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Chapter 22

Parameter estimation of a regime-switching model using
an inverse Stieltjes moment approach

Xiaojing Xi!, Marianito R. Rodrigo? and Rogemar S. Mamon?
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2School of Mathematics and Applied Statistics, University of Wollongong,
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3 Department of Statistical and Actuarial Sciences, Unwersity of Western
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We address the problem of recovering the time-dependent parameters
of the Black-Scholes option pricing model when the underlying stock
price dynamics are modelled by a finite-state, continuous-time Markov
chain. The coupled system of Dupire-type partial differential equations
is derived and formulated as an inverse Stieltjes moment problem. We
provide numerical illustration on how to apply our method to simulated
financial data. The accuracy of the model parameter estimation is ex-
amined and sensitivity analyses are included to study the behaviour of
the estimated results when model parameters are varied.
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550 X. Xi, M.R. Rodrigo and R.S. Mamon
22.1. Introduction

A fundamental problem in financial mathematics is the recovery of model
Parameters given observed market prices. Volatility, for instance, is an
important but unobservable parameter, whose estimate is necessary when
pricing derivatives and enables us to understand price dynamics. Traders
calculate implied volatilities from market data for option valuation, as well
as using them as a guide to monitor the market’s sentiments. In the present
work, we focus on recovering the parameters of a regime-switching model
from European call option prices.

A number of approaches have been proposed to deal with this type of
problem. In a pioneering paper, Dupire [1] verifies empirically that different
strikes and maturities lead to different implied volatilities for options on a
given asset. Boyle and Thangaraj [2], as well as Andersen and Brotherton-
Ratcliffe [3], obtain local implied volatilities by numerically implementing
Dupire’s equation. Rodrigo and Mamon [4] give a new expression for the
volatility by deriving a semi-explicit solution of Dupire’s equation. They
also provide a different formula in [5], which makes use of the so-called
inverse Stieltjes moment approach. Bouchouev and Isakov [6] reduce the
identification of the volatility to an inverse parabolic problem with the final
observation. Deng et al. [7] employ an optimal control framework with a
new terminal condition to solve this kind of inverse problem.

Recently, considerable attention has been given to the use of regime-
switching models, or hidden Markov models (HMMs), in finance. In an
HMM, the model parameters switch amongst unobservable states of the
feconomy and are governed by a Markov process. A regime-switching volatil-
ity is a simple way to incorporate stochastic volatilities. It has the ability
to capture long-term and fundamental changes in the economic mechanism
that generates the data. Significant empirical evidence from the literature
lends support for the appropriateness of regime-switching models. For in-
stance, Chu et al. [8] advocate the use of these models to describe returns
and volatility dynamics in the stock market. Turner et al. [9] argue that
either the mean or variance, or both, may exhibit differences between two
regimes. The investigation of Engel and Hamilton [10], Bekaert and Ho-
drick [11], and Engel and Hakkio [12] document regime switching in major
foreign exchange rates. Dahlquist and Gray [13] and Ang and Bekaert [14]
show that various foreign, short-term interest rates are well described by
regime-switching models. Some applications of regime-switching models
modulated by a hidden Markov chain can be found in the work of Elliott
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and Mamon [15], as well as in Elliott and Kopp [16].

Regime-switching models have achieved growing importance in various
financial problems as they can capture a richer set of empirical and theoret-
ical characteristics of a market. They have also enriched the developments
in option pricing theory. For example, Elliott et al. [17] develop a method
to price options based on a regime-switching random Esscher transform. In
turn, this method was used by Ching et al. [18] to price exotic options un-
der a hidden Markov model with long-range dependence in the states of an
economy, which is known as a higher-order HMM. Mamon and Rodrigo [19]
present closed-form solutions for European option values when the dynam-
ics of both the short rate and the volatility of the underlying price process
are modulated by a continuous-time Markov chain. Boyle and Draviam [20]
derive the system of partial differential equations (PDEs) of Black—Scholes
type that governs the dynamics of European options in a regime-switching
framework and price exotic options by solving the coupled PDEs numeri-
cally. Duan et al. [21] develop a family of option pricing models which are
based on the GARCH process and the variance-updating schemes also de-
pend on a second factor orthogonal to asset innovations. Other works that
feature regime-switching models in other applications include Siu et al. [22]
for credit default swaps, Elliott and van der Hoek [23] for asset allocations,
and Elliott and Mamon [15] for short-term interest rates.

The above studies in option pricing under a regime-switching framework
serve as motivation for investigating the inverse problem of recovering the
volatilities when they are governed by HMMs. There is a relatively limited
amount of literature on estimating regime-switching parameters using mar-
ket data. In this paper, we extend the inverse Stieltjes moment approach
in [5] by assuming that the volatility of the underlying asset is governed by a
continuous-time Markov chain. In this model, the unobservable parameters
are the volatilities in each state and the intensity probabilities of the hidden
Markov chain. We start with the well-known system of Black—Scholes-type

PDEs and derive the coupled system of Dupire-type PDEs that governs the
dynamics of European option prices.

The rest of the paper is organised as follows. In Section 22.2, we recall
the regime-switching model setup. In Section 22.3, we derive the system
of Dupire-type PDEs describing the dynamics of European option prices
under this setup. We formulate the inverse Stieltjes moment problem in
Section 22.4, and also discuss how our proposed method could determine
the model parameters. In Section 22.5, we exhibit an implementation to
a set of “theoretical data” which were generated by solving the coupled
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Dupire-type PDEs. We conclude with a brief summary in Section 22.6.

22.2. Regime-switching model setup

We wish to value a European option within the standard Black-Scholes
market with two basic securities consisting of a riskless asset (a bond whose
value is B; at time ¢ > 0) and a risky asset (a stock whose price is S; at time
t). Moreover, we assume that the economic state of the world is modelled
by a finite-state Markov chain x; that evolves in continuous time. This
implies that the bank rate process 7; and the stock’s volatility o, and rate
of return y; are governed by Markov chain dynamics.

Without loss of generality, we may take the state space of x; to be
the finite set {e1,...,en} of canonical vectors in RY. Assume that x; is
homogeneous in time and has intensity matrix A = (a;;), i.e.,

N
aj; >0 for j # 1, Zaijzo foreach j=1,...,N.

i=1

If p; = Elxs] = (p,...,pYY)* where * is the transpose operator, then P:
satisfies

dp.
dt

It can be shown [24] that x; has a semi-martingale representation

= Apt

1
Xt:X0+/ AXud’U,—f-Mt
0

where M, is a martingale.

Suppose that r; = (r,x;) for some given vector r = (ry,...,ry)* in RY
with r1,...,7ny > 0. Here, (,,-) denotes the usual inner product in R%.
Then $1 invested at time zero becomes

t
B, = ¢lorudu (22.1)

at time ¢. In addition, suppose that the rate of return p; and the volatility o,
depend on the state x;, ie., there exist vectors u = (u1,...,un)* and
o = (o1,...,on)* in RN (with p;,0; > 0 for all § = 1,...,N) such that
we = (@, %¢) and oy = (o, %;). Then the dynamics of the stock is described
by the stochastic differential equation

dSt = /LtSt dt -+ O'tSt th
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where W, is a Brownian motion on a filtered probability space denoted by
(Q, F, P, (Ft)e>0) and (Fi)s>o is taken to be the natural filtration. It can
be shown that S; is expressible as

S, = Spelo (ru—0o/2) dut [y oud W, (22.2)

If the bond and stock dynamics are given by Eq. (22.1) and Eq. (22.2),
respectively, and if at time ¢ € [0,7] we have Sy = S and x; = X, then the
price of a European call option with expiry T’ and strike price K is

c(t, S, T, K,x) = E? [e— SErudu(g — KYF1S, =8, x4 = x] (22.3)

where (2)* = max(z,0) and E denotes the expectation evaluated under
a risk-neutral measure Q. We remark that regime switching leads to an
incomplete market, which can be completed by the introduction of Arrow-
Debreu securities [25] related to the cost of switching. Thus, in Eq. (22.3) we
are assuming that we are already working under a risk-neutral measure Q).
Just like in the classical Black—Scholes case, we assume that p = 7 in the
stock price dynamics under @; hence the rate of return will not appear in
Eq. (22.3). We do not rule out the dependence of the market price of risk
on the state x; at time ¢. But, irrespective of whether or not we assume a
special or functional form for the market price of risk that depends on x¢, or
some other more general dependence which we do not know, the information
from the market should be implicitly reflected in the parameters that we
want to estimate. That is, we do not know what the exact dependence
is but what are important to us are the parameter estimates that should
encapsulate this information.

Define ¢(t, S, T, K) = ¢(t,S,T, K, e;) for each i = 1,...,N. We note
that r; = (r,e;) and 0; = (o,€;). It can be shown [19] that c1,...,cN
satisfy a system of coupled PDEs of Black—Scholes type in the variables ¢
and S, namely

Oci 1 5 0%
5t 2% a5

801‘ N .
+’I"ZS:9§ ffriciﬁ—Zajicj =0 (’I,: 1,...,N), (224)

j=1
together with the terminal conditions

a(T,8,T,K)=(S—K)* (i=1,...,N). (22.5)
Let ¢ = (c1,..-,en)*, X = diag(o1,...,0on), and R = diag(ri,...,"n).
Then Eq. (22.4), Eq. (22.5) can be recast in matrix form as

dc 1 8%c dc

oc | lg2529C g€ _ A*c=0 22.
5 T35 55 TSRy Rc+A*c=0, (22.6)
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o(T,5,T,K)=(S - K)*1, (22.7)

respectively, where 0 is the N-dimensional zero vector and 1 is the N-
dimensional vector all of whose components are equal to one.

Our aim here is to solve the inverse problem of recovering the parameters
of the underlying model from market data. The inverse problem was first
considered by Dupire [1], who showed that if the prices of a European
call option were known for all strike prices and maturity dates, then the
volatility surface can be recovered from market data. In our case, instead
of a local volatility function, we wish to recover the volatility matrix 3, the
transition intensity matrix A, and the rate matrix R.

It is important to note that actual market option prices are quoted for
varying strikes and times to maturity. Thus, since we want to utilise a
PDE-based approach to solve the inverse problem, we must first derive a
system of PDEs similar to Eq. (22.6) but with the independent variables
being the time to maturity and the strike price. In other words, we wish to
obtain the analogue of Dupire’s equation for the system of PDEs given in
Eq. (22.6), which is the goal of the next section.

22.3. Derivation of a system of Dupire-type PDEs

First, we show that c¢1,...,cny are homogeneous functions of degree one
with respect to § and K, i.e.,

ci(t,AS, T\ \K) = Aes(t, S, T, K) (i=1,...,N) (22.8)

for all A > 0. To prove Eq. (22.8), we will use a uniqueness argument by
showing that ¢;(t, AS, T, AK) and Ac; (¢, 5,7, K) for all = 1,..., N satisfy
the following final-value problem for v(t, z,u, y):

6’Ui 1 2 282’01‘ 81]1 . T
5t T3%% 503 +rzx% — 1 +;aﬂvj =0 (i=1,...,N), (22.9)
vi(T,z,u,y) =Mz —y)T (i=1,...,N). (22.10)

Let ¢y, ..., cn be asolution of Eq. (22.4), Eq. (22.5). Take v;(¢t, z, u,y) =
Aci(t, S, T,K) where t = S, u = T', and y = K. Then it is easy to see
that v1,...,vn satisfy Eq. (22.9), Eq. (22.10). Now take v;(¢,z,u,y) =
¢i(t,S,T,K) where x = S/X\, w =T, and y = K/X. Again, it is straight-
forward to verify that vq,...,un satisfy Eq. (22.9), Eq. (22.10). Thus,
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the homogeneity condition Eq. (22.8) follows from the uniqueness of the

solution of the final-value problem. .
Invoking Euler’s theorem on homogeneous functions, we obtain

Oc; Oc; .
_Z. ——7/: 7; :1,...,N.
Sog TR =c U )

Differentiating the above equation with respect to S and K gives

d%¢; &%c; Oci 0%*c; .1 N
S35 = Koo Kar2 ~ SoKas (=1, N),
respectively. It follows that
82 7 8207;
S =K (=1 )

and Eq. (22.4) becomes

N
de; 1 o5_50%; dc; . — N 22.11)
Loga e 0% (S0 =L N (22
5 +202K K2 r 9K 2 §iCj (

with the same terminal condition Eq. (22.5). In matrix form we therefore

have

% —K222 g;,z - KR%% +A*c=0, (22.12)

o(T,S, T, K) = (S — K)*1. (22.13)

Finally, letting c(t,9,7,K) = ¢(u,5, K) where v = T — ¢ in
Eq. (22.12), Eq. (22.13) yields

’Z% - —K222 gKé - KR%C{— +A%e, (22.14)

c(0,8,K) = (S—K)"1, (22.15)

respectively. Note that Eq. (22.14), Eq. (22.15) is now an initial-value
problem. When N = 1, we have

0e . 1 o2 28 G - 8_61. 22.16
51; K 8K2 TlKaK-/ ( )
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which is Dupire’s equation with a constant volatility [1]. Hence, Eq. (22.14) Considering any N consecutive moments gives

' f Dupire’ tion for the regime-switching case. ‘ d
is the analogue o upire’s equation or g g ‘ m, ’r(n N 1)mn _ {(n + 1)(n + 2) 22 N A*} m
du 2
dm,, 2
22.4. Tnverse Stieltjes moment problem —%ﬂ —r(n+2)Myp1 = {(”j_%(”/*‘i)g? + A*} Mg,
Having derived the system of PDEs in the appropriate independent vari-
ables u and K, we now proceed to solve the inverse problem of parameter dm . Nl
estimation via the inverse Stieltjes moment method first proposed in 5]. ,idﬂu —r(n+ N)Mpn-1 = {(_ni_)(iu_) 52 L A*| mng N1
To simplify the ensuing notation, we shall write c(u, K) instead of U 2
c(u, S, K). We will also assume for simplicity that R = rlI for some given | (22.18)
r > 0, where I is the identity matrix; the method can be casily extended to Since the option prices are assumed to be observed, the moments are also
the more general case. As in [5], let us define the nth moment of the call known and we wish to estimate A and ¥. Given that A is an intensity
price by ‘ matrix, each of its N diagonal entries, say i is expressible as a sum of the
- | entries in the ith column, so there are essentially N2 — N unknown entries
m%) (w) = / Kei(u, K)dK (i=1,.. N), ! of A. Together with the N unknown diagonal entries of X, we therefore
0 “ have a total of N2 parameters to estimate. Note that Eq. (22.18) is a linear
2 ; : 2
where n is a nonnegative integer. Multiplying both sides of Eq. (22.14) by l syst;m of i\f e?; a‘}c:or?s Hé N 1utnkn(‘)ﬁwli1 > N =2 Then E 9 .
K™ and integrating over (0, 00), we formally obtain o explain the basic idea, let us take & == en Eq. (22.18) gives
(n+1)(n+2) (1) (2) (1
0 dc 1 [ - ¢ 00 1 dc 4K 2 Mn 0 Mp -mn) 0
7 _ = n _ ~ -
/0 K %dK = 2/0 KM% Ve dK /0 rK 3K po17) | 0 ('n+1)2(n+2)m512) 0 miD) @
0 (22 (n+2)(n+3) . (1) 0 m® . _ mV 0
+ / K"A*cdK. 2 n+1 n+1 n+l
12)(n+3), (2 1 2
0 0 = )2(n : mEH)*l 0 mEzJ)rl - mgw)q
Assuming that the call price decays to zero sufficiently fast as K — 00, W , d?gif) —r(n+ 1)m53)
deduce that 01 )
o2 il o+ Dme” 19
o dc dm,, X =1 4m® . 22.19
n_ _ m, 1
/0 K ou i = du ’ ‘ a2 ot —r(n 2)m5w)r1
ne Amls _rn -+ 2)mi)
o it p(n -+ 2)m
/ K”“%% dK = —(n + 1)ma, | du il
0 ! Note that from Eq. (22.15) we see that
/OO 9 82(: ‘\ o 42
2 m,,(0) = K™(S — K)T1dK = — <71
0 oK | n(0) 0 ( ) (n+1)(n+2)
Thus, BEq. (22.17) simplifies to Let

U

| (l) — “ (%) p—
d;““ (4 D)ma = B(n+1)(n+2)22+A*] M. | M (u) —/0 m@(s)ds (i =1,2).
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To incorporate the initial conditions, we integrate Eq. (22.19) over [0, u]
K )
with respect to a dummy variable s to get

(nt1)(nt2) pr D 0 MP — MY 0
0 (1) (nt2) ) 0 @ _ @
woney® o0 uG-w 0
o mmemye o -,
y 0% _ me) 7(,1491;::”) —r(n+ 1)M7S,2)
a1 mSJ)rl _ (_T% Crn+ 2)MY, (22.20)
@12 mffll — % —7r(n+ 2)M7(321

In summary, given ¢y (u, K) and ca(u, K) where 0 <4 < T and K >0
we compute m%l), mP, mf}ll, and mf}rl (for a fixed nonnegative integer_ n):
as well as their integrals over [0, u] for some v in {0,7]. We then solve the
linear system Eq. (22.20) for the unknown parameters o1, 02, @21, and ajs.
Note that a11 = —ag1 and azs = —aj2 by the definition of A. In addition,
the choice of u in [0, T] should not matter since in this framework A and
Y are constant matrices.

22.5. Numerical implementation and results

To test the accuracy of the inverse Stieltes moment method, we need to have
“observed” option prices. The “observed” option prices can be taken to be
the solution generated by the initial-value problem Eq. (22.14), Eq. (22.15)
(after specifying some matrices A and X). Then we try to recover A and
3 using the moment method.

As a trial run, suppose that A = 0, i.e., there is no switching among
regimes. Then Eq. (22.14) reduces to a system of uncoupled Dupire
equations. Hence, each component of ¢ solves Dupire’s equation, i.e., if
c={cy,...,cnN)*, then ‘

cilu, K) = $8(dP (u, K)) — Ke ™®(dY (u, K)) (i=1,...,N),

9 K) log(S/K)(:— \% +ot/2u (22.21) ]
dgi) (0, K) = log(S/K)+ (r — o2 /2)u

O'i\/ﬂ !
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where ® denotes the cumulative distribution function of a standard normal
variable. Now we assume that r = 0.02, S = 20, v = 0, T=1, 01 =
0.1 and o9 = 0.3. We take 50 values for strike price ranging from 0 to
60 and 100 values for the time to maturity ranging from 0 to 1. Then
the moments and their integrals are calculated and momment method in
Eq. (22.20) is applied. The estimated parameters are: ag = 6.67 X 109,
a2 = 3.15 x 1007, g1 = 0.1 and o2 = 0.2957.

However, for the more realistic case A # 0, there is no known explicit
solution of Eq. (22.14), Eq. (22.15) in general. So we will have to solve this
problem numerically to generate the “observed” option prices. This implies
that we have to truncate the interval (0, 00) to some finite interval (0, Kmax)
where Kpax > 0, and then impose reasonable boundary conditions for ¢
at K = 0 and K = Kmax. If the right endpoint Kmax is sufficiently large,
and recalling that each component of ¢ tends to zero as K — oo, then we
can assign a positive but small value to each component. However, the
boundary condition at the left endpoint K = 0 is not clear. When N =1,
the Black—Scholes formula evaluated at K = 0 gives S for the call price.
For N > 1, it is not certain whether each component of ¢ will also have the
value S. To get around this problem, we will solve Eq. (22.14), Eq. (22.15)
numerically for K € [0, Knax] and u € [0,T] by formulating an explicit
method with implicit boundary conditions.

Discretise the variables by

u~yt, K~K), c~c = (cil’j,ciz‘j)*
where
. T
ut =iAu, Au= T (i=0,...,1)
and
P K ,
K? =jAK, AK = ?ax (j=0,...,J).
Using an explicit scheme, we discretise Eq. (22.14) to get
G i laz(Kj)zci’j‘l Sadd T Gt i
Au 21 (AK)? AK
+ a110i1’j + ag1cé’j,
Cé—l-l»j _ Ciz’j 102 (Kj)zcé,j*l _ 201'2,1' + 01'2».7'4‘1 K Cé’j_H _ 01'2,3'
Au 2 ° (AK)? AK
+ G/lzcil’j + (lezciz’j.
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This is equivalent to

1 Au

’L+1,j =c i, + = (AK)

(KPR (eIt 2¢h7 4 ¢hit)

rAu
- AK

foralli=1,...,] —1and j = 1,...,J — 1. This solves for the option
prices at time 5 + 1 in the open interval (0, Kmax) using the option prices
calculated at time 4 over the closed interval [0, Kax]. The initial condition
is determined by

— KI(c* LI ebi) AuA*chd

= (S —KHt1 (j=0,...,J),

which includes the values at both endpoints.
To determine the boundary values at K = 0, we use second-order Taylor
expansions at (u,0) in the continuous variables, i.e.,

e, AK) ~ o(u, 0) + (AK) 2 (6,0) + L(2K)2Z (0, 0),
AR) = clu, ar WPty K>
2
o(u, 2AK) = c(u, 0) + (2AK)§—[°{(U,0) + %(2AK)2§K2 (u, 0),
c(u, 3AK) ~ c(u,0) + (3AK) — dc (u,0) + —1-(3AK)2 e (u,0).
SAkK) = clu, ar\ 03 aK?
Define
2c
cn(w) = 2 (0,0), B () = 5 (w,0).

Then in discretised variables we get

. . oo 1 ;
chl = ¢t0 4+ AKOLL(UZ) + i(AK)QﬂL(uZ%
ch? =0 1 2AKaL(ui) -+ Q(AK)ZIBL(ui):

¢ =" + 3AK oy (ut) + g(AK)QﬁL(Ui),

valid for all ¢ = 1,...,I. In matrix form, this is the same as
1 AK L(AK)? ey’ bt
1 2AK 2(AK)? a(Ll) (ui) | = | 2

13AK $(AK)? 5(;)(1,}) c?
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and
7,0 i,
1 AK L(AK)? cy bt
128K 2(AK)? | | P (u) | = | &?
13AK $(AK)?) \pP (uf) 5’

Note that the vectors ez, (u?) and B (u?) are not known, which is why we
need to solve these two linear systems to obtain the really desired quan-
tity ¢#0. Moreover, ¢!, c¢*?, and ¢»3 on the right-hand sides are known if
we first solve the PDEs in the interior (0, Kmax)-

Similarly, at the right boundary point K = Kpax, we expand

Oc
c(t, Kmax — AK) =~ c(u, Kmax) + (—AK) 77— 5K (1, Kmax)
1 d%c
D Kmax
AR 5 Kunn)
oc
c(u, Kmax — 2AK) =~ c(u, Kmax) + (—2AK) — K (1, Kmax)
1 82c
a Kmax )
dc
c(u, Kmax — 3AK) =~ c(u, Koax) + (—SAK)B—K—(U, Kinex)
d%c
Kmax
b L (BAK) 55 (1, Kuna)
Defining
dc d%c
ap(u) = K 7= (1, Krmax); Br(u) = K2 == (4, Kmax),
we obtain

' ] . 1 i
71 = ¢t/ — AKag(u') + §(AK)2ﬁR(U )
G2 — i 9AKan(ul) + AAK)Balu'),
‘ ) . 9 i
73 = ¢ — 3AK ag(u’) + 5 (AK) Br(v'),

or, in matrix form,

1 —AK —%—(AK)2 ’lJ Cil,J—l
1 —2AK 2AK) | | oD (i) | = | 772
1 —3AK %(AK)2 g)(ui) zlJ 3
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and
1 —AK i(AK)? b’ ol
120K 2(AK)? | | P (i) | = | &7 72
1 —3AK 3(AK)? @) () (i =3

As be.fore, the vectors aeg(u?) and By (u') are not known, so we solve these
two linear systems to obtain the really desired quantity ¢»/. Moreover
)

T =1 by J— iy J— : ;
c’ , ¢»/=2 and ¢»/~3 on the right-hand sides are known if we first solve
the PDEs in the interior (0, Kimax)-

S}n.nmarising, the explicit algorithm incorporating implicit boundary
conditions that we propose can be formulated as follows:

(1) Set
i =(S—KHL (j=0,...,J).
(2) Foralli=0,...,I—1do
(a) Forallj=1,...,J—1do

1,4 o1 Au ) .
i+1,7 _ .4, i is o
c J—c”‘*‘im(-’@)zzz(c J=1 _9¢ ’j—i—c””‘l)
rAU i y .
- e (e = &) 4 AuAret.
(b) Solve
1 AK 1(AK)? itho Gt
12AK 2(AK)? O‘(Ll) (it | = czi+1,2
1 3AK 2(AK)? 21)(ui+l) Bt
and
1 AK L(AK)? o it
12AK 2(AK)? a(L2) W) | = C§+1,2
1 3AK 3(AK)? 22) (wit) Gl
for ct+1:0 = (Ci1+1’0,c;+1’0)*,
(c) Solve
1 ~AK i(AK)? Ay I
1 —2AK 2(AK)? ag)(uH-l) _ Cil—l-l,J—Z
9 , ,
1 -3AK §(AK)2 g)(uw—l) C§+1’J_3
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and

| —AK SRR\ [ & AR

1 —2AK 2(AK)? oD ity | = il =2
1 —3AK 2(AK)? ) \ B2 (uit!) 1T —3

i+1,J i4+1,J  i+1,J0 v«
for c = (T ey )"

A stability criterion for this scheme is
Au < (AK)? min (iz, —15> .
o1 03
Although explicit schemes are generally slower than implicit schemes, the
programming is straightforward for the former compared to the latter since
the linear system to be solved for the implicit scheme is not anymore tridi-
agonal.

In the following simulations, we take the parameter values to be r =
002, S =20, u=0T= 1, Kmax = 60, 01 = 0.1, and o = 0.3. We
use 1200 nodes to discretize time axes and 120 nodes to discritize strike
axes, L.e., Au = 1o and AK = 0.5, in solving the PDEs (22.14), (22.15)
numerically. The numerical solution contains a large size of dataset which
usually does not exist in practice; in reality there is only a set of small
data points corresponding to time and strike nodes. In our example, we
pick 13-time and 91-strike nodes from the solutions and these prices are
used as market data in the inverse Stieltjes moment approach. Next, in
order to calculate the truncated moments and their integrals accurately,
we interpolate the call prices from time to maturity- and strike-direction.
The size of the dataset increases to 500 by 500 points after interpolation.
Here, we use a Matlab built-in function called Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP) for the interpolation procedure. Note
that in general that the market data is not equally spaced through time
to maturity and strike prices. Therefore, the number of nodes interpolated
between two prices depends on the differences in time to maturity and strike
price of the two prices. Finally we solve the algebraic system (22.20) for
the “unknown” parameters.

First, let us suppose that the intensity matrix A is of the form

(35

where A > 0. In Table 22.1, we present the estimated parameters for difler-
ent values of A and n. Additionally, we evaluate the errors for the estimated
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Table 22.1. Example 1: Estimated parameters for different A and n with o1 = 0.1 and
oy = 0.3.
Estimated n
A parameter 2 3 4
(A1, A2) (0.2567,0.2240) (0.2523,0.1995) (0.2498,0.1477)
0.25 (o1,02) (0.0977,0.3002) (0.0987,0.2989) (0.0994,0.2964)
(rmseq,rmseg) (0.0021,0.0058) (0.0013,0.0069) (7.70x1074,0.0094)
(A1,A2) (0.5073,0.4686) (0.5016,0.4420) (0.4982,0.3844)
0.5 (o1,02) (0.0978,0.3001) (0.0989,0.2989) (0.0997,0.2964)
(rmse1,rmseg) (0.0013,0.0051) (6.49x1074,0.0060)  (1.7x10~%,0.0083)
(A1, 22) (1.0088,0.9570) (0.9995,0.9205) (0.9939,0.8571)
1 (01,02) (0.0981,0.2999) (0.0994,0.2988) (0.1002,0.2964)
(rmser,rmsez)  (8.4x107%,0.0042) (7.22x1074,0.0049)  (8.87x10~%,0.0065)
(A1, A2) (2.0094,1.9369) (1.9900,1.9001) (1.9782,0.19101
2 (o1,02) (0.0987,0.2999) (0.1004,0.2990) (0.1015,0.2968)
(rmse;,rmseg) (0.0015,0.0034) (0.0015,0.0019) (06.0020,0.0047)
(A1, A2) (4.9470,5.0349) (4.9522,4.8768) (4.8405,4.8238)
5 (o1,02) (0.1021,0.3017) (0.1047,0.3007) (0.1061,0.2992)
(rmsey,rmseg) (0.0043,0.0051) (0.0041,0.0046) (0.0024,0.0028)
(A1, A2) (7.7259,8.6577) (7.5802,8.3862) (7.5168,8.1685)
8 (o1,02) (0.1069,0.3062) (0.1102,0.3041) (0.1116,0.3024)
(rmseq,rmseg) (0.0162,0.0179) (0.0143,0.0160) (0.0120,0.0139)

option prices using Root Mean Square Error (RMSE), which helps us to
analyse the sensitivity of A and n. From Eq. (22.20), the estimated pa-
rameters should be independent of n. The error, which occurs by sovling
the Dupire PDEs, certainly affects the calculation. To rectify this to some
extent, we utilise larger degrees of the moment, i.e., n > 2, which would
put more weight on option prices in the calculation of moments and con-
sequently reduce the impact of the errors in the Dupire PDEs. In this
example, the column corresponding to n = 2 shows very good agreement
between the estimated values and the actual values assigned when A < 2.
However, if the value of n is too large, higher calculation error occurs when
the moments are calculated, and it also affects the estimated results. As
can be observed, in the case of A < 2, RMSE is larger when higher n is used.
Furthermore, the accuracy of the estimation is also affected by the value
of the intensity rate. As the intensity rate increases, the market tends to
switch more frequently between the states and thus, it is more difficult to
capture the information from the market data reducing the accuracy of the
estimation. Again, this problem can be corrected by using larger degrees
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of the moment. Therefore, when A > 2, RMSE is smaller when higher n is
used. . ' .

In our second numerical experiment, we assume different intensity rates
for state 1 and state 2, so the intensity matrix is of the form

A= <~)\1 A2 ) _
A —Ae

Other values of parameters remain unchanged. The estimated parameters
for different values of (A1, A2) and n are presented in Tables 22.2 and 22.3.
The difference between the intensity parameters, A; and Az is apparently
noticeable on the estimated parameters. When the difference is low, the
estimated results closely agree to the actual values for all degrees of mo-
ments. In cases where the differences between the intensity parameters are
quite substantial, for example A = 0.25, Ay = b, the estimated results are
inaccurate for low degree of moments. However, by using a higher degree of
moment, e.g., n = 4, we still obtain the results closer to actual parameters.

After we estimate the unknown parameters, we calculate the call option
prices in each states by solving Eq. (22.6) and Eq. (22.7). Figure 22.1 shows
the estimated option prices and the actual values using A; = 0.25, Ay = 2
and n = 2. Note that the computed values agree very well with the actual
data.

T T

m— Estimated valuesT
Q© Actual values 8

N

_
(&)
T

Call price in state 1
=

20 30 40 50 60
Strike

T T T

m——— Estimated values
O Actual values 8

Call price in state 2
=

U

0 10 20 - 30 ) 50 80
Strike

Fig. 22.1. Actual and estimated call prices: A1 = 0.25, Az =2 and n = 2.
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Table 22.2. : i i
able 22.2. Example 2: Estimated parameters for differ- Table 22.3. FExample 2 (continued): Estimated parameters for different X and n with

ent A and n with o3 = 0.1 and o2 = 0.3. o1 = 0.1 and o2 = 0.3

Estimated n
(A1, A2) parameter 2

(A1, A2) (0.2578,0.4708)

(0.25, 0.5) (o1,02) (0.0976,0.3001)

(rmseq,rmses) (0.0022,0.0051)

(A1, A2) (0.2604,0.9602)

(0.25, 1) (o1,02) (0.0974,0.2997)

(rmse; ,rmses) (0.0024,0.0039)

(A1, 22) (0.2672,1.9039)

(0.25, 2) (o1,02) (0.0970,0.2979)

(rmse1,rmses) (0.0027,0.0026)

(A1, A2) (0.3044,1.8150)

(0.25, 5) (01,02) (0.0954,0.2253)

(rmsey,rmsep) (0.0047,0.0145)

(A1, Az) (1.0059,0.4630)

(1, 0.5) (01,02) (0.0983,0.3001)

(rmse;,rmseg) (0.0010,0.0053)

(A1, A2) (1.0159,1.9301)

1, 2) (o1,02) (0.0977,0.2993)
(rmse1,rmsez) (7.96x107%,0.0029)

(A1, A2) (1.0518,4.3958)

(1, 5) (o1,02) (0.0962,0.2887)

(rmsey,rmses) (0.0015,0.0017)

(A1, A2) (1.1127,2.0694)

(1, 8) (01, 02) (0.0946,0.2077)

(rmseq,rmsey) (0.0044,0.0082)

(A1, A2) (2.0416,4.8157)

(2, 5) (o1,02) (0.0974,0.2980)
(rmse; ,rmsez) (5.11x1074,0.0014)

(1, 2) (2.0934,7.4342)

(2, 8) (o1,02) (0.0961,0.2937)

(rmse;,rmsesz)

(6.35%1074,4.58x10~%)

(>‘1a>‘2)

Estimated
parameter

3

4

(0.25, 0.5)

(0.25, 1)

(0.25, 2)

(0.25, 5)

(1, 0.5)

(1, 2)

(1, 5)

(1, 8)

(A1, A2)
(o1,02)
(rmse; ,rmses)

(A1, A2)
(o1,02)
(rmseq ,rmse2)
(A1, A2)
(01,02)
(rmser,rmsez)
(M1, A2)
(o1,02)
(rmse; ,rmsez)
(A1, A2)

(0'1 ) 0'2)
(rmsey rmses)
(A1, A2)
(o1,02)
(rmseq,rmse2)
(A1, A2)
(o1,02)
(rmse; ,rmsez)
(A1, A2)
(01,02)
(rmse; rmsez)
(A1, A2)
(o1,02)
(rmse; ,rmsez)
(A1, A2)

(01,02)
(rmsex rmseg)

(0.2529,0.4474)
(0.0987,0.2990)
(0.0014,0.0060)

(0.2541,0.9414)
(0.0985,0.2989)
(0.0015,0.0046)

(0.2676,1.9134)
(0.0983,0.2982)
(0.0017,0.0028)

(0.2772,3.5618)
(0.0974,0.2693)
(0.0024,0.0053)

(0.9982,0.4296)
(0.0996,0.2987)

(8.89x 10~ 4,0.0063)

(1.0028,1.9159)
(0.0991,0.2989)

(4.447x107%,0.0033)

(1.0194,4.6501)
(0.0983,0.2984)

(7.26x1074,0.0013)

(1.0491,5.1333)
(0.0974,0.2598)
(0.0014,0.0026)

(2.0013,4.8841)
(0.0996,0.2991)

(6.81x1074,0.0015)

(2.0207,7.7349)
(0.0990,0.2974)

(1.62x107%,5.15%x107%)

(0.2500,0.3956)
(0.0993,0.2965)
(8.21x107%,0.0084)

(0.2506,0.8910)
(0.0993,0.2968)
(8.94x1074,0.0064)

(0.2521,1.8780)
(0.0091,0.2970)
(0.0010,0.0037)

(0.2612,4.3568)
(0.0987,0.2870)
(0.0014,0.0021)

(0.9934,0.3593)
(0.1004,0.2960)
(0.0011,0.0085)

(0.9951,1.8564)
(0.1000,0.2971)
(5.71x1074,0.0042)

(1.0007,4.8092)
(0.0996,0.2973)
(1.84x1074,0.0011)

(1.0115,6.8723)
(0.0992,0.2851)
(5.94x107%,8.18x107%)

(1.9788,4.9018)
(0.1009,0.2994)
(9.45%1074,0.0017)

(1.9793,8.0197)
(0.1006,0.3008)
(3.91x107%,6.29x107%)
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22.6. Conclusion

In this article, we developed a methodology based on the inverse Stieltjes
moment technique to recover the parameters of a regime-switching model
from option prices. In particular, the volatility of the asset price, which
is the underlying variable of the option, switches over time and modu-
lated by a continuous-time, finite-state Markov chain. The coupled system
of Dupire-type PDEs was derived from the well-known coupled system of
Black—Scholes PDEs. The inverse Stieltjes moment approach was adopted
to formulate the PDEs forming a linear system of equations for the volatil-
ities and the intensity parameters. We demonstrated how to apply this
method to “theoretical data”, which were obtained by solving the Dupire
PDEs. Numerical results were presented to illustrate the accuracy of our
method. We also performed various analyses for both cases when the inten-
sity parameters of the intensity matrix A and the degree of the moment » is
varied. Our findings based on the numerical experiments on the two types
of data sets indicate the following: (1) for a single intensity rate \, the
higher the intensity rate the lower accuracy of the method, and (2) for two
different intensity parameters Ay and A1, the greater the difference between
these intensity rates the less accurate the estimation.

References

[1] B. Dupire, Pricing with a smile, Risk. 7(1), 18-20, (1994).

[2] P. P. Boyle and D. Thangaraj, Volatility estimation from observed option
prices, Decisions in Economics and Finance. 23(1), 31-52, (2000).

[3] L. B. G. Andersen and R. Brotherton-Ratcliffe, The equity option volatil-
ity smile: An implicit finite-difference approach, Journal of Computational
Finance. 1(2), 5-37, (1998).

[4] M. R. Rodrigo and R. S. Mamon, A new representation of the local volatility
surface, International Journal of Theoretical and Applied Finance. 11(07),
691-703, (2008).

[5] M. R. Rodrigo and R. S. Mamon, Recovery of time-dependent parameters
of a Black-Scholes-type equation: An inverse Stieltjes moment approach,
Journal of Applied Mathematics. 2007, (2007). Article ID 62098.

[6] I. Bouchouev and V. Isakov, The inverse problem of option pricing, Inverse
Problems. 13(5), L11, (1997).

[7] Z.-C. Deng, J.-N. Yu, and L. Yang, An inverse problem of determining the
implied volatility in option pricing, Journal of Mathematical Analysis and
Applications. 340(1), 16 — 31, (2008).

[8] C.-S.J. Chu, G. J. Santoni, and T. Liu, Stock market volatility and regime
shifts in returns, Information Sciences. 94, 179-190 (October, 1996).

[10]

[11]

[17]

18]

[19]

ey T T T

Parameter estimation of a regime-switching model 569

C. M. Turner, R. Startz, and C. R. Nelson, A Markov model of heteroskedas-
ticity, risk, and learning in the stock market, Journal of Financtal Eco-
nomics. 25(1), 3 — 22, (1989). ’

C. Engel and J. D. Hamilton, Long swings in the dollar: Are they in the
data and do markets know it?, American Economic Review. 80(4), 689-713,
(1990). .
Q. Bekaert and R. J. Hodrick, On biases in the measurement of foreign
exchange risk premiums, Journal of International Money and Finance. 12
(2), 115 — 138, (1993). '

C. Engel and C. S. Hakkio, The distribution of exchange rates in the EMS,
International Jowrnal of Finance & Economics. 1(1), 55-67, (1996). ‘

M. Dahlquist and S. F. Gray, Regime-switching and interest rates in the
European monetary system, Journal of International Economics. 50(2),
399-419, (2000). .
A. Ang and G. Bekaert, Regime switches in interest rates, Journal of Busi-
ness & Economic Statistics. 20(2), 163-82, (2002). ‘
R. J. Elliott and R. S. Mamon, An interest rate model with a Markovian
mean reverting level, Quantitative Finance. 2, 454-458(5), (2002). .

R. J. Elliott and P. E. Kopp, Mathematics of Financial Markets. (Springer,
Berlin Heidelberg New York, 1999).

R. J. Elliott, L. Chan, and T. K. Siu, Option pricing and Esscher transform
under regime switching, Annals of Finance. 1(4), 423-432, (2005). ‘
W. Ching, K. Siu, and L. Li, Pricing exotic options under a higher-order hid-
den Markov model, Journal of Applied Mathematics and Decision Sciences.
pp. 1-15, (2007). ' '
R. S. Mamon and M. R. Rodrigo, Explicit solutions to European options in
a regime-switching economy, Operations Research Letters. 33(6), 581-586,
(2005). . o

P. Boyle and T. Draviam, Pricing exotic options under regime switching,
Insurance: Mathematics and Economics. 40(2), 267 — 282, (2007.). .
J-C. Duan, 1. Popova, and P. Ritchken, Option pricing under regime switch-
ing, Quantitative Finance. 2, 116-132, (2002).

T. K. Siu, C. Erlwein, and R. S. Mamon, The pricing of credit default swaps
under a Markov-modulated Merton’s structural model, North American Ac-
tuarial Journal. 12(1), 229-238, (2008).

R. J. Elliott and J. van der Hoek, An application of hidden Markov models
to asset allocation problems, Finance and Stochastics. 1, 229-238, (1997).
R. J. Elliott, L. Aggoun, and J. B. Moore, Hidden Markov Models: Estima-
tion and Control. (Springer, Berlin, 1994). '

X. Guo, Information and option pricings, Quaniitative Finance. 1, 38—44,
(2001).




	Parameter estimation of a regime-switching model using an inverse stieltjes moment approach
	Parameter estimation of a regime-switching model using an inverse stieltjes moment approach
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1367806683.pdf.x4Q4e

