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Abstract—This survey reviews motion capture technologies
and the current challenges associated with their application
in robotic systems. Various sensor systems used in current
literature are introduced and evaluated based on the relative
strengths and weaknesses. Some research problems pursued with
these sensors in robotics are reviewed and application areas
are discussed. Significant methodologies in analysing the sensor
data are discussed and evaluated based on the perceived benefits
and limitations. Finally, results from experimentation with an
inertial motion capture system are shown based on clustering
and segmentation techniques.

I. INTRODUCTION

Motion tracking is a vital component of developing in-

telligent autonomous robots. A robot agent must be able

to perceive human motion in order to interact, co-operate,

or imitate in an intelligent manner. In recent years tracking

technology has become increasingly miniaturized, and along

with computing power, more available. Measurement error

is reduced to a minimum with advanced tracking algorithms

and post-processing. Several different sensing mechanisms can

track sufficient motion leading to wide variety of uses in au-

tonomous systems. Essentially motion is recorded by tracking

the precise position and orientation of points of interest at high

frequency. Each tracker uses fundamentally different physical

principles to measure position and orientation. Mechanisms

vary from using a multiplexed reading of orthogonal magnetic

fields from inductive coils, accelerometers and gyroscopes,

intensity of ultrasonic pulses, the mechanical orientation of

joints, or a reconstruction of the position of visible markers

detected with multiple cameras. This results in systems with

varying capabilities and susceptibilities, such as occluded

trackers, constrained motion or magnetic disturbances.

For robotic and automation applications include surveillance

and human interaction, which requires a form of identity or

action recognition [39][5], teleoperation [23], robot program-

ming by demonstration [8][2] or humanoid imitation [26].

Apart from sensing motion and collecting data, research in

recent years has focused on methodologies in handling large

high dimensional data sets which arise from multiple sensors.

Ultimately the sensing leads to classification or to controlling

an external device, through the use of a range of analysis

techniques from machine learning.

The purpose of this review paper is to collate a compendium

of recent approaches to human motion tracking in the context

of robotic research in order to highlight potential advantages

of each sensing mechanism. It is important to track progress

in this area since the technology is new and changes quickly

especially for current trends in analysis methodology. This

paper describes various research and commercial tracking

technology, their implementation and significance in robotic

research and briefly describes some current analysis of large

data sets produced by these pervasive technologies.

The paper is organised as follows. Firstly, a description of

previous surveys and where this paper fits is discussed, section

II outlines the various tracking technology available grouped

by the sensing mechanism. Section III describes in further

detail the applications in robotics that have risen out of these

technologies. Section IV shows a comparison of the features

of the sensors. Section V displays experimentation with an

inertial motion capture system and section VI concludes the

paper.

A. Previous surveys

There have been few surveys of motion tracking sensors

in recent years. [40] gave a tutorial on sensing technology

range and focused on augmented reality applications. The most

comprehensive is [24] which is primarily focused on advances

in image processing for markerless motion capture rather

than considering wearable marker motion tracking. However,

significant motion capture advances were also summarised

including a number of anaylses of motion capture data. There

have been a number of other vision based surveys which

devote minimal attention to wearable sensors [15].

Other reviews make sparse references to previous work in

the robotics field. This review is intended to provide a targeted

approach and specifically summarize recent approaches of

motion tracking in robotics. Various analysis methodologies

are compared in terms of their benefits and limitations.

II. TRACKING TECHNOLOGIES

Available tracking techniques have been categorised based

upon the working principle. Although markerless motion anal-

ysis is a highly active research area, this paper focuses more

on the use of wearable sensing in a robotics context.

Each motion tracking system has advantages that are useful

depending on the application. Table I lists the major features
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of each type of sensor system and references some researchers

using the technology in robotics or automation.

A. Optical - Passive Marker

Optical detection with passive markers, or reflective indi-

cators, uses multiple fixed high speed cameras around the

measurement area to triangulate a precise marker position.

Infrared lighting allows the capture of high contrast images

of the reflective markers up to 2kHz. At least two cameras at

a time must capture a marker otherwise there are occlusion

errors. Although markers cannot be differentiated from each

other until post-processing analysis restores the correct path.

This results set of unlabeled points in a three dimensional

workspace that correspond to the kinematic structure of the

subject.

These optical systems are affected by instances of occluded

markers but successful recordings have sub-millimeter errors.

Redundant markers are often used to overcome occlusions

which reduces the probably of error but increasing the number

of markers also increases the processing latency. An advantage

for passive marker systems is that the subject is not weighed

down with battery packs or constrained by wires to sensors.

Some significant disadvantages include portability and the

measurement workspace, which is a small fixed area in view of

the cameras. The area can be increased but this is still limited

by the space in an indoor venue and strength of the reflected

light.

Fig. 1. Vicon motion capture system. Cameras in corner of room (red lights),
markers on the actors body [35]. Xsens Moven [13]. On the right is robot
imitation with inertial sensors [23]. Below right is the SARCOS robot imitate
person in mechanical motion suit and below left is a hybrid inertial and
acoustic motion suit [37].

B. Optical - Active Marker

Active optical markers act as a light source instead of a

reflector and are often deployed as infrared emitting diodes

(IREDs). The light emission from markers is multiplexed and

therefore the frequency of the camera speed is divided by

the numbers of sensors to detect. Although this introduces

a limitation on measurement frequency, less post-processing

required since individual LEDs can be identified.

Once again the capture is limited by the arrangement of

cameras and the field of view. The measurement area is

typically in the order of several square meters, and theoret-

ically higher than for passive systems because of the light

intensity diminishing with inverse square of distance. Since

the indicators are powered, for wireless recording the subject

must wear power packs and secure wires that would otherwise

impede motion.

C. Optical - Markerless

Ideally motion capture would only use one set of camera(s)

from one angle, similar to human vision, without requiring

any body markers. Although these vision-based processing

techniques are a topic of research the only accurate systems

are confined to a restricted area and background, generally

provide inaccurate estimates or require cameras from multiple

viewing angles. Due to the extensive research in vision-based

processing a more in depth survey targeting this research can

be found in [24][15].

Markerless motion capture is an ongoing research area

with massive potential. It relies upon image segmentation and

processing techniques to find a human posture which may

be matched to a human template [36]. Common approaches

employ background scene subtraction techniques to extract a

silhouette [22] and various manifold learning algorithms [12].

D. Inertial

Inertial motion capture relies on acceleration and rotational

velocity measurements from triaxial accelerometers and gyro-

scopes. Each inertial sensor positioned at strategic points on

the body measures precise orientation to within 2◦ RMS [10].

This is achieved with estimation techniques such as Kalman

filtering [31] fusing the angular rate with incline (gravity

vector) and, for some sensors, magnetometers for more reliable

heading data. Assuming certain configuration for the sensors

and calibrating the actor dimensions an accurate posture can

be resolved.

A major drawback of these sensors is estimating the position

by integrating accelerations or angular velocity, a cumulative

error arises, referred to as drift. Modern inertial motion capture

suits rely upon ground contact force detection, indicated

by sudden foot accelerations, to update reference position.

Without well defined events such as these the posture remains

accurate but tracking world position is unreliable due to

drift. Other limitations include the need for post-processing in

uncertain environments, when the ground support is varying

dramatically.

Despite inherent problems associated with this technique it

is improved in combination with other technology. [37] used

inertial sensors with ultrasonic detection for a practical outdoor

capture technique. With one optical marker the suit may be

tracked accurately within the camera workspace.

E. Magnetic

Electromagnetic fields are established through precise cur-

rent pulses in mounted transmitting antennae. Each magnetic
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field including the earth magnetic field is measured giving an

estimation of joint position, angles and global orientation. AC

electromagnetic systems are highly distorted by neighbouring

metallic objects but recent DC magnetic field systems exhibit

significantly reduced distortion.
A triaxial transmitter produces DC pulses sequentially to

each axis and the receiving antennae, mounted on significant

positions on the body, measure the magnetic field along each

axis. The earth magnetic field is measured when no pulse is

present and subtracted when measuring the orientation. This

results in 6DOF position and orientation information for each

sensor up to a range of 10 ft from the transmitter.
Advantages of this approach include the flexibility in lo-

cating the sensors on the body, there are no occlusion issues.

The measurement area is limited to a small region around the

transmitter, comparable to optical systems, and is as portable

as the transmitter. Metallic objects still cause a significant level

noise and distortion to measurements.

F. Mechanical
The simplest method of capturing pose is to measure

orientation directly using electromechanical potentiometers

measuring the orientation displacement of each joint. This

approach is effective in many cases since it is not affected by

external forces or occlusions, measurements can be fast and the

equipment portable. The main disadvantage is that motion is

usually constrained by the rigidity of the wearable equipment.

An exo-skeletal frame normally imposes restrictions on the

range of motion since human joints are more flexible than

the mechanical links. Another problem is in detecting the true

position and orientation of the entire frame. This mechanism

cannot detect events such as jumping or turning, only the rela-

tive angle between limbs. Therefore captured results appear to

slide, a problem that can be overcome by incorporating other

measurement techniques. This method is particularly strong in

exoskeletal frames and prosthetics since the joints must also

be powered.

G. Acoustic
By attaching ultrasonic transmitters and microphones at

specific locations on a moving body an estimate of position

can be determined through the intensity of acoustic pulses. The

pulses are multiplexed so that each microphone measures the

pulse intensity from each transmitter to estimate the relative

distances between all sensor points.
A complication arising from this arrangement is self-

occlusion, that is, parts of the moving body blocking a direct

path to receiving microphones. It is especially difficult with

partial occlusions since the reduced intensity should not be

related to distance. Depending on the frequencies used the

system is susceptible to background noises, temperature and

humidity in uncertain environments, and to wind when used

outdoors.

III. APPLICATIONS

Some of the major research applications of motion capture

in robotics include programming by demonstration, imitation,

tele-operation, activity or context recognition and humanoid

designs. In Table II, significant methods used in analysing the

motion data are compared.

A. Programming by Demonstration / Imitation

Robot programming by demonstration has a relatively long

history. Research into faster programming of industrial robots

has extended to imitative robotics in recent years by using

motion capture technology and machine learning. Initially

demonstrated trajectories could be followed by extracting

key points or way points for the end effector allowing a

demonstrator to show a particular path and the robot to follow

by targeting the key points [25]. This resulted in a brittle

control scheme where a robot could replicate motions but

would fail in a different context.

Further research advances from following trajectories to

learning and generalisation of motor manipulation skills, to

imitate humans in a flexible manner. Motion is still often

assumed to be composed of an arrangement of more primitive

components, or motion primitives. A range of stochastic

models and sequencing algorithms are typically used to learn

motion primitive and generate suitable trajectories.

A common stochastic model for analysing human motion

is the Hidden Markov Model (HMM) [18]. A number of

HMM states were trained on motion capture sequences such

that each state embodied a posture for the robot. States were

compared in a ‘proto-symbol’ space and merged based on their

relative Kullback-Leibler distances. [21] expanded upon this

framework by incrementally updating the model and creating a

hierarchy of HMM sequences using Factorial HMM (FHMM).

Another method is to transform high dimensional data

into a low dimensional manifold using analyses such as

Principal Component Analysis (PCA) or non-linear methods

such as Isomap and Gaussian Process Latent Variable Model

(GPLVM) which have shown higher performance in capturing

relevant data structure. Non-linear dimension reduction tech-

niques as used by [38] embed the data onto meaningful planes

of motion style and content with relatively small data sets.

Their methods based on GPLVM could sample from regions

of the latent space where there were no observed data. This

algorithm has also been implemented in humanoid imitation

[33] by projecting data from the latent space on the robots

reduced DOF.

[8] used an arrangement of inertial motion trackers on the

upper body to capture arm and torso motion. Over many

demonstrations the data was compressed by a PCA pre-

processing step and clustered similar postures into a GMM

of a size determined using the Bayesian Information Criterion

(BIC). Generalized trajectories could be restored and repro-

duced in a humanoid in different contexts by using Gaussian

Mixture Regression (GMR) between the appropriate sequence

of states.

There has been full body humanoid imitation [30] captured

human motions with an optical passive marker system and

translated the angles into a frame to replay motion. [26] used

human motion capture of a traditional dance to control a
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TABLE I
FEATURES OF EACH TECHNIQUE.

Method Advantages Disadvantages References

Optical - · Precision < 1mm · Position only [11][33][18]
Passive · Wireless · Limited measurement space [21][12]

· Less burden · Occlusions
· · Post-processing latency

Optical - · Precision < 1mm · Position only
Active · Wireless · Limited measurement space

· Higher range than passive · Occlusions
· Post-processing latency
· Fs divided among sensors
· Burdened by wires on body

Optical - · Wireless-Outdoor · High noise [3]
Markerless · Flexible · Occlusions

· No sensor burden · High post-processing cost
· Contextual information · Generally not real-time

· High sensitivity to lighting
Inertial · Accelerations · No reference position [8][13][23]

· Precision < a degree · Post-processing - external contacts [37][39]
· Wireless - outdoor · Noise
· Fast calibration · Magnetic disturbances
· Portable

Mechanical · Portable · Restrictive movement [17]
· Wireless-outdoor · No reference position
· Robust, reliable · Relative orientation only

Magnetic · Portable · Limited range [28]
· Wireless-outdoor · No reference position
· Flexible sensor arrangement · Magnetic disturbances

Acoustic · Portable · Partial occlusions [37]
· Wireless-outdoor · No reference position
· Flexible sensor arrangement · Environmental conditions

complete humanoid, while [27] transferred modified human

motion capture data into humanoid simulations.

[7] and [1] provide a good reviews of robotic imitation

approaches.

Direct real-time mapping of human motion to robots has

many applications in teleoperation tasks. Miller [23] used a set

of inertial sensors to control the robot arm of NASA Robonaut.

Only 3 sensors were used for untethered control.

B. Activity Recognition

Understanding observations is an important aspect of au-

tonomous systems and a significant amount of research in

recent years has been devoted to identifying people and

classifying their actions, as evident in surveys [24]. The action

recognition problem has been pursued by researchers from

many disciplines due to significant potential applications but

research especially with video sequences is still in its infancy

[22].

[39] uses a few inertial sensors and microphones placed

on one arm to identify activities within a greater task. This

is for the purposes of assistant computing which recognises,

given the context of the measurements, what task is being

performed. It can therefore provide relevant information, for

instance, an assembly manual in a manufacturing or workshop

environment as used in the paper. [41] used similar approaches

in automotive repair environment.

Behaviour segmentation is also a recurring theme in com-

puter animation research. [5] mined motifs in large motion

capture databases by clustering posture using k-means to

create structured graphs which can blend fluid animations.

Segmentation techniques were also evaluated by [4] for au-

tomating motion capture editing, the most successful approach

involved Probabilistic PCA (PPCA) and Mahalonobis distance

thresholding to segment plausible actions.

C. Humanoid Design

Motion capture measurements are an important resource for

humanoid interactions and learning. Observations of human

actions are a major influence in humanoid robot designs. This

ranges from informing stable bipedal designs, energy conser-

vation of actions to learning control actions in stabilization.

Motion capture has led to translating human gaits into

humanoid motion by adapting the trajectory guided by the

ZMP constraint [11] or by compensating for the angular

velocity of the pelvis to stabilise the frame [27].

Other research in constructing stable, efficient robotic

frames have been influenced by biomechanics research which

in turn uses motion capture. [9] constructed mechanical biped

frames that could walk passively down a small incline. This

demonstration led to increased study of the mechanical design

of walking bipeds [16] including conclusions from biomechan-

ics.

IV. EXPERIMENTAL RESULTS WITH MOTION CAPTURE

At the University of Wollongong we have experimented

with an inertial motion capture system from Xsens Technolo-
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TABLE II
BENEFITS AND LIMITATIONS OF EACH METHODOLOGY.

Methodology Benefit Limitations References

Key framing - · Simplicity · No model of process [25]
· Low memory consumption · Cannot sample unobserved space

Clustering - · Probabilistic model · Model density uncertain in high [8][13]
GMM · Incremental model dimension thereby difficult to train

· Fewer parameters · Explicit dynamics
· Symbolic

Clustering - · Probabilistic model · Poor trajectory generation [18][21][39]
HMM · Implicit dynamics · Model density uncertain

· Incremental model · High parameter count
· Symbolic

Clustering - · Simple Euclidean separation · No model of process [5]
K-means · Fast processing · Not probabilistic i.e. cannot sample

· Low memory consumption
PCA · Fast processing · Reliant on variance [8]

· Simple to implement · Linear mapping to latent variables
· Used as pre-process

Non-linear · Non-linear mapping · Difficult to compare latent model [19][33][38]
dimension reduction · Probabilistic model · Computation cost

(Isomap, GPLVM etc.) · Generalize with minimal data · Interpreting mapping
Connectionist · Biological premise · Require large data sets

· Prediction performance · Model

gies in action recognition for applications such as surveil-

lance, computer interaction or humanoid control planning.

The approach involves clustering the posture into a GMM to

determine a model of key states, a further segmentation using a

variety of techniques is geared towards separating recognisably

different behaviours. With this technique a layered hierarchy is

formed which separates behaviours and their subcomponents

as illustrated in Figure 2. In this framework predictions of

observed actions can be made based on subcomponents to

predict the observed activity and could be translated to robot

frames where further learning and control would deal with

separate dynamics.

In [14] it was shown that removing less abundant clusters

from the GMM hinder identification of the activity and is

detrimental to a stable center of mass trajectory in possible

robot motions. In [13] recognisable behaviour was segmented

with a range of techniques and compared to subjective segmen-

tations. A close relationship was shown between the algorithm

segmentation and human judgement. These techniques may

work towards recognising particular activities, discovering

anomalous behaviour or assisting humanoid imitation plan-

ning.

V. CONCLUSION

Recent applications of motion tracking technology in

robotics have been presented. The various advantages and

disadvantages of each sensor mechanism are compared re-

vealing inherent limitations of the technology. Every sensor

has drawbacks but some combined sensor applications appear

to overcome these problems to some extent. The relevance of

motion capture for robotics was discussed and some current

techniques in data analysis were outlined to illustrate the

difficulty in handling this data rich sensor technology. The

trend in methodology is towards stochastic machine learning

techniques such as HMM or GMM and non-linear dimension

Fig. 2. Gaussian mixture states (blue) in a FSM and the segmented behaviours
(red) connected to their key states. Illustrated states are highlighted green.

reduction. The resulting empirical models tend to handle

uncertainty well and are suitable for incrementally updating

models. Finally, some recent experimental work using an

inertial motion capture system is outlined along with the

methodology employed to analyse the data.

Markerless motion capture is undeniably important for fu-

ture robotics and automation research, however robot learning

even with accurate motion capture is limited. Among the

challenges in human-robot interaction today include expanding

upon generalising motions to understanding motion planning

and decisions and building ultimately context aware systems.

The technology outlined in this survey provides sufficient data

to approach the problem. Methodologies in handling the data

are generally limited in their scope and application.
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