2006

Performance and capacity of centrifugal gas cleaning devices

Mohamed S. Saad

University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, or may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Performance and Capacity of Centrifugal Gas Cleaning Devices

A thesis submitted in fulfillment of the requirements for the award of the degree of

Doctor of Philosophy

From

University of Wollongong

By

Mohamed S. SAAD

BSc, MEng.

School of Mechanical, Materials and Mechatronic Engineering.

Faculty of Engineering

2006
DECLARATION

I, Mohamed SAAD, declare that this thesis, submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy, in the Faculty of Engineering at the University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution.

Wollongong, Australia

Mohamed SAAD
ACKNOWLEDGMENT

I would like to thank my supervisor A/Prof. Peter WYPYCH for his excellent supervision and invaluable guidance, support and encouragement throughout the research project. His valuable suggestions, numerous comments and criticisms during various stages of this research, including the preparation of this work, are gratefully acknowledged.

I would also like to acknowledge with sincere appreciation the Ministry of Higher Education of Libya and the University of Al-Tahadi for awarding me a research scholarship through which the complete financial support for this research was providing.

I would like to convey my appreciation to the technical staff in Bulk Material Handling Laboratory for their friendship and unlimited cooperation which made the research laboratory a pleasant place to work. In particular, I would like to thank Mr. D. Cook, Mr. I. Frew, Mr. D. Hasti, Mrs. W. Halford and Mr. I. McColm.

Finally and most importantly, this thesis is especially dedicated to my family. To spirit of my parents, for their unfailing support and long patience, I am extremely grateful. They always were the pillars upon which I could lean to progress, God bless them. To my dearest wife, Fatima, for
her support, understanding and sacrifice over these years and also to my lovely sons, Suhaib and Safwan who were eagerly waiting for me every night to come back home, although I couldn’t spend as much time as I wished with them, I am really grateful. I would also like to wholeheartedly thank my best friend Ammar for his unlimited support and encouragement over these years. Thank you all.
ABSTRACT

The purpose of dust control systems is to capture, collect and dispose of contaminant in an efficient manner. This research examines how to improve the operational and collection efficiency of gas cleaning devices via variations in geometry of different cyclone components. Unfortunately many of the predictive models provide inaccurate and contradictory results. Furthermore, many practical issues such as outlet and inlet configurations have not been investigated properly or at all. This study investigates the effect of cyclone outlet (vortex finder) diameter on cyclone pressure drop. Two cyclone configurations were used: air discharging directly to atmosphere; air discharging through a pipe connected to a filter. The measured values of cyclone pressure drop were compared with pressure drop predictions from various models (e.g. EEUA, 1997; Jacob et al., 1979; Rhodes, 1998; Mason et al., 1983; and Zenz, 1999). This comparison showed significant variations and differences compared with the experimental results. The models of Jacob and Dhodapkar (1979) and Mason et al. (1983) predicted similar values and were closest to the experimental data. The research evaluated existing models and developed new improved models for this purpose. A new theoretical model for pressure drop prediction across the cyclone is presented based on the consideration of the dissipative loss of flow in the cyclone system. Two
different sizes of vortex finder (gas exit diameters) were used for this modeling of pressure drop. The models of Stairmand (1949), Jacob Dhodapkar (1979), Mason et al. (1983), Rhodes (1998), EEU (1987) and Zenz (1999) predicted significantly lower pressure drops than the experimental values. The model of Barth (1956), with two values of k_1 and k_2 for rounded and sharp edges, respectively, predicted significantly higher values than the experimental data. Furthermore, the maximum solids flow capacity of cyclone separators was investigated. Different bulk solids and air flows were tested under different conditions: maximum solids flow rate under pneumatic conveying conditions (before choking); choked gravity flow from the test cyclone; and different gravity flow conditions from a hopper. The results obtained in this study were compared with the predictions of Beverloo et al. (1961), Brown (1961), Zenz (1962) and Johanson (1965). Results show that the Johanson (1965) model provides reasonable agreement with the experimental results.
Introduction ... 1

1.1 Background ... 1

1.2 The Purpose of Dust Control .. 2

1.3 Various Aspects of Dust Control .. 6

1.4 Gravitational Separation .. 9

1.4.1 Mechanical Description of Cyclone Separator .. 10

1.4.2 Cyclone Applications .. 15

1.4.2.1 Particulate collections ... 15

1.4.2.2 Pre-cleaner ... 15

1.4.2.3 Fine particles .. 15

1.4.2.4 Coarse particles .. 16

1.5 Description of present research .. 18

1.6 Objectives and thesis contents .. 19
LITERATURE REVIEW ... 21

2.1 Introduction ... 21

2.2 Experimental Investigations .. 22

2.2.1 Development of cyclone separator application in industry ... 23

2.2.2 Influence of geometrical configuration on cyclone performance ... 24

2.2.2.1 Cyclone geometry ... 24

2.2.2.2 Body diameter and dimensional ratio .. 27

2.2.2.3 Cone design and conical length .. 29

2.2.2.4 Dust outlet geometry .. 30

2.2.2.5 Gas outlet or vortex finder design .. 31

2.2.3 Operating variables on cyclone performance .. 33

2.2.3.1 Flow rate ... 33

2.2.3.2 Physical properties of the gas ... 34

2.2.3.3 Properties of the dust .. 36

2.2.3.4 Concentration and dust loading ... 37

2.2.3.4.1 Pressure drop .. 37

2.2.3.4.2 Collection efficiency .. 40

2.2.3.4.3 Dust rope phenomenon .. 41

2.3 Miscellaneous Cyclone Inlet Designed ... 42

2.3.1 Circular or ‘pipe’ entry .. 43
THE THEORY OF CYCLONE PRESSURE DROP AND COLLECTION EFFICIENCY ... 52

3.1 Introduction .. 52
3.2 Performance Modeling .. 54
 3.2.1 Flow pattern ... 54
 3.2.2 Cyclone velocities and pressure distribution .. 55
3.3 Pressure Drop .. 59
 3.3.1 Vortex finder sizes ... 62
 3.3.1.1 Swirling flow in vortex finder ... 63
3.4 Models for Cyclone Pressure Drop ... 65
 3.4.1 Models based on estimating the dissipative loss ... 65
 3.4.1.1 Stairmand model .. 65
3.4.1.2 Barth model... 66
3.4.1.3 Core model... 67
3.4.2 Purely empirical models ... 69
 3.4.2.1 Shepherd and Lapple models................................. 69
 3.4.2.2 Casal and Martinez-Benet models............................ 69
3.5 Other Selected Pressure Drop Models ... 69
 3.5.1 EEUA model... 69
 3.5.2 Jacob and Dhodapkar model... 71
 3.5.3 Rhodes model ... 71
 3.5.4 Mason et al. model... 72
 3.5.5 Zenz model ... 73
3.6 Solids Mass Flow Rate... 74
 3.6.1 Maximum solids flow capacity.. 75

EXPERIMENTAL FACILITIES AND TECHNIQUES 78
4.1 Description of Test Rig .. 78
 4.1.1 Air supply and control .. 85
 4.1.2 Feeding vessel and receiving bin..................................... 87
 4.1.3 Rotary valve ... 88
 4.1.4 Blow tank ... 89
 4.1.5 Conveying lines .. 91
4.1.6 Cyclone separator ... 92
4.1.7 Material specification ... 93
4.2 Instrumentation and Data Acquisition 93
 4.2.1 Mass flow-rate of air ... 94
 4.2.2 Mass flow-rate of solids .. 94
 4.2.3 Pressure drop ... 94
 4.2.4 Data acquisition system .. 95
 4.2.5 Data processing ... 96
4.3 Calibration .. 101
 4.3.1 Load cells calibration .. 101
4.4 Test Materials and Properties ... 104
 4.4.1 Test materials ... 104
 4.4.2 Particle size and distribution ... 105
 4.4.3 Loose poured bulk density .. 108
 4.4.4 Particle density .. 110
 4.4.5 Angle of repose .. 110
 4.4.5.1 Poured angle of repose .. 111
 4.4.5.2 Drained angle of repose 113
4.5 Cyclone Experimental Procedure .. 116
 4.5.1 Cyclone performance – air only 116
 4.5.2 Cyclone performance – with solids 117
EXPERIMENTAL INVESTIGATIONS INTO CYCLONE
PRESSURE DROP AND SOLIDS FLOW CAPACITY 129

5.1 Introduction .. 129

5.1.1 Pressure drop.. 129

5.1.1.1 Flow straightener ... 130

5.1.1.1.1 The test model ... 130

5.1.1.1.2 Experimental results... 131

5.1.1.2.1 Influence of flow straightener................................. 131

5.1.1.2 Vortex finder... 135

5.1.1.2.1 Experimental scheme ... 135

5.1.1.2.2 Air discharged directly to atmosphere 136

5.1.1.2.3 Test procedure ... 138

5.1.1.2.4 Air discharged through a pipe to a filter . 138

5.1.1.2.5 Influence of the vortex finder......................... 139

5.2 Pressure Drop Modeling ... 144

5.2.1 Modeling with air discharging to atmosphere 144

5.2.2 Modeling with vortex finder connected to the filter............ 145

5.3 Development of New Pressure Drop Model............................... 147
5.4 Maximum Solids Flow Capacity .. 158
 5.4.1 Experimental Scheme ... 159
 5.4.2 Capacity Limitation ... 159
5.5 Modeling of Gravity Flow Discharge .. 162
 5.5.1 Type of Flows and Velocity Variations 168
 5.5.2 Average Velocity of Bulk Material in a Mass-Flow Hopper 169
 5.5.3 Experimental Scheme ... 175
 5.5.4 Particle Velocity Analysis ... 176
 5.5.5 Test Results ... 176

COMPARISON WITH THEORY OF EXPERIMENTAL DATA ON PRESSURE DROP AND SOLIDS CAPACITY 178

6.1 Introduction ... 178
 6.1.1 Pressure Drop .. 178
 6.1.1.1 Comparison of 105mm I.D. and 130mm I.D. Vortex Finders 178
 6.1.1.2 Comparison of Experimental Data and Existing Models 180
 6.1.1.3 Comparison of Experimental Data with Pressure
 Drop Model Based on Dissipative Losses 183
6.2 Maximum Solids Capacity and Gravity Flow Discharge 188

DISCUSSION .. 195

7.1 Introduction .. 195

7.2 Cyclone Pressure Drop ... 195

7.3 Pressure Drop Prediction .. 197

7.4 New Model Of Pressure Drop .. 197

7.5 Maximum Solids Capacity and Gravity Flow Discharge 198

CONCLUSION AND FUTURE WORK .. 200

8.1 Conclusion .. 200

8.1.1 Introduction ... 200

8.1.2 Pressure Drop .. 201

8.1.3 Maximum Mass Capacity and Gravity Flow Discharge 203

8.2 Future Work ... 206

REFERENCES ... 208

APPENDIX A .. 225

A.1 CYCLONE PRESSURE DROP EXPERIMENTAL WORK 225

A.1.1 With Proper Inside Diameter of Vortex Finder 105mm I.D.

Flow Straightener Discharged Directly to Atmosphere
A.1.2 With Proper Inside Diameter of Vortex Finder 130mm I.D.
Flow Straightener Discharged Directly to Atmosphere
And the cyclone Separator Connected to Drum. 227

A.1.3 With Proper Inside Diameter of Vortex Finder 105mm I.D.
Flow Straightener Connected Via a Pipe to A Filter
And the cyclone Separator Connected to Drum. 229

A.1.4 With Proper Inside Diameter of Vortex Finder 130mm I.D.
Flow Straightener Connected Via A Pipe to A Filter
And the cyclone Separator Connected to Drum. 231

A.2 ANNUBAR CONVERSION GRAPH ... 233

A.2.1 GNT-10 (1.5 inches – 6.00 inch H₂O)............................... 233
A.2.2 GNT-10 (1.5 inches – 30.00 inch H₂O)............................. 234

APPENDIX B FRICITION LOSS CALCULATIONS 235

B.1 105mm I.D. vortex finder (Exit, Discharge to a filter from a 90°
elbow, Round) ... 235

B.2 130mm I.D. vortex finder and Transition. Round to Round (Exit,
Discharge to a filter from a 90° Elbow) 235

B.3 Total pressure loss coefficient for transition: Transitions, Round to
Round ... 237
B.4 Local loss coefficient, Entries Duct mounted in wall (Hood, Non-Enclosing, Flanged and Unflanged) ... 237

APPENDIX C FLOW STRAIGHTENER PRESSURE DROP EXPERIMENTAL WORK AND LOSS COEFFICIENT ... 246

C.1 4 inch or (105 mm I.D. Flow Straightner) ... 245

C.2 5 inch or (130 mm I.D. Flow Straightner) ... 245

APPENDIX D PRESSURE DROP PREDICTION FOR FIVE MODELS .. 249

APPENDIX E NEW PRESSURE DROP MODEL ... 255

APPENDIX F PARTICLE VELOCITY EXPERIMENTAL WORK ... 263

F.1 Particle Velocity at the Cyclone Outlet Opening for Different proportion of air flow to the blow tank feeder (before choking) ... 263

F.2 Particle Velocity at the Cyclone Outlet Opening - Gravity Flow Conditions (choked – flow) ... 263

APPENDIX G ... 271

G.1 Mass flow rate prediction for Plastic pellets, Corn, and Rape seed (canola) with different cone angles of cyclone separator α, using four theoretical models of Beverloo et al. (1961), Brown (1961), Zenz (1962) and Johansone (1965) .. 271

APPENDIX H BULK MATERIAL PROPERTIES 274

H.1 Particle size Distribution .. 274
H.2 Instantaneous Yied Loci (IYL) and Wall Yiel Loci (WYL) Measured for all Test Materials .. 281

APPENDIX I PUBLICATIONS DURING P.h.D CANDIDATURE .. 291
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Types of materials that can be separated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoffman et al. (2002)..</td>
<td>5</td>
</tr>
<tr>
<td>1.2</td>
<td>Particle sizes of some materials and suitable methods for removing them from gas stream Hoffman et al. (2002)</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic diagram of a reverse flow cyclone separator</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>General configuration of cyclone separation</td>
<td>12</td>
</tr>
<tr>
<td>1.5</td>
<td>Typical cyclone separator system</td>
<td>13</td>
</tr>
<tr>
<td>1.6</td>
<td>Typical series arrangement for cyclone separators</td>
<td>13</td>
</tr>
<tr>
<td>1.7</td>
<td>Plan of typical parallel arrangements of cyclone separator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hoffman et al. (2002)..</td>
<td>14</td>
</tr>
<tr>
<td>1.8</td>
<td>Elevation of typical parallel arrangements of cyclone separator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>USACE (1988)</td>
<td>14</td>
</tr>
<tr>
<td>2.1</td>
<td>Typical conventional cyclone component and dimension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Labels</td>
<td>22</td>
</tr>
<tr>
<td>2.2</td>
<td>Cyclone entries: (a) circular or ‘pipe’ inlet; (b) ‘slot’ or tangential inlet; (c) axial inlet with swirl vanes; (d) ‘wrap-round’ inlet</td>
<td>43</td>
</tr>
<tr>
<td>2.3</td>
<td>Types of cyclones in common use</td>
<td>48</td>
</tr>
<tr>
<td>2.4</td>
<td>Typical arrangements for multi cyclone configurations</td>
<td>49</td>
</tr>
</tbody>
</table>
2.5 Relative effect of cyclone dimensions on efficiency 50

3.1 Schematic diagram of a reverse flow cyclone separator 53

3.2 Flow Pattern in the cyclone ter Linden (1949) 55

3.3 Velocity and pressure distribution in a cyclone

 ter Linden (1949) .. 58

 (a) variation of tangential velocity v_t, and radial velocity v_r

 (b) total and static pressure at different points in a cyclone

 (c) variation of vertical velocity v_h

3.4 Schematic of core model Hoffmann et al. (2002) 68

3.5 Solids mass flow in relation to outlet sizing Zenz (1975) 77

4.1 Layout of cyclone test rig – air discharging directly to

 Atmosphere .. 80

4.2 Layout of cyclone test rig – air discharging through pipe

 connected to filter ... 81

4.3 General layout of cyclone testing ... 82

4.4 Annubar .. 83

4.5 Cyclone DP Meters .. 83

4.6 Cyclone water manometer .. 84

4.7 Flow straightener and vortex finder ... 84

4.8 The annubar station ... 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.9</td>
<td>General arrangement of compressed air supply</td>
<td>86</td>
</tr>
<tr>
<td>4.10</td>
<td>Rotary valve</td>
<td>89</td>
</tr>
<tr>
<td>4.11</td>
<td>Blow tank Feeder</td>
<td>90</td>
</tr>
<tr>
<td>4.12</td>
<td>General layout of blow tank feeding system</td>
<td>90</td>
</tr>
<tr>
<td>4.13</td>
<td>Samples of materials used and tested by the cyclone system in this study</td>
<td>91</td>
</tr>
<tr>
<td>4.14</td>
<td>Air pressure tapping position</td>
<td>95</td>
</tr>
<tr>
<td>4.15</td>
<td>Data acquisition system</td>
<td>96</td>
</tr>
<tr>
<td>4.16</td>
<td>Typical experimental plots created by “Excel Spreadsheet” program</td>
<td>99</td>
</tr>
<tr>
<td>4.17</td>
<td>Calibration of feeding bin load cells</td>
<td>103</td>
</tr>
<tr>
<td>4.18</td>
<td>Calibration of receiving bin load cells</td>
<td>103</td>
</tr>
<tr>
<td>4.19</td>
<td>Regular and irregular shaped particles</td>
<td>105</td>
</tr>
<tr>
<td>4.20</td>
<td>Particle size distributions (Plastic Pellets)</td>
<td>107</td>
</tr>
<tr>
<td>4.21</td>
<td>Particle size distributions (Corn)</td>
<td>107</td>
</tr>
<tr>
<td>4.22</td>
<td>Particle size distributions (Canola)</td>
<td>108</td>
</tr>
<tr>
<td>4.23</td>
<td>General configuration of poured angle of repose testing</td>
<td>113</td>
</tr>
<tr>
<td>4.24</td>
<td>General configuration of drained angle of repose testing</td>
<td>115</td>
</tr>
<tr>
<td>4.25</td>
<td>Camera setup and recording window</td>
<td>124</td>
</tr>
<tr>
<td>4.26</td>
<td>Schematic diagram of cyclone apparatus rig with High Speed Camera</td>
<td>128</td>
</tr>
</tbody>
</table>
5.1 Schematic of flow straightener used to determine pressure drop ... 132

5.2 Typical 105mm I.D. and 130mm I.D flow straightener 132

5.3 Variation in pressure drop with F.S. and without F.S. 134

5.4 Experimental and predicted pressure drop relations for different flow straighteners... 135

5.5 Conventional vortex finder without flow straightener.............. 136

5.6 Influence of 105mm I.D vortex finder on cyclone performance (air discharging to atmosphere) ... 140

5.7 Influence of 130mm I.D vortex finder on cyclone performance (air discharging to atmosphere). ... 141

5.8 Influence of 105mm I.D vortex finder on cyclone performance (air discharging through a pipe connected to a filter).............. 142

5.9 Influence of 130mm I.D vortex finder on cyclone performance (air discharging through a pipe connected to a filter).............. 143

5.10 Total pressure drop predictions by various models (105mm I.D and 130mm I.D) with vortex finder discharging to atmosphere. .. 145

5.11 Total pressure drop prediction by various models (105mm I.D and 130mm I.D) with vortex finder connected to a filter........... 146
5.12 Pressure losses at different parts in a cyclone - directed to atmosphere ... 153
5.13 Pressure losses at different parts in a cyclone - connected to a filter .. 155
5.14 Total pressure drop due to dissipative losses in cyclone separator (air discharged to atmosphere) .. 156
5.15 Total pressure drop due to dissipative losses in cyclone separator (air discharged through a filter) .. 157
5.16 General system of cyclone test rig .. 161
5.17 Cyclone separator with two observation windows 161
5.18 Influence of cone angle on cyclone mass flow rate for plastic pellets ... 165
5.19 Cyclone gravity flow discharge .. 167
5.20 Different gravity flow conditions using a conical hopper
(\(\alpha =30^\circ\)) ... 167
5.22 Velocity profile of bulk material in hopper, Craig (1996) 174
5.23 Displacement of the material in hopper, Craig (1996) 175
6.1 Comparison of the 105mm I.D. and 130mm I.D. vortex finders (are discharged to atmosphere) ... 179
6.2 Comparison of the 105mm I.D. and 130mm I.D. vortex finders (connected to a filter) ... 179

6.3 Comparison of experimental data and existing models for a vortex finder discharging to atmosphere 181

6.4 Comparison of experimental data and existing models of a vortex finder connected to a filter .. 182

6.5 Comparison of experimental data and theoretical models of vortex finder (discharging to atmosphere) 186

6.6 Comparison of experimental data and theoretical models with vortex finder connected to filter ... 187

A.1 Annubar conversion chart (6 inch H$_2$O) 232

A.2 Annubar conversion chart (30 inch H$_2$O) 233

B.1 Show the number of vortex spirals against the inlet air velocity ... 238

B.2 Shows the function (K) versus area ratio (De/De)$_2$ 238

B.3 Pressure loss of (EEUA model) via inlet velocity 239

B.4 Pressure loss of (Jacob et al. model) via inlet velocity 240

B.5 Pressure loss of (Rhodes model) via inlet velocity 241

B.6 Pressure loss of (Mason et al. model) via inlet velocity 242

B.7 Pressure loss of (Zenz model) via inlet velocity 243

B.8 Bend loss coefficient in 90° Round Elbows 244
C.1 Flow Straightener Loss Coefficient
(105mm I.D. and 130mm I.D.) ... 248

H.1 Particle size distribution (old rape seed)............................ 276
H.2 Particle size distribution (old plastic pellets)....................... 276
H.3 Particle size distribution (old corn).................................... 277
H.4 Particle size distribution (new plastic pellets) 279
H.5 Particle size distribution (new rape seed).......................... 279
H.6 Particle size distribution (new corn)................................. 280
H.7 Effective Angle of Internal Friction (Plastic Pellets) 281
H.8 Instantaneous Yield Loci (Plastic Pellets) 282
H.9 Wall Friction Angle (plastic pellets) 282
H.10 Wall Yield Loci (Plastic Pellets) 283
H.11 Wall Friction Angle (plastic pellets)................................. 283
H.12 Wall Yield Loci (Plastic Pellets) 284
H.13 Effective Angle of Internal Friction (Corn) 284
H.14 Instantaneous yield Loci (Corn) 285
H.15 Wall Friction Angle (Corn)... 285
H.16 Wall Yield Loci (Corn).. 286
H.17 Wall Friction Angle (Corn)... 286
H.18 Wall Yield Loci (Corn).. 287
H.19 Effective Angle of Internal Friction (Rape Seed).............. 287
<table>
<thead>
<tr>
<th>H.20</th>
<th>Instantaneous yield Loci (Rape Seed)</th>
<th>288</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.21</td>
<td>Wall Friction Angle (Rape Seed)</td>
<td>288</td>
</tr>
<tr>
<td>H.22</td>
<td>Wall Yield Loci (Rape Seed)</td>
<td>289</td>
</tr>
<tr>
<td>H.23</td>
<td>Wall Friction Angle (Rape Seed)</td>
<td>289</td>
</tr>
<tr>
<td>H.24</td>
<td>Wall Yield Loci (Rape Seed)</td>
<td>290</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Caption</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Typical size ranges of some common particle types</td>
<td>4</td>
</tr>
<tr>
<td>2.1</td>
<td>Effect of cyclone parameter variation on collection efficiency Davidson (2000)</td>
<td>26</td>
</tr>
<tr>
<td>2.2</td>
<td>Standard design for reverse-flow cyclones</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Cyclone Classification</td>
<td>49</td>
</tr>
<tr>
<td>3.1</td>
<td>Several equations for predicting pressure loss based on number of inlet velocity heads Leith and Lee (1997)</td>
<td>62</td>
</tr>
<tr>
<td>4.1</td>
<td>Cyclone dimensions and operating conditions</td>
<td>92</td>
</tr>
<tr>
<td>4.2</td>
<td>Mass of material and voltage measured by load cells</td>
<td>102</td>
</tr>
<tr>
<td>4.3</td>
<td>Physical properties of materials tested</td>
<td>104</td>
</tr>
<tr>
<td>4.4</td>
<td>Maximum capacity of material to be separated</td>
<td>118</td>
</tr>
<tr>
<td>4.5</td>
<td>Choking and escaping of the material from the cyclone</td>
<td>120</td>
</tr>
<tr>
<td>5.1</td>
<td>Maximum solids capacity of cyclone (just before choking)</td>
<td>160</td>
</tr>
<tr>
<td>5.2</td>
<td>Bulk material properties</td>
<td>166</td>
</tr>
<tr>
<td>5.3</td>
<td>Maximum gravity discharge rate using cyclone (choked-flow)</td>
<td>177</td>
</tr>
<tr>
<td>5.4</td>
<td>Maximum gravity discharge rate for different flow conditions through hopper (Fig. 5.20)</td>
<td>177</td>
</tr>
</tbody>
</table>
6.1 Maximum capacity of cyclone separator (just before choking) . 190
6.2 Maximum gravity discharge rate using cyclone (choked-flow) . 190
6.3 Experimental and predicted values of maximum gravity mass
flowrate of solids ... 191
6.4 Physical properties of the old materials tested 193
6.5 Physical properties of the new materials tested 193
6.6 Maximum solids capacity (just before choking) and maximum
gravity discharge rate (choked-flow) of cyclone .. 193

A.1.1 Data spreadsheet (105mm I.D.) to atmosphere 225
A.1.2 Data spreadsheet (130mm I.D.) to atmosphere 227
A.1.3 Data spreadsheet (105mm I.D.) connected to filter 229
A.1.4 Data spreadsheet (130mm I.D.) connected to filter 231
B.1 Data spreadsheet – local loss coefficient .. 235
B.2 Data spreadsheet – local loss coefficient .. 237
C.1 Data spreadsheet (105mm I.D.) F.S. pressure drop 246
C.2 Data spreadsheet (130mm I.D.) F.S. pressure drop 247
D.1 Pressure drop prediction of (EEUA Model)................................. 249
D.2 Pressure drop prediction of (Jacob et al. Model) 250
D.3 Pressure drop prediction of (Rhodes Model) 251
D.4 Pressure drop prediction of (Mason et al. Model)....................... 252
D.5 Pressure drop prediction of (Zenz Model) 253
E.1 Data spreadsheet - new Pressure drop model of (EEUA Model) ... 255
E.2 Data spreadsheet - new Pressure drop model of (Jacob et al. Model) ... 256
E.3 Data spreadsheet - new Pressure drop model of (Rhodes Model) ... 257
E.4 Data spreadsheet - new Pressure drop model of (Mason et al. Model) ... 258
E.5 Data spreadsheet - new Pressure drop model of (Zenz Model) ... 259
E.6 Data spreadsheet - new Pressure drop model of (Stairmand Model) ... 260
E.7 Data spreadsheet - new Pressure drop model of (Barth Model) ... 261
F.1a Data spreadsheet of Particles Velocity for different proportion of air flow to the blow tank (0.25 to 0.04) 263
F.1b Data spreadsheet of Particles Velocity for different proportion of air flow to the blow tank (0.25 to 0.02) 264
F.1c Data spreadsheet of Particles Velocity for different proportion of air flow to the blow tank (0.2 to 0.02) 265
F.1d Data spreadsheet of Particles Velocity for different proportion of air flow to the blow tank (0.15 to 0.02) 266
F.2a Data spreadsheet of (Plastic pellets) velocity at the cyclone outlet (choked – flow).. 267
F.2b Data spreadsheet of (Corn) velocity at the cyclone outlet (choked – flow).. 268
F.2c Data spreadsheet of (Rape seed) velocity at the cyclone outlet (choked – flow).. 269
G.1a Data spreadsheet of maximum mass flow rate prediction (Plastic pellets).. 270
G.1b Data spreadsheet of maximum mass flow rate prediction (Rape seed).. 271
G.1c Data spreadsheet of maximum mass flow rate prediction (Corn)... 272
H.1 Data spreadsheet of particle size distributions (old materials).... 274
H.2 Data spreadsheet of particle size distributions (new materials).. 277
LIST OF SYMBOLS

A : cross sectional area of the silo [m²]

A₀ : outlet cross sectional area [m²]

Aᵣ : total wall area of the cyclone body [m²]

a : constant at section 2.2.3.4 [-]

a : condition at section 2.2.3 [-]

a : height of the cyclone inlet as defined in Fig. 2.1 [m]

a : average vertical acceleration of the material [m/s²]

aᵥ : bulk material acceleration in hopper due to
convergence of the channel [m/s²]

aᵥ : bulk material acceleration in the hopper due to
increase in the velocity at the hopper outlet after
the discharge [m/s²]

B : dust outlet diameter as defined in Fig. 2.1 [m]

B : barrel at section 3.5.5 [-]

b : width of the cyclone inlet as defined in Fig. 2.1 [m]

b : condition at section 2.2.3 [-]

b : constant at section 2.2.3.4 [-]

C : constant at section 3.5 as shown in Fig. 3.4 [-]
C : loss coefficient at section 3.5.4 [-]
C : constant at section 5.5 [-]
c : concentration of particles in inlet gas stream at section 2.2.3 [g/m³]
c : vortex core at section 3.4 [-]
c : cyclone at section 3.5 [-]
CS : in the surface CS, as shown in Fig.3.4 [-]
D : diameter [m]
D : the distance between the starting point to the ending point for a single particle at section 4.6.1 [m]
Dd : diameter of cyclone dust outlet [m]
De : diameter of gas exit (vortex finder) [m]
DP : differential pressure drop between the entrance point and the gas exit point [Pa]
D0 : hopper outlet diameter [m]
dp : particle diameter [mm]
din : inlet diameter at section 3.5 [m]
dahi : inlet hydraulic diameter at section 3.5.5 [inch]
d50 : cut particle diameter (50% efficiency) [m]
Eu : Euler number, ΔP/(1/2 ρ v²) [-]
E : exit at section 3.5
ff : critical flow factor based on minimum opining dimension [-]
ff\(_a\) : actual flow factor based on actual opining dimension [-]
f : wall friction factor [-]
G : friction factor in Stairmand equation = \(f/2\) [-]
g : gravity acceleration [m/s\(^2\)]
H : total height of the cyclone as defined in Fig. 2.1 [m]
H : total height of the sample cone at section 4.4.5 [mm]
H\(_1\) : height of the sample plate from the top of the stand [mm]
H\(_2\) : height from the tip of the sample cone to the top of the stand [mm]
H(\(\alpha\)) : factor to take into account the variation in hopper type [-]
h : height of the cyclone barrel [m]
h\(_c\) : height of the cyclone cone [m]
h\(_h\) : vertical height of hopper [m]
K : constant in Barth’s pressure drop model at section 3.4.1.2 [-]
K : flow straightener loss coefficient [-]
k : proportionality constant at section 2.2.3 [-]
k : particle shape constant at section 5.5 [-]
L : length of the sample plate [mm]
M : mass flow of solids [kg/s]
\(M_c\) : mass flow rate of solids collected [kg/s]

\(M_e\) : mass flow rate of solids entrainment [kg/s]

\(M_f\) : mass flow rate of solids fed [kg/s]

\(M_{fa}\) : mass flow rate of air [kg/s]

\(M_i\) : mass flow rate of solids input [kg/s]

\(M.S\) : mild steel sheet [-]

\(m\) : geometry parameter (\(m = 1\) for a conical hopper) [-]

\(m_s\) : mass of solids flow rate at section 3.6.1 [lb/s]

\(N_H\) : number of velocity heads []

\(N_s\) : number of the spirals traverse by gas stream [-]

\(n\) : vortex exponent, which equal 1 for an ideal gas [-]

\(n = -1\) for rotational as solid body [-]

\(n = 0.5 - 0.8\) (in outer vortex) [-]

\(P_i\) : inlet pressure [atm]

\(Q\) : volumetric flow rate \([m^3/s]\)

\(q\) : term appearing in Stairmand’s pressure drop model [-]

\(R\) : radius at section 3.4 [m]

\(Rc\) : vortex core radius [m]

\(R_{ce}\) : ratio of vortex core to vortex finder radii [-]

\(R_e\) : vortex finder radius [m]

\(Re\) : Reynolds number, \((\rho v D)/\mu\) [-]
r : rotational radius [m]

r : reverse flow at section 3.5 [-]

S : height of cyclone vortex finder [m]

SP : static pressure drop [Pa]

S.S : stainless steel (304-2B) [-]

T : gas temperature [°C]

V_{av} : average velocity of bulk material in hopper [m/s]

V_e : gas velocity in vortex finder (exit duct) [m/s]

V_m : average velocity of bulk material discharging from the outlet [m/s]

V_i : gas inlet velocity [m/s]

V_t : tangential velocity [m/s]

V_{tcs} : tangential velocity component in the surface CS [m/s]

z_h : depth below cylinder/hopper transition [m]

α : hopper/cyclone cone angle, measured from the vertical [°]

β_d : solids drained angle of repose [°]

δ : effective angle of internal friction [°]

ΔP : total pressure drop [Pa]

ΔP_r : total pressure drop of gas flow reversal [Pa]

ΔP_e : total pressure drop of gas exit contraction [Pa]

Δt : total interval time for the particle [sec]
\(\Delta x \quad : \quad \) the difference distance between the starting point \((x_1, y_1)\) Coordinates and the finishing point \((x_2, y_2)\) coordinate for a single particle \([m] \)

\(\varepsilon \quad : \quad \) loss factor, Table (3.1) \([-]\)

\(\eta \quad : \quad \) efficiency \([-]\)

\(\eta_{oc} \quad : \quad \) over collection efficiency \([-]\)

\(\theta \quad : \quad \) ratio of maximum tangential gas velocity, Table (3.1) \([-]\)

\(\mu \quad : \quad \) gas viscosity \([\text{kg/ms}] \)

\(\rho_g \quad : \quad \) gas density \([\text{kg/m}^3] \)

\(\rho_b \quad : \quad \) solids bulk density \([\text{kg/m}^3] \)

\(\sigma_1 \quad : \quad \) major consolidating stress \([\text{Pa}] \)

\(\overline{\sigma}_j \quad : \quad \) stress acting in equilibrium arch \([\text{Pa}] \)

\(\phi \quad : \quad \) ratio of maximum tangential gas velocity to velocity within as entry, Table (3.1) \([-]\)

\(\phi_w \quad : \quad \) wall friction angle \([^\circ] \)