2003

Inhibition of the norepinephrine transporter by the venom peptide χ-MrIA: site of action, Na+ dependence, and structure-activity relationship

Iain A. Sharpe
University of Queensland

Elka Palant
Xenome Ltd

Christina I. Schroeder
University of Queensland

David M. Kaye
Baker Heart Research Institute

David J. Adams
University of Queensland, djadams@uow.edu.au

See next page for additional authors

Publication Details
Inhibition of the norepinephrine transporter by the venom peptide χ-MrIA: site of action, Na+ dependence, and structure-activity relationship

Abstract
χ-Conopeptide MrIA (χ-MrIA) is a 13-residue peptide contained in the venom of the predatory marine snail Conus marmoreus that has been found to inhibit the norepinephrine transporter (NET). We investigated whether χ-MrIA targeted the other members of the monoamine transporter family and found no effect of the peptide (100 μM) on the activity of the dopamine transporter and the serotonin transporter, indicating a high specificity of action. The binding of the NET inhibitors, [3H]nisoxetine and [3H]mazindol, to the expressed rat and human NET was inhibited by χ-MrIA with the conopeptide displaying a slight preference toward the rat isoform. For both radio-ligands, saturation binding studies showed that the inhibition by χ-MrIA was competitive in nature. It has previously been demonstrated that χ-MrIA does not compete with norepinephrine, unlike classically described NET inhibitors such as nisoxetine and mazindol that do. This pattern of behavior implies that the binding site for χ-MrIA on the NET overlaps the antidepressant binding site and is wholly distinct from the substrate binding site. The inhibitory effect of χ-MrIA was found to be dependent on Na+ with the conopeptide becoming a less effective blocker of [3H]norepinephrine by the NET under the conditions of reduced extracellular Na+. In this respect, χ-MrIA is similar to the antidepressant inhibitors of the NET. The structure-activity relationship of χ-MrIA was investigated by alanine scanning. Four residues in the first cysteine-bracketed loop of χ-MrIA and a His in loop 2 played a dominant role in the interaction between χ-MrIA and the NET. Ha chemical shift comparisons indicated that side-chain interactions at these key positions were structurally perturbed by the replacement of Gly-6. From these data, we present a model of the structure of χ-MrIA that shows the relative orientation of the key binding residues. This model provides a new molecular caliper for probing the structure of the NET.

Disciplines
Medicine and Health Sciences

Publication Details

Authors
Iain A. Sharpe, Elka Palant, Christina I. Schroeder, David M. Kaye, David J. Adams, Paul F. Alewood, and Richard J. Lewis

This journal article is available at Research Online: http://ro.uow.edu.au/ihmri/684
Inhibition of the Norepinephrine Transporter by the Venom Peptide χ-MrIA

SITE OF ACTION, Na⁺ DEPENDENCE, AND STRUCTURE-ACTIVITY RELATIONSHIP

Received for publication, December 20, 2002, and in revised form, July 2, 2003
Published, JBC Papers in Press, July 28, 2003, DOI 10.1074/jbc.M213030200

Iain A. Sharpe‡§, Elka Palant§, Christina I. Schroeder‡, David M. Kaye‡, David J. Adams§, Paul F. Alewood‡§, and Richard J. Lewis‡§**
From the ‡Institute for Molecular Bioscience, The University of Queensland, St. Lucia 4072, Queensland, Australia, and the {School of Biomedical Sciences, The University of Queensland, St. Lucia 4072, Queensland, Australia.
§Xenome Ltd, 50 Meiers Road, Indooroopilly 4068, Queensland, Australia, and the §Baker Heart Research Institute, Commercial Road, Prahran 3181, Victoria, Australia

χ-Conopeptide MrIA (χ-MrIA) is a 13-residue peptide contained in the venom of the predatory marine snail Conus marmoreus that has been found to inhibit the norepinephrine transporter (NET). We investigated whether χ-MrIA targeted the other members of the monoamine transporter family and found no effect of the peptide (100 M) on the activity of the dopamine transporter and the serotonin transporter, indicating a high specificity of action. The binding of the NET inhibitors, [3H]nisoxetine and [3H]mazindol, to the expressed rat and human NET was inhibited by χ-MrIA with the conopeptide displaying a slight preference toward the rat isoform. For both radioligands, saturation binding studies showed that the inhibition by χ-MrIA was competitive in nature. It has previously been demonstrated that χ-MrIA does not compete with norepinephrine, unlike classically described NET inhibitors such as nisoxetine and mazindol that do. This pattern of behavior implies that the binding site for χ-MrIA on the NET overlaps the antidepressant binding site and is wholly distinct from the substrate binding site. The inhibitory effect of χ-MrIA was found to be dependent on Na⁺ with the conopeptide becoming a less effective blocker of [3H]norepinephrine by the NET under the conditions of reduced extracellular Na⁺. In this respect, χ-MrIA is similar to the antidepressant inhibitors of the NET. The structure-activity relationship of χ-MrIA was investigated by alanine scanning. Four residues in the first cysteine-bracketed loop of χ-MrIA and a His in loop 2 played a dominant role in the interaction between χ-MrIA and the NET. Ha chemical shift comparisons indicated that side-chain interactions at these key positions were structurally perturbed by the replacement of Gly-6. From these data, we present a model of the structure of χ-MrIA that shows the relative orientation of the key binding residues. This model provides a new molecular caliper for probing the structure of the NET.

Because of its poor lipid solubility and degree of ionization at physiological pH, norepinephrine crosses cell membranes poorly

* This work was provided by the National Health and Medical Research Council of Australia. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1754 solely to indicate this fact.

The atomic coordinates and structure factors (code 1IEO) have been deposited in the Protein Data Bank, Research Collaboratory for Structural Bioinformatics, Rutgers University, New Brunswick, NJ (http://www.rcsb.org/).

** To whom correspondence should be addressed. Tel.: 61-7-3346-2884; Fax: 617-3346-2101; E-mail: r.lewis@imb.uq.edu.au.

This paper is available on line at http://www.jbc.org

40317
was deprotected and cleaved from the resin by stirring at room temperature in 2-5% trifluoroacetic acid/H2O-trispropylsilyl ether/ethanedithiol (5:2:5:2) for 2–3 h. Cold diethyl ether was then added to the mixture, and the peptide precipitated out. The precipitate was collected by centrifugation and subsequently washed with further cold diethyl ether to remove scavengers. The final product was dissolved in 50% aqueous acetonitrile and lyophilized to yield a fluffy white solid. The crude, reduced peptide was examined by reverse phase high performance liquid chromatography for purity, and the correct molecular weight was confirmed by electrospray mass spectrometry. Pure, reduced peptides were oxidized, and the major peak was purified to $>95\%$ purity and characterized by high performance liquid chromatography prior to further use.

Cellular Uptake of [3H]Monoamines—

- COS-1 cells (ATCC, Manassas, VA) were grown in 24-well plates (Falcon, BD Biosciences) containing Dulbecco’s modified Eagle medium (Invitrogen) and 10% fetal bovine serum (Invitrogen) at 37°C in 5% CO2. Upon reaching $\sim 85\%$ confluence, the cells were transiently transfected with plasmid DNA encoding the human NET (13), the rat NET (14), the human DAT (15), or the human SERT (16). Transfections were performed using LipofectAMINE 2000 reagent (Invitrogen) following the manufacturer’s protocol using 800 ng of DNA/well. Assays measuring the cellular accumulation of the transporters’ respective [3H]monoamine substrates were performed 24 h after transfection at room temperature in duplicate. The culture medium was removed, and the cells were washed three times with 500 µL of a solution containing 125 mM NaCl, 4.8 mM KCl, 1.2 mM MgSO4, 1.2 mM KH2PO4, 1.3 mM CaCl2, 25 mM HEPES, 5.55 mM d(+)-glucose, 1.02 mM ascorbic acid, 10 µM U-0251i (to inhibit catechol-O-methyl transferase), and 100 µM pargyline (to inhibit monoamine oxidase), pH 7.4. In experiments examining the Na+–dependence of the NET inhibitors, the concentration of NaCl used in the transport buffer ranged from 25 to 125 mM with appropriate concentrations of LiCl added to retain equal osmolality. Inhibitor drugs were preincubated with the cells for 15 min before the addition of 100 nM [3H]monoamine substrate (supplemented with unlabeled substrate as required). The final volume was 250 µL. Non-specific uptake of [3H]norepinephrine by NET-transfected cells was defined by the accumulation occurring in the presence of 100 µM desipramine. In separate NET-transfected cells (10–6 M) were used to determine the amount of non-specific uptake of [3H]serotonin by SERT-transfected cells and [3H]dopamine uptake by DAT-transfected cells, respectively. Transfected cells were exposed to [3H]monoamine substrate for either 8 min (rat NET, human SERT) or 15 min (human NET, human DAT). The selection of these incubation times was based on the results of pilot studies that showed that the relationship between uptake and time was linear over these periods (data not shown). The solution containing unaccumulated [3H]-substrate was then rapidly removed, and the cells were washed three times with 1 ml of ice-cold phosphate-buffered saline. The cells were lysed with 1.01% Triton X-100 in 10 mM Tris-HCl, pH 7.5, for 60 min at room temperature with gentle shaking. The level of radioactivity of the cell lysate was determined by liquid scintillation counting.

Membrane Preparation—

COS-7 cells (ECACC, Salisbury, Wiltshire, United Kingdom) were grown in 150-mm dishes and transiently transfected with 15 µg of plasmid DNA encoding the rat NET using the same method described for the uptake experiments. Membranes were prepared from cells 48 h after transfection for use in radioligand binding experiments. After washing the cells with warm phosphate-buffered saline, ice-cold TEM buffer (10 mM Tris-HCl, 1.4 mM EGTA, 12.5 mM MgCl2, pH 7.5) was added and the cells were scraped from the dish. Cells were then homogenized using a Polytron homogenizer (Brinkmann Instruments, Westbury, NY) and centrifuged at 1000 \times g for 5 min at 4°C. The resulting cell debris at 15,000 \times g for 45 min at 4°C. Pellets were washed with TEM buffer and reconstituted. The resulting pellet was resuspended in TEM buffer containing 10% glycerol. Rat brain homogenates were prepared as described previously (50) in buffer containing 50 mM Tris-HCl, 300 mM NaCl, 5 mM KCl, pH 7.4, for 1 h at room temperature. The reactions were filtered, and the radioactivity counted as described above.

[3H]NMR Spectroscopy—

All of the spectra were recorded on a Bruker ARX 500 spectrometer equipped with a z-gradient unit. Peptide concentrations were ~ 2 mM. Each analog was examined in 95% H2O, 5% D2O, pH 3.0–3.5. The [3H]NMR experiments were recorded at 18 (18, 19) with a mixing time of 400 ms and TOCSY (20) with a mixing time of 65–120 ms. All of the spectra were recorded at 290 K and were run over 6024 Hz (500 MHz) with 4096 data points, 512 free induction decays, 16–80 scans, and a recycle delay of 1 s.

The solvent was suppressed using the WATERGATE sequence (21).

Spectra were processed using XWINMR. Free induction decays were multiplied by a polynomial function and apodised using a 90° shifted sine-bell function in both dimensions prior to Fourier transformation. Broadening correction was applied in the order polynomial, preapodised. Chemical shift values were referenced internally to 2,2-dimethyl-2-silapentane-5-sulfonate at 0.0 ppm. The peptides were assigned according to the method of Wüthrich (22). Secondary Hα shifts were compared with the random coil shift values of Wishart et al. (22).

Materials—

- Desipramine hydrochloride, imipramine hydrochloride, mazindol, nisoxetine hydrochloride, (+)-norepinephrine bitartrate, and pargyline were obtained from Sigma. U-0251 and GBR-12909 dihydroxyphenylalanine (specific activity, 14.9 Ci/mmol), 5-[(2,2-D3)-N]-hydroxytryptamine creatinine sulfate ([3H]serotonin) (specific activity, 24.0 Ci/mmol), 5-[(2,2-D3)-dihydroyphenylethylamine ([3H]dopamine) (specific activity, 27.5 Ci/mmol), [3H]mazindol (specific activity, 21 Ci/mmol), and [3H]nisoxetine (specific activity, 80 Ci/mmol) were obtained from PerkinElmer Life Sciences. Protected Fmoc-amino acid derivatives were from Novabiochem or Auspep (Melbourne, Australia). The following side-chain protected amino acids were used: Cys(Bu), Asn(Troc), His(Trt), Hyp(Bu), Tyr(Bu), and Lys(But). Dimethylformamide, dichloromethane, diisopropylethylamine, and trifluoroacetic acid, were all of peptide synthesis grade supplied by Auspep. HBTU was Fuka 12804 supplied by Sigma. High performance liquid chromatography grade acetonitrile and methanol was supplied by Sigma. Resin used was Fmoc-rink amide resin supplied by Polymer Laboratories. Trispropylsiline was from Aldrich.

Data analysis—

Data are expressed as means ± S.E. of results obtained from 2 to 5 separate experiments. Student’s two-tailed t test or, where appropriate, ANOVA with post hoc tests performed by the Tukey method was used to evaluate the statistical significance of differences between groups. Values of p < 0.05 were considered significant. Curve fitting of concentration-response curves and radioligand binding data was performed by non-linear regression using individual data points with Prism 3.0 software for Macintosh (GraphPad, San Diego, CA). The equation of Cheng and Prusoff (24) was used to convert IC50 values to K values.

RESULTS—

Effect of χ-MrIA on the Cellular Uptake of [3H]Monoamines—

- COS-1 cells transfected with either the rat or human NET readily accumulated [3H]norepinephrine, and nonspecific uptake of [3H]norepinephrine was $\leq 2.5\%$ of the total uptake. As shown in Fig. 1, the uptake of [3H]norepinephrine via the rat and human NET was sensitive to inhibition by χ-MrIA with pIC50 values of 6.21 ± 0.02 (rat; n = 3) and 5.90 ± 0.03 (human; n = 3). χ-MrIA acted as a full inhibitor of the NET of both species. For DAT- and SERT-transfected cells, nonspecific uptake represented $\leq 6\%$ of the total [3H]norepinephrine accumulation. In the presence of χ-MrIA (100 µM), the rate of uptake of [3H]dopamine by the human DAT and [3H]serotonin by the human SERT was not significantly altered (Fig. 1B).
Effect of \(\chi \)-MrIA on the Binding of Classical NET Inhibitors—\(\chi \)-MrIA inhibited the binding of [\(^{3}H\)]nisoxetine to the membranes of cells expressing the rat and human NET (Fig. 2A). The IC\(_{50}\) for inhibition was 500 nM (\(pK_{i} = 6.6 \pm 0.05 \)) at the rat NET and 1.7 \(\mu \)M (\(pK_{i} = 6.0 \pm 0.04 \)) at the human NET. [\(^{3}H\)]Mazindol binding to the expressed transporters was also sensitive to \(\chi \)-MrIA (Fig. 2B). \(\chi \)-MrIA inhibited binding with an IC\(_{50}\) of 1.9 \(\mu \)M (\(pK_{i} = 6.4 \pm 0.03 \)) at the rat NET and 4.0 \(\mu \)M (\(pK_{i} = 5.9 \pm 0.04 \)) at the human NET. Nonspecific binding represented \(\sim 3\% \) of the total binding in all of the experiments, and \(\chi \)-MrIA acted as a full inhibitor of [\(^{3}H\)]nisoxetine and [\(^{3}H\)]mazindol binding.

Saturation analysis was used to characterize the nature of the inhibition caused by \(\chi \)-MrIA (Fig. 3). In the absence of \(\chi \)-MrIA, [\(^{3}H\)]nisoxetine bound to rat NET membranes with a \(K_{d} \) of 4.2 \(\pm \) 0.5 nM and a \(B_{\text{max}} \) of 42 \(\pm \) 1.6 pmol/mg protein. The \(K_{d} \) was increased to 21 \(\pm \) 3.6 nM in the presence of 2 \(\mu \)M \(\chi \)-MrIA with no significant change in the value of the \(B_{\text{max}} \) (45 \(\pm \) 4.2 pmol/mg protein). For [\(^{3}H\)]mazindol binding, the \(K_{d} \) was 1.0 \(\pm \) 0.1 nM and the \(B_{\text{max}} \) was 40 \(\pm \) 0.3 pmol/mg protein in control experiments. In the presence of \(\chi \)-MrIA (20 \(\mu \)M), the \(K_{d} \) (35 \(\pm \) 1.5 nM) but not the \(B_{\text{max}} \) (41 \(\pm \) 0.6 pmol/mg protein) was significantly altered. \(\chi \)-MrIA (10\(^{-6} \) M) did not affect the dissociation rate of [\(^{3}H\)]nisoxetine from the expressed rat NET (data not shown).

Desipramine, nisoxetine, and \(\chi \)-MrIA reduced the binding of [\(^{3}H\)]nisoxetine to rat brain homogenates in a concentration-dependent manner (Fig. 4). \(F \) tests comparing the fit of the binding data to a model of one-site competition, two-site competition, or a sigmoidal curve with a variable slope indicated that the simpler one-site competition model was preferred and more complicated models did not significantly improve the fit (\(p > 0.2 \) for each of the comparisons). The IC\(_{50}\) values for the inhibition were 1.1 nM (pIC\(_{50}\) = 8.9 \(\pm \) 0.06) for desipramine, 6.2 nM (pIC\(_{50}\) = 8.2 \(\pm \) 0.07) for nisoxetine, and 5.7 \(\mu \)M (pIC\(_{50}\) = 5.2 \(\pm \) 0.22) for \(\chi \)-MrIA. While desipramine and unlabeled nisoxetine inhibited the [\(^{3}H\)]nisoxetine binding to the same extent (nonspecific binding of \(\sim 43\% \)), the estimated maximum extent of inhibition produced by \(\chi \)-MrIA was significantly less (\(p <
0.001) with ~32% of the nisoxetine- and desipramine-sensitive binding found to be insensitive to χ-MrIA.

Sodium dependence of NET inhibition—The rate of uptake of [3H]norepinephrine by cells transfected with the human NET slowed substantially as the concentration of Na⁺ in the transport buffer was reduced. At the lowest Na⁺ concentration examined (25 mM), the rate of [3H]norepinephrine accumulation was approximately half of that observed at 125 mM Na⁺ (data not shown). Concentrations of desipramine and χ-MrIA that inhibited transport by 50% in assays where the buffer contained 125 mM Na⁺ (4.05 nM and 1.26 μM, respectively) were found to inhibit a progressively smaller proportion of the uptake in buffer containing less Na⁺ (Fig. 5).

Effect of Residue Replacement on the Potency of χ-MrIA—
Nine analogs of χ-MrIA in which the non-cysteine residues were systematically replaced with alanine were assayed for inhibition of [3H]nisoxetine binding to the expressed human NET, and their potency was compared (Fig. 6). The analogs with substitutions at N-terminal residues outside of the cysteine-bracketed loops (lN1A-MrIA, lG2A-MrIA, and lV3A-MrIA) displayed no significant change in potency compared with χ-MrIA. The replacement of any of the residues located in the first cysteine-bracketed loop, in contrast, had a severe impact on potency. No inhibition was observed with these analogs (lG6A-MrIA, lY7A-MrIA, lK8A-MrIA, and lL9A-MrIA) at 100 μM, the highest concentration tested. Assuming that the Hill slope parameter for their inhibition remains unchanged compared with χ-MrIA, the IC₅₀ concentrations of these peptides will be at least an order of magnitude greater still, yielding a conservative estimate of 10⁻³ M. Alanine substitution of the first residue of the second cysteine-bracketed loop (analog lH11A-MrIA) caused a ~60-fold reduction in potency. Replacement of the other residue in this loop (analog lO12A-MrIA) did not have a significant effect on potency. Two further analogs were assayed to investigate the effect of replacement with residues other than alanine at positions 7 and 8. The potency of lY7F-MrIA was ~3.8-fold lower (pIC₅₀ = 5.2 ± 0.08) than χ-MrIA, and the potency of lK5R-MrIA was ~6.8-fold lower (pIC₅₀ = 4.9 ± 0.10) than χ-MrIA.

Structural Effects of Alanine Substitutions—

- **1D, TOCSY,** and **NOESY** ¹H NMR spectra of χ-MrIA and analogs were recorded at 500 MHz and subsequently assigned using the sequential assignment protocol (22). **Secondary chemical shifts,** i.e. Hα chemical shifts compared with random coil values (25), are a sensitive measure of backbone conformation (26–28) and can provide an indication whether the overall global fold of a series of a peptide is maintained (29). For a series of structurally related peptides, secondary Hα chemical shifts can be used to identify the location but not the nature of local changes in conformation (29). Secondary Hα chemical shifts were used in the first instance to compare χ-MrIA with its alanine-substituted analogs (Fig. 7). The results indicate that the overall global fold of the χ-MrIA analogs used in this study are conserved compared with native χ-MrIA with the exception of [G6A]MrIA where the overall fold of the peptide appears different. Small local changes are observed for [K8A]MrIA and [H11A]MrIA at the site of the altered residue. For [Y7A]MrIA, a small change in the secondary Hα chemical shift is seen at Lys-8. This is not surprising as Tyr-7 is a relatively large residue that, relative to Ala-7, could influence the chemical environment of Lys-8 and hence differentially influence its Hα chemical shift. In the case of [G6A]MrIA, a comparison of its secondary Hα chemical shifts with χ-MrIA indicates that replacement of this residue causes a significant structural perturbation. Interestingly, introduction of a stereocenter through substitution of Gly-6 with an alanine appears to alter the structural rigidity of [G6A]MrIA. This enhanced structural rigidity for [G6A]MrIA is supported by changes in secondary Hβ shifts for residue Cys-5 where the two Cys-5 β-protons are well separated in [G6A]MrIA. In contrast, the other χ-MrIA analogs investigated in this study all display degenerate β-pro-
Inhibitors of the NET was also examined through a site on the NET that was distinct from the classical concentration of the SERT to take up their \(^3\text{H}\)-substrates demonstrates that inhibitors identified by Koppel et al. (2, 35) of \(^3\text{H}\)norepinephrine uptake (2, 35–37). Here, radioligand binding experiments have revealed that \(\chi\)-MrIA acts competitively with respect to \(^3\text{H}\)nisoxetine and [\(^3\text{H}\)]mazindol indicated by the effect of \(\chi\)-MrIA to increase the apparent \(K_a\) for the binding of the radioligands to the expressed rat NET without reducing the value of the \(B_{\text{max}}\).

Consistent with functional experiments, \(\chi\)-MrIA is a somewhat more potent inhibitor at the rat NET than the human NET. The identification of various residues of the NET that affect substrate and antidepressant affinity either jointly or separately (38–42) indicates that the antidepressant binding site partially overlaps the substrate binding site. Our finding that \(\chi\)-MrIA competes with nisoxetine and mazindol but not norpinephrine implies that the \(\chi\)-MrIA binding site is wholly distinct from the substrate binding site but shares some identity with the antidepressant binding site. The results from recent site-directed mutagenesis experiments with the human NET (43), in which the affinities of some of the mutant transporters for \(\chi\)-MrIA, desipramine, and cocaine were found to change in parallel and others change selectively for the different ligands, provide further support for a partial overlap among the \(\chi\)-MrIA, desipramine, and cocaine binding sites.

Although the potency of \(\chi\)-MrIA for inhibition of uptake and radioligand binding to the expressed rat NET observed here closely matches its reported potency for potentiating noradrenergic contractions in the isolated rat vas deferens (430 nM; 7), we found that the potency of \(\chi\)-MrIA for inhibition of the binding of \(^3\text{H}\)nisoxetine to rat brain was an order of magnitude lower. Given its lower potency in the rat brain, its only partial inhibitory effect and the modest degree of assumed specific (i.e. nisoxetine- or desipramine-sensitive) binding in the assay, it is perhaps not surprising that McIntosh et al. (9) did not detect any effect of \(\chi\)-MrIA (10 \(\mu\)M) in their NET binding assay using conditions somewhat similar to those used here. A possible reason for the only partial inhibition of the specific \(^3\text{H}\)nisoxetine binding by \(\chi\)-MrIA is the additional binding of desipramine and nisoxetine to sites in the rat brain other than the NET such as \(\alpha_1\)-adrenoceptors (44) or the SERT (30), which are not also targeted by \(\chi\)-MrIA. Alternatively, the classical NET inhibitors may bind at multiple sites on the NET in a manner reminiscent of the interaction of the cocaine analog RTI-55 and the SERT (45) with \(\chi\)-MrIA blocking only a subset of these sites. Our finding that \(\chi\)-MrIA acts as a full inhibitor of the desipramine-sensitive \(^3\text{H}\)nisoxetine binding to rat NET-transfected cell membranes (Fig. 2A) discounts this hypothesis or at least reflects a difference in the presentation of the NET in the membranes of native tissues and transfected cells or even the existence of NET subtypes in the rat. The existence of such subtypes could explain the unexpected reduction in the potency of \(\chi\)-MrIA observed in the brain binding assay.

Norepinephrine transport by the NET has been shown to be dependent on \(\text{Na}^+\), reflecting the co-transport of \(\text{Na}^+\) with the substrate (46). The reduced transport activity caused by lowering of the extracellular \(\text{Na}^+\) concentration is mediated through an increase in the apparent \(K_a\) for norepinephrine and a reduction in the \(V_{\text{max}}\) of extracellular \(\text{Na}^+\) not only affects the affinity of the transporter for substrate but also its affinity for inhibitors. It has previously been shown that desipramine and other antidepressants become less effective inhibitors of uptake with reduced extracellular \(\text{Na}^+\) (47), an observation confirmed in this study. \(\chi\)-MrIA demonstrates the same pattern of \(\text{Na}^+\) dependence. These findings may signify that desipramine and \(\chi\)-MrIA target the outward-facing (substrate-accessible) configuration of the transporter whose adoption is promoted by extracellular \(\text{Na}^+\) (31). The \(\text{Na}^+\) dependence of the inhibitory action of \(\chi\)-MrIA stands in contrast to that of cocaine, another natural product that inhibits the NET. Cocaine competes with \(\text{Na}^+\) for binding to the NET, becoming a more potent inhibitor of transport as extracellular \(\text{Na}^+\) decreases (47).

Fig. 7. \(^3\text{H}\) NMR spectroscopy of \(\chi\)-MrIA and its alanine-substituted analogs. Secondary Hα chemical shifts (ppm) for MrIA analogs show the similarity in global fold between native \(\chi\)-MrIA (○) and the [Y7A]− (▼), [K5A]− (●), [L9A]− (●), and [H11A]− (▲) analogs and structural perturbation for [G6A]-MrIA (▲). Secondary Hα shifts were derived from TOCSY spectra recorded at 500 MHz and 293 K at a peptide concentration of ~2 mM.
The three-dimensional structure of χ-MrIA has not been determined but appears very similar to that of χ-MrIB (7), a conopeptide whose sequence differs by only a single residue at the N terminus and that displays very similar pharmacology to χ-MrIA. Similar to the majority of conopeptides, χ-MrIA contains multiple cysteine residues that are linked by intramolecular disulfide bonds. These bonds act to bring the cysteine pairs into close proximity in the core of the peptide with residues in the intercysteine regions exposed as loops. Alanine scanning reveals a critical role for residues in the first and largest of χ-MrIA’s two cysteine-bracketed loops in contributing to the activity of the peptide at the NET. Substitution of any of the residues in this region with alanine results in a loss of potency, showing that the side-chain charge may be a key determinant for binding at this position and that length is less influential.

Examination of the relative positions of the key binding determinants in χ-MrIA (Fig. 8) reveals a highly exposed Lys-8 flanked by three hydrophobic residues to form the pharmacophore. Given its exposed position, it is possible that Lys-8 could direct the binding into a pore, perhaps reminiscent of how toxins such as charybdotoxin block the movement of K^+ ions through voltage-dependent channels (49). If this is indeed correct as suggested by Bryan-Lluka et al. (43), χ-conopeptides might be useful molecular calipers to probe the size of the norepinephrine permeation pathway. The majority of transporter residues that have been found to influence tricyclic antidepressant binding lie in the predicted transmembrane domains of the NET (e.g. 41, 52, 53). That the binding site of the antidepressants overlaps with that of norepinephrine, yet the binding site of χ-MrIA does not, is consistent with the χ-conopeptides acting to inhibit transport by blocking the access of norepinephrine to the substrate permeation pathway by binding less deeply in the pore of the transporter than do the classical small molecule inhibitors.

In summary, this study has shown that inhibition of monoamine transport by χ-MrIA is confined to that mediated by the NET. Accordingly, the χ-MrIA binding site on the NET seems likely to consist, at least partly, of residues that are not conserved between the NET and either the DAT or the SERT. Because χ-MrIA acts non-competitively with respect to norepinephrine yet competitively with the classical NET inhibitors nisoxetine and mazindol, which themselves are competitive inhibitors of norepinephrine uptake, the binding site of χ-MrIA is predicted to be distinct from the substrate binding site but to share some commonality with the antidepressant binding site. The Na$^+$ dependence exhibited by χ-MrIA indicates some similarity in its interaction with the NET to that of the antidepressants. Specific residues in loop one of χ-MrIA have been identified that directly interact with the NET or are important for the maintenance of a suitable peptide structure capable of recognizing the transporter. Furthermore, elucidation of how the χ-MrIA peptide binds to and inhibits the NET will reveal important structural and mechanistic information regarding the monoamine transporters which, at present, are poorly understood.

Acknowledgments—We thank Lesley Bryan-Lluka (The University of Queensland) for kindly providing the rat NET vector, Marc Caron (Duke University Medical Center) for the human DAT vector, and Randy Blakely (Vanderbilt University) for the human SERT vector.

REFERENCES
Inhibition of the Norepinephrine Transporter by the Venom Peptide δ-MrIA: SITE OF ACTION, Na+ DEPENDENCE, AND STRUCTURE-ACTIVITY RELATIONSHIP
Iain A. Sharpe, Elka Palant, Christina I. Schroeder, David M. Kaye, David J. Adams, Paul F. Alewood and Richard J. Lewis

doi: 10.1074/jbc.M213030200 originally published online July 28, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M213030200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 49 references, 13 of which can be accessed free at http://www.jbc.org/content/278/41/40317.full.html#ref-list-1