as a prominent pathway for Na+/H+ influx, triggering a cascade of damaging events that eventually cause cell damage and cell death (59). Hence, specific inhibitors of persistent Na+/H+ current may have neuroprotective effects.

TTX, lidocaine, and quinidine can also inhibit persistent Na+/H+ channels without blocking transient Na+/H+ channels (14, 15). The \(\mu\)-conotoxins extend the list of blockers able to discriminate between persistent and transient sodium currents.

Insights into the structure of the outer vestibule of the Nav1.4 channel have been obtained using the three-dimensional structure GIIIA and GIIIB as molecular calipers (21–23). The fact that PIIIA is also able to block Nav1.4 indicates that many of the structural features found in GIIIA and GIIIB might also be conserved in PIIIA. However, additional structural differences must also exist to account for the high affinity of PIIIA and GIIIA, respectively. Core residues differ between these two peptides and thus may contribute to selectivity differences at muscle and neuronal sodium channels. Side chains shown are Leu/Thr (yellow), Hyp/Ser (pink), Arg/Lys (dark blue), His (light blue), Gln (purple), Phe (brown), and Asp (red).

The table below presents geometric and energetic statistics for the 20 structures of \(\mu\)-conotoxin PIIIA.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean r.m.s. deviations from experimental restraints</td>
<td></td>
</tr>
<tr>
<td>NOE (Å)</td>
<td>0.009 ± 0.002</td>
</tr>
<tr>
<td>Dihedral (degrees)</td>
<td>0.21 ± 0.10</td>
</tr>
<tr>
<td>Mean r.m.s. deviation from idealized covalent geometry</td>
<td></td>
</tr>
<tr>
<td>Bonds (Å)</td>
<td>0.0079 ± 0.0004</td>
</tr>
<tr>
<td>Angles (degrees)</td>
<td>2.14 ± 0.06</td>
</tr>
<tr>
<td>Improper (degrees)</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>Energies (kcal mol-1)</td>
<td></td>
</tr>
<tr>
<td>(E_{\text{NOE}})</td>
<td>0.92 ± 0.37</td>
</tr>
<tr>
<td>(E_{\text{dih}})</td>
<td>0.05 ± 0.04</td>
</tr>
<tr>
<td>(E_{\text{bond}} + E_{\text{angle}} + E_{\text{improper}})</td>
<td>47.3 ± 3.1</td>
</tr>
<tr>
<td>Restraint violations</td>
<td></td>
</tr>
<tr>
<td>Mean NOE violation (Å)</td>
<td>0.029</td>
</tr>
<tr>
<td>Maximum NOE violation (Å)</td>
<td>0.17</td>
</tr>
<tr>
<td>Mean dihedral angle violation (degrees)</td>
<td>0.94</td>
</tr>
<tr>
<td>Maximum angle violation (degrees)</td>
<td>2.45</td>
</tr>
</tbody>
</table>

Fig. 7 A, backbone angular order parameters for the \(\phi\) and \(\psi\) dihedral angles and average backbone r.m.s. deviations versus PIIIA residue number. B, heavy atom r.m.s. deviations and the percentage of surface exposure (Å2) versus PIIIA residue number.

Fig. 8. Structure of PIIIA. A, superimposition of the 20 lowest energy structures over the backbone region (residues 2–22). B, 180° rotation of the structures shown in A with the side chains of Ser13 (pink), Arg14 (blue), Gln15 (purple), and Cys residues (orange) indicated. A comparison is shown of the positions of surface residues in PIIIA (C) and their counterparts in GIIIA (D). Note that the same surface-exposed residues are found in PIIIA and GIIIA and are all considered important for the potency of GIIIA to \(\mu\)-1 VSSCs (Nav1.4). E and F, comparison of core residues in PIIIA and GIIIA, respectively. Core residues differ between these two peptides and thus may contribute to selectivity differences at muscle and neuronal sodium channels. Side chains shown are Leu/Thr (yellow), Hyp/Ser (pink), Arg/Lys (dark blue), His (light blue), Gln (purple), Phe (brown), and Asp (red).
PIIIA, where instead a series of loops exist. The structural difference between the major and minor forms arises from a difference at Hyp\(^6\) (Hyp\(^7\) in GIIIA), which adopts a predominantly trans conformation in PIIIA but a cis conformation in GIIIA and GIIIB (19, 20). Importantly, residues including Lys\(^8\)/Lys\(^9\) and Arg\(^14\)/Arg\(^2\), which have been shown in GIIIA to be of moderate importance to binding, are placed in an entirely different position in the major conformation of PIIIA (Fig. 8, C and D). However, the effects of the cis\(\rightarrow\)trans isomerization on the C-terminal region of PIIIA are minimal, with the conformation of the putatively important binding residues Arg\(^14\), Arg\(^20\), and Lys\(^17\) not being significantly different from their GIIIA counterparts. The structural difference between the major forms of PIIIA, GIIIA, and GIIIB are unexpected, given that these peptides share the same disulfide connectivity and loop sizes and have considerable sequence homology. In contrast, the minor conformation of PIIIA, like GIIIA and GIIIB, arises from the cis form of Hyp\(^9\)/Hyp\(^7\), indicating that it adopts a three-dimensional structure more closely resembling GIIIA and GIIIB.

Comparison of the major conformation of PIIIA to a model of the minor conformation of PIIIA derived from the three-dimensional structure of GIIIA (Fig. 9) reveals that the positions of several side chains differ markedly between the two forms. Apart from the aforementioned structural differences at Arg\(^2\) and Lys\(^8\), the hydrophobic residues Leu\(^3\) and Phe\(^7\) are exposed to the solvent in the cis form yet hug the surface in the trans form, providing a different surface profile. In addition, the side chain of Cys\(^4\) lies above the plane of the His\(^{19}\) ring in the trans conformation (accounting for the ring current effects mentioned previously) but lies away from His\(^{19}\) in the cis form, despite the fact that the position of His\(^{19}\) is unchanged in either conformation. Thus, a simple cis\(\rightarrow\)trans isomerization not only affects the surface of this peptide but somewhat surprisingly also alters the shape of part of the cysteine framework.

Conformational flexibility was proposed as a possible reason for the breadth of resonances associated with residues in the loop 2 of GIIIB (20). The present study shows that there are differing relative proportions and different rates of interchange between the cis\(\rightarrow\)trans forms. In GIIIA and GIIIB, it is apparent that the cis form predominates, with the trans form being masked by broadening associated with intermediate exchange occurring on the NMR time scale. In PIIIA, the trans form predominates, but the minor form is detectable because the two forms are in slow exchange. It is possible that the bulky Phe residue adjacent to Hyp\(^8\) in PIIIA acts to slow the rate of Hyp isomerization. Two questions arise from the conformational heterogeneity found in PIIIA. First, which of the possible \(\mu\)-conotoxin conformations binds to the VSSC? Second, what role is played by these conformational differences in determining VSSC selectivity among \(\mu\)-conotoxins? Given that the broadened lines observed in GIIIA and GIIIB are indicative of alternative conformations, it is possible that a minor conformation of these muscle-selective \(\mu\)-conotoxins binds to the VSSCs. If this is indeed correct, it could impact on studies investigating the structure of the outer vestibule of the VSSC using the currently available structures of \(\mu\)-conotoxins.

Apart from Arg\(^14\), which has been shown to be important for the activity of PIIIA, it is not known which other residues in this peptide are involved in VSSC binding. An examination of the three-dimensional structures and the surface profile (Fig. 7B) of PIIIA reveals residues that are on the surface (Fig. 8C) and are hence potentially available for interactions with the sodium channel. Along with Arg\(^14\), these include Lys\(^8\), Hyp\(^8\), and Arg\(^20\), which parallel residues Lys\(^8\), Hyp\(^17\), and Arg\(^19\) in GIIIA (Fig. 8D), thus defining a common pharmacophore, as previously suggested (26). Note that Ser\(^{13}\) is buried, consistent with it playing a structural role that ensures the exposure of Arg\(^14\). In GIIIA, the residue Asp\(^{12}\), which corresponds to Ser\(^{13}\) in PIIIA, may also play a structural role. The other exposed residues, Lys\(^8\) and Arg\(^2\), have structural counterparts in GIIIA (Lys\(^8\) and Arg\(^1\)) but adopt quite different positions in the predominant conformations of these two peptides.

It is interesting that the residues that differ between PIIIA and GIIIA cluster on one face of the peptide, perhaps forming a functionally significant pocket or cavity (Fig. 8, E and F). It is possible that one or more of these mostly hydrophobic and polar residues contribute to binding to the neuronal VSSCs and thus confer broader specificity to PIIIA (and PIIIA-(2–22)). Thus, core residues and the positioning of exposed residues that differ...
Solution Structure of μ-Conotoxin PIIIA, a Preferential Inhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels

Katherine J. Nielsen, Michael Watson, David J. Adams, Anna K. Hammarström, Peter W. Gage, Justine M. Hill, David J. Craik, Linda Thomas, Denise Adams, Paul F. Alewood and Richard J. Lewis

doi: 10.1074/jbc.M201611200 originally published online May 2, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M201611200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 58 references, 13 of which can be accessed free at http://www.jbc.org/content/277/30/27247.full.html#ref-list-1