Studies on diluted oxide magnetic semiconductors for spin electronic applications

Germanas Peleckis
University of Wollongong, peleckis@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
Studies on diluted oxide magnetic semiconductors for spin electronic applications

A thesis submitted in fulfilment of the requirements for the award of the degree

DOCTOR OF PHILOSOPHY

from

UNIVERSITY OF WOLLONGONG

by

GERMANAS PELECKIS, BSc, MSc

Institute for Superconducting and Electronic Materials and Faculty of Engineering

2006
DECLARATION

I, Germanas Peleckis, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Institute for Superconducting and Electronic Materials, in the Faculty of Engineering, University of Wollongong, is wholly original work unless otherwise referenced or acknowledged. This thesis has not been submitted for qualifications at any other academic institution.

Germanas Peleckis
Wollongong
July 2006
Acknowledgements

I would like to thank my supervisors Assoc. Prof. X. L. Wang and Prof. S. X. Dou for giving me the opportunity to work in Institute for Superconducting and Electronic Materials. There are not enough words to express my gratitude for their willingness to share their knowledge with me, numerous discussions and support that they have given me.

My warmest thanks go to Prof. R. S. Liu from National Taiwan University for giving a part of his valuable time to perform XANES measurements, which results were very valuable in this study. I would like to thank Prof. P. Munroe from University of New South Wales for making TEM observations of our samples and valuable discussions.

I also express my gratitude to D. Wexler, R. Kinnel, G. Tilman, N. Mackey and other technical staff of the Faculty of Engineering and our institute for their technical support and assistance in experimental work, various trainings provided for the better understanding of the equipment I used during the course of my PhD studies.

I wish to say big thank-you to Drs. Aleksey Pan and J. Horvat for helping me with magnetic and transport measurements and great care over the measurement equipment. Also thanks to Dr. K. Konstantinov for guidance and training to obtain SEM images of highest quality. I also acknowledge help of Tania Silver in ISEM for correcting my English language in the articles I have submitted to various journals and this thesis itself.

In also want to thank my friends, colleagues at ISEM and especially Scott Needham for being my closest friend and helping me to overcome all the struggles I had during my studies. Many thanks to Dr. G. Alvarez for fruitful scientific discussions and chats about everyday life.

Finally, I want to thank my parents and my wife for being there for me. Without their love, understanding and encouragement this work would be close to impossible to finish.
ABSTRACT

Conventional semiconductor electronics is based on the charge of the electron. For a long time the spin of the electron has been ignored in the field of conventional electronics. Spintronics, also called spin electronics, magneto-electronics or magnetotronics, is a newly emerging field in solid state physics and information technology. One of the major challenges for semiconductor spintronic devices is to develop suitable novel spin-polarized magnetic semiconducting materials that will effectively allow spin-polarized carriers to be injected, transported, and manipulated. Therefore, searching for new materials has become crucial from the viewpoints of both fundamental research and practical applications.

Diluted magnetic semiconductors (DMS) are one of the most promising candidates for spintronic application. The research on the DMS materials which has been carried out worldwide in the past decade has been reviewed in this thesis. A DMS material can be realized when a conventional host semiconductor, such as GaAs, ZnO, etc., is doped with magnetic impurities, usually transition metal (TM) ions. For practical application, DMS material should favorably be ferromagnetic (FM) at room temperature. Early studies on DMS materials showed that FM can be induced in Mn doped III-V semiconductors. However, these materials are not suitable for practical applications as their Curie temperatures are quite low. On the other hand, some theoretical works predicted room temperature ferromagnetism in TM doped oxide semiconductors. This fact has boosted research in the field of DMS materials. The number of reports on observations of room temperature FM in Co, Mn, Ni, and Cr doped ZnO and TiO₂ semiconducting oxides is constantly growing.

The aim of this thesis was to study the doping effects of transition metal ions on the structure, transport, and diluted magnetic properties of various host oxide semiconductors. The oxide semiconductors investigated in this work are: ZnO, CuO, Ga₂O₃, and In₂O₃. A search for room temperature ferromagnetic semiconductors was the key point of this research. In addition, we have tried to understand and explain the
possible origins of the magnetic properties of the samples produced, because at the present time there is no firm theoretical model that could explain magnetism in DMS materials.

The majority of the samples studied in this research were prepared by a conventional solid state synthesis technique. We have carried out X-ray diffraction and electrical-magnetic transport measurements to determine the crystal structure, electrical and magnetic properties of our samples. In order to investigate the valence state of transition metal ions in the prepared materials, X-ray absorption near edge spectroscopy analysis was used.

The major results from this PhD study are:

(1) Polycrystalline Co-doped ZnO oxide samples were prepared with Co doping levels varying between 1 and 10%. All samples were found to be paramagnetic without any trace of ferromagnetism at room temperature and were insulators. Introduction of In ions into the system decreased the electrical resistivity of the samples. The spin state assessment revealed that strong spin-orbital coupling is present in In containing samples. Valence state assessment showed that in ZnO Co is present in the 2+ valence state.

(2) Mn doped CuO bulk samples showed a ferromagnetic transition at 80 K. All the samples prepared were insulating. In and Zn were used as charge donors. It was found that the In solubility limit in CuO lattice is very limited, less than 1%. The magnetic properties that were measured showed a large decrease in the magnetic susceptibility of (Mn,Zn) and (Mn,In) co-doped CuO samples. This could be attributed to the formation of large amounts of antiferromagnetic impurities and phase segregation in the samples. Valence state assessment showed that Mn is present in the 2+ valence state, eliminating the possibility of a double exchange interaction mechanism in this system.

(3) Various transition metal ions, such as Mn, Fe, Cr, and Ni, were doped into In$_2$O$_3$ and indium-tin oxide (ITO). In contrast to the reported data, our Fe doped In$_2$O$_3$ samples were paramagnetic. Paramagnetism was also observed in Cr doped In$_2$O$_3$. Mn doped
In$_2$O$_3$ samples were insulators with a Curie temperature of 46 K, while Mn doped ITO samples were typical semiconductors with the same Curie temperature. Furthermore, these samples showed a large positive MR effect below the ferromagnetic transition temperature, reaching 20% at a temperature of 5 K. Ni doped In$_2$O$_3$ and ITO samples were also found to be ferromagnetic at room temperature. Electrical transport properties, though, were different in nature. Ni doped In$_2$O$_3$ was found to be a typical semiconductor, while the electrical conductivity of Ni doped ITO was found to be characteristic of metallic materials.

(4) (Fe,Mn) co-doped In$_2$O$_3$ and ITO samples were ferromagnetic at room temperature, being both conducting and insulating depending on the host semiconductor. The change in lattice parameter a was very dependent on the ratio of Mn to Fe in the system, with decrease in lattice parameter a as Fe content increased. The maximum saturation magnetization was found for an In$_{1.80}$Mn$_{0.12}$Fe$_{0.08}$O$_3$ sample, which reached 0.35 μ_B/(Mn,Fe) ions at a temperature of 300 K. (Mn,Fe) co-doped In$_2$O$_3$ samples were insulating at room temperature, while (Fe,Cr) co-doped In$_2$O$_3$ samples were both conducting and ferromagnetic at room temperature. In addition, (Fe,Cr) co-doped samples showed a large positive MR effect, i.e. 5% at 5 K. On the contrary, despite being good conductors, (Mn,Fe) co-doped ITO samples did not exhibit similar MR features.

(5) (RE,Fe) co-doped In$_2$O$_3$ polycrystalline samples were semiconducting and showed giant positive magnetoresistance at 5 K. The obtained magnetoresistance in (Eu,Fe) co-doped In$_2$O$_3$ reached 80 % at 5 K. This value is the largest reported MR value for any diluted magnetic semiconductor. In addition (RE,Fe) co-doped samples showed clear ferromagnetic hysteresis behavior at 300 K. TEM studies of these samples revealed that particles are well formed and are about 100 nm in size.

Based on the results, among the transition metal doped oxide semiconductors studied, In$_2$O$_3$ and ITO are the most promising candidates for diluted semiconductor materials with possible practical applications in spintronic devices.
Contents

Introduction ... 2

Chapter 1. Literature review

1. Introduction ... 7

1.1. Semiconductor materials .. 8

1.2. Basic principles of semiconductivity .. 9

1.2.1. Band structure of semiconductors ... 10

1.2.2. Doping of semiconductors .. 11

1.2.3. Charge transport in semiconductors ... 13

1.2.4. Hall Effect .. 15

1.3. Magnetism and magnetic materials .. 16

1.3.1. Spin and orbital states of the electron, Brillouin function 17

1.3.2. Magnetically ordered states ... 22

1.4. Spintronics: concept, materials, and applications 25

1.5. Progress in recent research on DMS materials ... 28

1.5.1. Ferromagnetism in oxide semiconductors ... 29

1.5.2. Transition metal doped oxide semiconductors 32

Chapter 2. Experimental techniques and procedures

2. Introduction ... 45

2.1. Fabrication of samples, experimental procedures, and chemicals 46

2.2. Equipment for experimental work ... 53
2.2.1. Structural and physical characterization of samples 53
2.2.2. Electric and magnetotransport characterizations 55
2.2.3. Magnetic measurements .. 57
2.2.4. XANES for valence determination ... 58

Chapter 3. Transition metal doped ZnO

3. Introduction .. 60
3.1. Experiments .. 61
3.2. Results and discussion ... 63
 3.2.1. Phase formation and purity of TM-doped ZnO 63
 3.2.2. Magnetic properties of TM-doped ZnO .. 76
 3.2.3. The spin state assessment of Co ions: classical Curie-Weiss law versus
 modified Curie-Weiss law ... 85
 3.2.4. Co valence state ... 93
3.3. Summary .. 94

Chapter 4. Transition metal doped In$_2$O$_3$ and ITO

4. Introduction .. 96
4.1. Experiments .. 97
4.2. Results and discussion ... 98
 4.2.1. Transition metal doped In$_2$O$_3$.. 99
 4.2.1.1. Structural characterization .. 99
 4.2.1.2. Morphology and chemical composition 105
4.2.1.3. Magnetic properties of TM doped In$_2$O$_3$.. 108
4.2.1.4. Transport properties of TM doped In$_2$O$_3$... 116
4.2.1.5. Transition metal valence state ... 120
4.2.2. Transition metal doped ITO .. 121
 4.2.2.1. Structural characterization.. 122
 4.2.2.2. Morphology and chemical composition ... 124
 4.2.2.3. Magnetic properties of TM doped ITO .. 127
 4.2.2.4. Transport properties of TM doped ITO.. 131
4.2.3. Rare earth and Fe co-doped In$_2$O$_3$.. 136
4.3. Summary ... 142

Chapter 5. Effects of TM doping into CuO

5. Introduction .. 144
5.1. Experiments .. 145
5.2. Results and discussion .. 146
 5.2.1. Structural characterization of TM doped CuO.. 146
 5.2.2. Morphology and chemical composition.. 151
 5.2.3. Magnetic properties ... 152
 5.2.4. Valence state studies .. 157
5.3. Summary ... 159

Chapter 6. Conclusions and recommendations

6.1. Conclusions ... 160
6.2. Further work... 163

Bibliography.. 165

List of own publications... 180
List of Figures

1.1. Band structure of a) an insulator, b) a semiconductor, and c) a conductor.... 11
1.2. Effect of a magnetic field on the energy levels of the two electron states with $m_s = +\frac{1}{2}$ and $m_s = -\frac{1}{2}$... 20
1.3. Magnetization M of several paramagnetic salts containing Gd$^{3+}$, Fe$^{3+}$, and Cr$^{3+}$ plotted versus $\frac{\mu_B H}{T}$.. 22
1.4. Summary of the temperature dependence of the magnetization M and the magnetic susceptibility χ or reciprocal susceptibility χ^{-1} in various types of magnetic materials... 25
1.5. Schematic view of a magnetic random access memory (MRAM). 27
1.6. A schematic representation of magnetic percolation in an oxide based diluted magnetic semiconductor. ... 31
1.7. Crystal structure of ZnO. ... 33
1.8. Observation of room temperature ferromagnetism in Mn-doped ZnO thin films. ... 34
1.9. Schematic illustration of the effect of interstitial Zn on magnetic properties and M-H loops for “FM switched on” and “FM switched off” states. ... 37
1.10. ZFC and FC curves of Mn-doped CuO. Inset shows reciprocal magnetization as a function of temperature... 39
1.11. Observation of RT ferromagnetism in Mn-doped Cu$_2$O............................ 40
1.12. Crystal structure of In$_2$O$_3$.. 41
1.13. Anomalous Hall Effect in Cr-doped ITO... 43
2.1. Fabrication of polycrystalline samples via the conventional solid state synthesis technique... 48
2.2. Sample fabrication process using “rapid oxalate” decomposition technique ... 49
2.3. A schematic view of the experimental procedures...................................... 50
2.4. The families of samples that were characterized by various structural, electric and magnetic properties measurements... 51
2.5. The process of photoelectron scattering, and identification of the XANES region in the XAS spectrum. .. 59
3.1. Heating times and temperatures applied during a) calcination, b) “rapid oxalate” decomposition, and c) sintering of the samples......................... 62
3.2. a) X-ray diffraction patterns of Zn$_{1-x}$Co$_x$O samples. Impurity phase Co$_3$O$_4$ is indicated by ☐. b) Dependence of lattice parameters a and c on Co content (x). Inset represents unit cell volume (V) as a function of Co content (x).. 64
3.3. X-ray diffraction patterns of Zn$_{1-x-y}$Co$_x$Mg$_y$O prepared by a conventional solid state synthesis technique. MgO and CoO impurities are indicated by ☐ and •, respectively... 66
3.4. X-ray diffraction patterns of Zn$_{1-x-y}$Co$_x$Mg$_y$O samples prepared by a “rapid oxalate” decomposition technique. MgO and CoO impurities are indicated by ☐ and •, respectively... 67
3.5. Lattice parameters a and c versus doping level for Zn$_{1-x-y}$Co$_x$Mg$_y$O samples prepared by a conventional solid state synthesis.......................... 68
3.6. Lattice parameters a and c versus doping level for Zn$_{1-x-y}$Co$_x$Mg$_y$O samples prepared by a “rapid oxalate” decomposition technique........... 68
3.7 X-ray diffraction patterns of Zn$_{1-y}$Co$_{0.15}$Mg$_y$O prepared by the “rapid oxalate” synthesis technique. ... 70
3.8. Dependence of lattice parameters a and c on the Mg doping level (y) for Zn$_{1-y}$Co$_{0.015}$Mg$_y$O samples... 71
3.9. a) X-ray diffraction patterns for Zn$_{1-x}$Co$_{0.075}$In$_x$O samples prepared by the “rapid oxalate” synthesis technique. b) Dependence of lattice parameters a and c on indium content (x) for Zn$_{1-x}$Co$_{0.075}$In$_x$O samples. Inset shows unit cell volume (V) versus (x).. 72
3.10. Rietveld refinement pattern for Zn$_{0.91}$Co$_{0.075}$In$_{0.015}$O sample.................. 73
3.11. Electrical resistivity (ρ) as a function of indium content (x) for Zn$_{1-x}$Co$_{0.075}$In$_x$O samples... 76
3.12. Dependence of a) molar magnetic susceptibility (χ) and b) inverse molar magnetic susceptibility ($1/\chi$) on temperature (T) for Zn$_{1-x}$Co$_x$O samples... 77
3.13. Magnetization (M) versus applied magnetic field (H) for Zn$_{1-x}$Co$_x$O samples at 10 K ... 78
3.14. a) Molar magnetic susceptibility (χ) and b) inverse molar magnetic susceptibility ($1/\chi$) as a function of temperature (T) for Zn$_{1-x}$Co$_x$Mg$_y$O samples. .. 80
3.15. Magnetization (M) as a function of applied magnetic field (H) at 10 K for Zn$_{1-x-y}$Co$_x$Mg$_y$O samples. 81
3.16. a) Molar magnetic susceptibility (χ) and b) inverse molar magnetic susceptibility ($1/\chi$) as a function of temperature (T) of Zn$_{1-x}$Co$_{0.13}$Mg$_{0.87}$O samples. ... 82
3.17. Dependence of magnetization (M) on applied magnetic field (H) at 10 K of Zn$_{1-x}$Co$_{0.15}$Mg$_{0.85}$O samples... 83
3.18. Dependences of a) molar magnetic susceptibility (χ), b) inverse molar magnetic susceptibility ($1/\chi$) on temperature (T), and c) magnetization (M) as a function of applied magnetic field (H) at 10 K for Zn$_{1-x}$Co$_{0.075}$In$_x$O samples. .. 84
3.19. Application of Curie-Weiss fitting to the $1/\chi$ curve for Zn$_{0.83}$Co$_{0.17}$O sample. ... 87
3.20. Spin states and electronic configurations of Co$^{2+}$ ion in tetrahedral crystal field splitting. LS – low spin state; HS – high spin state. 89
3.21. Inverse molar magnetic susceptibility ($1/\chi$) versus temperature (T) of Zn$_{1-x}$Co$_x$O samples. The curves were fitted according to the Curie-Weiss law. ... 91
3.22. XANES spectra for a) Zn$_{1-x}$Co$_x$O and b) Zn$_{1-x}$Co$_{0.15}$Mg$_{0.85}$O samples. Spectra of reference samples for Co$^{2+}$ and Co$^{3+}$ are also shown. 93
4.1. X-ray diffraction pattern of In$_{2x}$TM$_x$O$_3$ ($x = 0.1$) samples. The most intense peaks from NiO and Cr$_2$O$_3$ impurities are indicated with ◊. 100
4.2. Dependence of lattice parameter a on the ionic radius (r_i) of the transition metal ion in $\text{In}_{2x} \text{TM}_x \text{O}_3$ ($x = 0.1$) samples. .. 101

4.3. X-ray diffraction patterns of $\text{In}_{1.9} \text{Mn}_{0.1} \text{O}_3$ samples prepared in different atmospheres. .. 102

4.4. Rietveld refinement of x-ray diffraction pattern for sample with $x = 0.08$. Insets: right shows a magnified view of the Rietveld refinements for samples with different x; left shows the dependence of lattice parameter a on the Mn content x .. 104

4.5. SEM micrographs of a) $\text{In}_{1.9} \text{Mn}_{0.1} \text{O}_3$, b) $\text{In}_{1.9} \text{Fe}_{0.1} \text{O}_3$, c) $\text{In}_{1.8} \text{Mn}_{0.08} \text{Fe}_{0.12} \text{O}_3$, and d) $\text{In}_{1.8} \text{Mn}_{0.12} \text{Fe}_{0.08} \text{O}_3$ samples. .. 106

4.6. Magnetic susceptibility (χ) versus temperature (T) of $\text{In}_{1.9} \text{TM}_x \text{O}_3$ samples with TM = (a) Mn, (b) Fe, (c) Cr, and (d) Ni. Insets represent the inverse magnetic susceptibility ($1/\chi$) data vs. (T). .. 109

4.7. Magnetization (M) versus applied magnetic field (H) of $\text{In}_{1.9} \text{TM}_{0.1} \text{O}_3$ samples at a) 300 K; b) 10 K ... 111

4.8. a) Dependence of magnetization (M) on temperature (T) for various TM doped $\text{In}_2 \text{O}_3$ samples; b) magnetization (M) vs. applied magnetic field (H) for $\text{In}_{1.8} \text{Fe}_{0.1} \text{Cr}_{0.1} \text{O}_3$ sample. Inset shows an enlargement of the selected area of the M-H loops. .. 112

4.9. Molar magnetic susceptibility (χ) as a function of temperature (T) for $\text{In}_{2x-y} \text{Mn}_x \text{Fe}_y \text{O}_3$ samples .. 113

4.10. Magnetization (M) vs. applied magnetic field (H) for $\text{In}_{2x-y} \text{Mn}_x \text{Fe}_y \text{O}_3$ samples at a) 10 K; b) 300 K ... 115

4.11. Electrical resistivity (ρ) as a function of temperature (T) for various TM-doped $\text{In}_2 \text{O}_3$ samples .. 116

4.12. Fittings of logarithm of electrical resistivity (ρ) versus temperature (T) for TM doped $\text{In}_2 \text{O}_3$ samples: (a) NNH; (b) VRH conduction models........ 118

4.13. Magnetoresistance (MR) at various temperatures for $\text{In}_{1.8} \text{Fe}_{0.1} \text{Cr}_{0.1} \text{O}_3$ sample. .. 119

xiii
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.14</td>
<td>X-ray absorption spectra for a) Mn L-edge and b) Fe L-edge in In${1.90}$TM${0.10}$O$_3$ samples.</td>
</tr>
<tr>
<td>4.15</td>
<td>X-ray diffraction patterns of In${1.84}$TM${0.12}$Sn$_{0.06}$O$_3$ samples.</td>
</tr>
<tr>
<td>4.16</td>
<td>a) X-ray diffraction patterns for In${1.80-x}$Mn${0.12}$Fe$_{0.08}$Sn$_x$O$_3$ samples; b) dependence of lattice parameter a on Sn content (x).</td>
</tr>
<tr>
<td>4.17</td>
<td>SEM images of a) In${1.84}$Mn${0.1}$Sn${0.06}$O3 and b) In${1.84}$Fe${0.1}$Sn$_{0.06}$O$_3$ samples.</td>
</tr>
<tr>
<td>4.18</td>
<td>TEM image of In${1.74}$Mn${0.12}$Fe${0.08}$Sn${0.06}$O$_3$ sample.</td>
</tr>
<tr>
<td>4.19</td>
<td>SEM pictures of In$_3$O$_3$ single crystals taken from a) top and b) side.</td>
</tr>
<tr>
<td>4.20</td>
<td>a) SEM picture of Mn-Fe-Sn “spheres”; b) x-ray diffraction pattern for the same sample.</td>
</tr>
<tr>
<td>4.21</td>
<td>a) Magnetization (M) versus temperature (T) for TM doped ITO samples. The inset shows a magnified view of the bottom part of the graph; b) Molar magnetic susceptibility (χ) vs. temperature (T) for Mn doped ITO samples.</td>
</tr>
<tr>
<td>4.22</td>
<td>Magnetization (M) vs. temperature (T) for In${1.80-x}$Mn${0.12}$Fe$_{0.08}$Sn$_x$O$_3$ samples.</td>
</tr>
<tr>
<td>4.23</td>
<td>Magnetization (M) as a function of temperature (T) for a) Mn-doped ITO at 10 K; b) (Mn,Cr) co-doped ITO at 300 K. Inset shows the dependence of the saturation magnetization (M_s) on Sn content (x).</td>
</tr>
<tr>
<td>4.24</td>
<td>Dependence of electrical resistivity (ρ) on Sn content (x) at 300 K for In${1.80-x}$Mn${0.12}$Fe$_{0.08}$Sn$_x$O$_3$ samples.</td>
</tr>
<tr>
<td>4.25</td>
<td>Dependence of electrical resistivity (ρ) on temperature (T) for a) TM doped ITO samples; b) Ni-doped ITO sample.</td>
</tr>
<tr>
<td>4.26</td>
<td>Magnetoresistance (MR) measured at various temperatures for In${1.84}$Mn${0.1}$Sn$_{0.06}$O$_3$ sample.</td>
</tr>
<tr>
<td>4.27</td>
<td>X-ray diffraction patterns for In${1.98-x}$Fe${0.02}$RE$_x$O$_3$ samples. InREO$_3$ and RE$_2$O$_3$ impurities are indicated by $\hat{\diamond}$.</td>
</tr>
<tr>
<td>4.28</td>
<td>a) Molar magnetic susceptibility (χ) as a function of temperature (T) for In${1.98-x}$Fe${0.02}$RE$_x$O$_3$ samples; b) M-H loops at 300 K for the same samples.</td>
</tr>
</tbody>
</table>
4.29. a) Electrical resistivity (ρ) vs. temperature (T) for $\text{In}_{1.93}\text{Fe}_{0.02}\text{RE}_{0.05}\text{O}_3$ samples; magnetoresistance (MR) measured at various temperatures for b) $\text{In}_{1.93}\text{Fe}_{0.02}\text{Eu}_{0.05}\text{O}_3$, and c) $\text{In}_{1.93}\text{Fe}_{0.02}\text{Nd}_{0.05}\text{O}_3$; d) illustration of negative MR in $\text{In}_{1.93}\text{Fe}_{0.02}\text{Eu}_{0.05}\text{O}_3$. 140

4.30. TEM micrographs of a) (Eu,Fe) co-doped and b) (Nd,Fe) co-doped In_2O_3 sample particles. TEM-EDS spectra for the corresponding particles are shown in the bottom parts of the figure. 141

5.1. X-ray diffraction patterns for $\text{Cu}_{1-x}\text{Mn}_x\text{O}$ samples. $\text{Cu}_{1.4}\text{Mn}_{1.6}\text{O}_4$ impurities are identified with $◊$. 147

5.2. Dependence of lattice parameters a) a, b) b, c) c, and d) the β angle on Mn doping content (x) in $\text{Cu}_{1-x}\text{Mn}_x\text{O}$ samples. 148

5.3. X-ray diffraction patterns of $\text{Cu}_{0.9-x}\text{Mn}_{0.1}M_x\text{O}$, where $M = \text{Zn(In)}$. Characteristic CuO peaks are indicated by (*). In and Zn based impurities are indicated by ($◊$) and ($•$), respectively. 149

5.4. SEM micrographs of $\text{Cu}_{0.9}\text{Mn}_{0.1}\text{O}$ prepared at a) 950 °C, b) 970 °C; and $\text{Cu}_{0.85}\text{Mn}_{0.1}\text{In}_{0.05}\text{O}$ prepared at c) 950 °C, d) 970 °C. 152

5.5. Molar magnetic susceptibility (χ) as a function of temperature (T) for $\text{Cu}_{1-x}\text{Mn}_x\text{O}$ samples. 153

5.6. Dependence of magnetization (M) on the applied magnetic field (H) at 10 K for $\text{Cu}_{1-x}\text{Mn}_x\text{O}$ samples. 155

5.7. a) Molar magnetic susceptibility (χ) as a function of temperature (T) for some “single” and “double” doped CuO samples. Inset shows magnified view of χ-T curves at low temperatures; b) Magnetization (M) vs. applied magnetic field (H) for “single” and “double” doped CuO samples. 157

5.8. XANES spectra for $\text{Cu}_{1-x}\text{Mn}_x\text{O}$ samples. 158
List of Tables

1.1. List of some common semiconductors ... 8
1.2. Electronic properties of various transparent oxide semiconductors, where ρ, n, μ, and E_g denote resistivity, carrier density, mobility, and energy gap at room temperature, respectively ... 29

2.1. The list of reagents used in this study ... 52

3.1. Ionic radii of various ions used in this study .. 63
3.2. Crystallographic data for Zn$_{1-x}$Co$_{0.075}$In$_x$O samples calculated by the Rietveld method ... 74
3.3. Chemical compositions of the samples as determined by SEM-EDS spot analysis. The raw values are normalized by the Co content 75
3.4. Calculated Curie-Weiss temperatures (Θ) and effective magnetic moments (μ_{eff}) of Co ions in Zn$_{0.93}$Co$_{0.17}$O as a function of the temperature range (T) (Fig. 3.19) used for the Curie-Weiss fittings........... 88
3.5. The calculated Curie-Weiss temperatures (Θ) and effective magnetic moment (μ_{eff}) per Co ion for (Mg,Co) and (In,Co) co-doped samples 92
4.1. Chemical compositions of the samples as determined by SEM-EDS spot analyses and aerial element mappings ... 106
4.2. Θ, μ_{eff}, and estimated spin states of magnetic ions obtained from modified Curie-Weiss law fits on the $1/\chi(T)$ curves shown in Fig. 4.6........ 110
5.1. Lattice parameters a, b, and c for Cu$_{0.91}$Mn$_{0.09}$O, Cu$_{0.85}$Mn$_{0.1}$In$_{0.05}$O, and Cu$_{0.85}$Mn$_{0.1}$Zn$_{0.05}$O samples ... 150
5.2. Effective magnetic moments (μ_{eff}), Curie-Weiss temperatures (Θ), and Mn spin states in Cu$_{1-x}$Mn$_x$O samples ... 154
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Cross section area</td>
<td>Fig</td>
<td>Figure</td>
</tr>
<tr>
<td>Å</td>
<td>Angstrom</td>
<td>FM</td>
<td>Ferromagnetism</td>
</tr>
<tr>
<td>AC</td>
<td>Alternating Current</td>
<td>g</td>
<td>Gram</td>
</tr>
<tr>
<td>B, \vec{B}</td>
<td>Magnetic induction</td>
<td>g_e</td>
<td>Spectroscopic splitting factor</td>
</tr>
<tr>
<td>$B_{j(y)}$</td>
<td>Brillouin function</td>
<td>g_J</td>
<td>Landé spectroscopic factor</td>
</tr>
<tr>
<td>BMP</td>
<td>Bound magnetic polaron</td>
<td>GM</td>
<td>Granulated Metal</td>
</tr>
<tr>
<td>C</td>
<td>Curie constant; Celsius</td>
<td>GMR</td>
<td>Giant Magnetoresistance</td>
</tr>
<tr>
<td>cm</td>
<td>Centimetre</td>
<td>h</td>
<td>Hour</td>
</tr>
<tr>
<td>DC</td>
<td>Direct Current</td>
<td>H, \vec{H}</td>
<td>Magnetic field</td>
</tr>
<tr>
<td>DMS</td>
<td>Diluted Magnetic Semiconductor</td>
<td>HS</td>
<td>High Spin</td>
</tr>
<tr>
<td>DS</td>
<td>Degenerate Semiconductor</td>
<td>i</td>
<td>Initial state of carrier hopping</td>
</tr>
<tr>
<td>e</td>
<td>Electron</td>
<td>I</td>
<td>Current</td>
</tr>
<tr>
<td>e.g.</td>
<td>Exempli gratia, in Latin meaning “for example”</td>
<td>i.e.</td>
<td>Id est, in Latin meaning “that is”</td>
</tr>
<tr>
<td>EDS</td>
<td>Energy Dispersive Spectroscopy</td>
<td>ICDD</td>
<td>International Centre for Diffraction Data</td>
</tr>
<tr>
<td>E_F</td>
<td>Fermi energy</td>
<td>IS</td>
<td>Intermediate Spin</td>
</tr>
<tr>
<td>E_g</td>
<td>Energy gap at room temperature</td>
<td>ITO</td>
<td>Indium Tin Oxide</td>
</tr>
<tr>
<td>emu</td>
<td>Electro-magnetic unit</td>
<td>j</td>
<td>Final state of carrier hopping</td>
</tr>
<tr>
<td>Eq</td>
<td>Equation</td>
<td>\vec{J}</td>
<td>The total angular momentum</td>
</tr>
<tr>
<td>et al.</td>
<td>Et al ii, in Latin meaning “and others”</td>
<td>K</td>
<td>Kelvin</td>
</tr>
<tr>
<td>eV</td>
<td>Electronvolt</td>
<td>k, k_B</td>
<td>Boltzmann constant</td>
</tr>
<tr>
<td>exp</td>
<td>Exponential</td>
<td>l</td>
<td>The orbital angular momentum quantum number</td>
</tr>
<tr>
<td>FC</td>
<td>Field Cooled</td>
<td>l_i</td>
<td>The orbital angular momentum</td>
</tr>
</tbody>
</table>

L Distance between voltage contacts
→ L The total orbital angular momentum
LED Light Emitting Diode
LS Low Spin
m Mass
M Magnetization
$	ext{min}$ Minute
m_i The magnetic quantum number
mm Millimetre
MPMS Magnetic Property Measurement System
MR Magnetoresistance
MRAM Magnetic Random Access Memory
m_s The spin quantum number
n The principal quantum number, charge carrier density
N The number of atoms
N_A Avogadro’s number
$N(E_F)$ Density of states at Fermi energy
NNH Nearest Neighbor Hopping
Oe Oersted
PC Personal Computer
PPMS Physical Property Measurement System
R Electrical resistance
RE Rare Earth
r_{ij} Distance between “i” and “j” in carrier hopping model
R_s Anomalous Hall coefficient
R_{o} Ordinary Hall coefficient
MPMS $\rightarrow s_i$ The spin angular momentum
MR $\rightarrow S$ The total spin angular momentum
M_{R} Magnetoresistance
S Siemens
M_{RAM} Magnetic Random Access Memory
m_{s} The spin quantum number
n The principal quantum number, charge carrier density
N The number of atoms
N_A Avogadro’s number
$N(E_F)$ Density of states at Fermi energy
NNH Nearest Neighbor Hopping
Oe Oersted
PC Personal Computer
PPMS Physical Property Measurement System
T Temperature
T_C Curie temperature
T_C Curie temperature
T_{CR} Temperature Coefficient of Resistivity
TEM Transmission Electron Microscopy
TM Transition Metal
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_N</td>
<td>Néel temperature</td>
</tr>
<tr>
<td>$\Delta \rho$</td>
<td>Difference of electrical resistivity</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>μ</td>
<td>Charge carrier mobility, micro</td>
</tr>
<tr>
<td>V</td>
<td>Voltage, Volume</td>
</tr>
<tr>
<td>μ</td>
<td>Magnetic moment</td>
</tr>
<tr>
<td>ρ</td>
<td>Electrical resistivity</td>
</tr>
<tr>
<td>VRH</td>
<td>Variable Range Hopping</td>
</tr>
<tr>
<td>μ_B</td>
<td>Bohr magneton</td>
</tr>
<tr>
<td>W</td>
<td>Hopping energy</td>
</tr>
<tr>
<td>μ_{eff}</td>
<td>Effective magnetic moment</td>
</tr>
<tr>
<td>wt%</td>
<td>Weight percent</td>
</tr>
<tr>
<td>μ_t</td>
<td>Associated magnetic moment of an electron with an orbital angular momentum</td>
</tr>
<tr>
<td>XAFS</td>
<td>X-ray Absorption Fine Structure</td>
</tr>
<tr>
<td>μ_z</td>
<td>Projection of magnetic moment along direction of applied magnetic field</td>
</tr>
<tr>
<td>XANES</td>
<td>X-ray absorption near band edge spectroscopy</td>
</tr>
<tr>
<td>μ_s</td>
<td>Associated magnetic moment of an electron with spin angular momentum</td>
</tr>
<tr>
<td>XAS</td>
<td>X-ray absorption spectroscopy</td>
</tr>
<tr>
<td>μ_0</td>
<td>Magnetic permeability</td>
</tr>
<tr>
<td>XPS</td>
<td>X-ray Photoemission Spectroscopy</td>
</tr>
<tr>
<td>Θ</td>
<td>Curie-Weiss temperature</td>
</tr>
<tr>
<td>XRD</td>
<td>X-ray Diffraction</td>
</tr>
<tr>
<td>ρ</td>
<td>Electrical resistivity</td>
</tr>
<tr>
<td>ZFC</td>
<td>Zero Field Cooled</td>
</tr>
<tr>
<td>ρ_H</td>
<td>Electrical resistivity under applied magnetic field</td>
</tr>
<tr>
<td>α</td>
<td>Wave function decay factor</td>
</tr>
<tr>
<td>χ</td>
<td>Magnetic susceptibility</td>
</tr>
<tr>
<td>ρ_H</td>
<td>Hall resistivity</td>
</tr>
<tr>
<td>χ_0</td>
<td>Electrical resistivity in zero magnetic field</td>
</tr>
<tr>
<td>χ_0</td>
<td>Temperature independent magnetic susceptibility</td>
</tr>
<tr>
<td>σ</td>
<td>Electrical conductivity</td>
</tr>
</tbody>
</table>
Ω
°
ºC
ℏ
Ohm
Degree
Degrees Celsius
Plank constant