An implementation of multiplayer online game with distributed server architecture

Dingliang Liang
University of Wollongong

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
An Implementation of Multiplayer Online Game with Distributed Server Architecture

A thesis submitted in fulfillment of the requirement of the award of the degree

Master of Information and Communication Technology – Research

From

University of Wollongong

by

DINGLIANG LIANG
B.E. Huazhong University of Science and Technology
Master of Internet Technology, University of Wollongong

School of Information Technology
and Computer Science
2006
Abstract

The distribution of game servers has received serious attention in recent years. A multi-server structure may distribute the load of the server, as well as improve the fairness of games played over large geographical distances without sacrificing delay. However, while distributing the game authority, the system takes risk of game state inconsistency between servers. Mechanisms are presented to provide synchronization between servers. However, user response to these mechanisms for maintaining server consistency in different game types is largely unknown.

This thesis aims to study the user responses to two of the important synchronization techniques, Local Lag and Timewarp, within a real network game. To do this we developed a platform based on a common First Person Shooter (FPS) game called Quake III Arena. The platform is able to simulate various distributed server systems. With the platform we examines the impacts of using local lag/timewarp upon computer-controlled players (bots) performance in distributed network game. According to our experimental results it is probable to gain the optimal point of bots performance with constant network lag while using Local Lag and Timewarp together.

To discuss the probable difference between human players and bots, and to examine the practicability of using the bot system to simulate human players’ behaviors, we perform experiments with the participation of human players, and compare the results between bots/human players performance while under the same network conditions. The two groups of results shows significant similarities.

Finally, in order to analyze and arrange the synchronization of distributed system more efficiently, we present Virtual Server Shifting Theory. We first demonstrate the
practicability of applying this theory within the distributed server system based on the mirrored server system, and then generalize the conclusions to more complex distributed server network topologies.
Statement of Originality

This is to certify that the work described in this thesis is entirely my own, except where due reference is make in the text.

No work in this thesis has been submitted for a degree to any other university or institution.

Signed

Dingliang Liang

15 September, 2006
I wish to express my deepest appreciation to all the people that have contributed to the completion of this thesis.

First of all, I would like to express my genuine gratitude to my supervisor Dr Paul Boustead, for his invaluable guidance and encouragement in the research and preparation of this thesis. Without his patience, this work would not been possible.

I sincerely thank Mr. Jeremy Brun, Mr. Xinbo Jiang, Mr. Yaozhou Ma, and Mr. Ying Peng Que, for sharing their wonderful knowledge and experience in the areas of distributed system and network game. They gave me patient and valuable direction throughout the experiment process.

I would like to thank the colleagues in TITR for many informative discussions. In particularly, my special thanks go to Mr. Xingyuan Xu for his useful advices on preparing the thesis.

I am also indebted to all my best friends for their friendship and support.

Finally, I would like to thank my parents for their endless love, which encourages me to overcome all problems.
Contents

List of Figures ... x

List of Abbreviations.. xiv

Chapter 1 Introduction ... 1

1.1 Background ... 1

1.2 Overview .. 1

1.3 Contributions... 2

1.4 Publications based on Thesis .. 3

Chapter 2 Literature Review ... 4

2.1 Introduction ... 4

2.2 The Comparison of Client-server, Peer-to-peer and Distributed Server Architectures .. 5

2.3 The Inherent Disadvantages of Distributed Server Architecture ... 8

2.4 Synchronization Techniques .. 10

2.4.1 The Bucket Synchronization Mechanism ... 10

2.4.2 Dead Reckoning ... 11

2.4.3 Local Lag and Timewarp .. 14
Contents

3.6.2 Timewarp ..35

3.7 Conclusion ...38

Chapter 4 Local Lag and Timewarp in Real Network Game: Experiment Results39

4.1 Introduction ...39

4.2 Experiment Scenarios ...39

4.3 The Effect of Local Lag in Distributed Network Game.................................40

4.3.1 Experiment Results with Basic Network Conditions.............................40

4.3.2 Introduce Network Lag into Experiments to Simulate Real Network Condition...42

4.4 The Combination of Local Lag and Timewarp...45

4.4.1 The Relationship Between Local Lag and Timewarp Frequency45

4.4.2 The Relationship Between Bot Performance and Timewarp Frequency47

4.5 User Study ...50

4.6 Conclusion ...52

Chapter 5 Further Investigation of Using Local Lag in Distributed Server Network Game: Virtual Server Shifting..54

5.1 Introduction ...54

5.2 Introduce Virtual Server Shifting into distributed server system.................55

5.3 Virtual Server Shifting: The Equivalent between Mirrored Server System and
Contents

Centralized Client-Server System .. 57

5.3.1 Theoretical Analysis of Virtual Server Shifting based on Mirrored Server Architecture .. 57

5.3.2 Experiment Results Analysis ... 62

5.4 Virtual Server Shifting: Consistency within Complex Topology Server Network ... 63

5.4.1 Theoretic Analysis and Deductions: the distributed server system with three servers .. 63

5.4.1.1 Case Study: NL_{12} + NL_{13} <= NL_{23} .. 64

5.4.1.2 Case Study: NL_{12} + NL_{13} < NL_{23}; NL_{12} + NL_{23} < NL_{13}; NL_{13} + NL_{23} < NL_{12} ... 66

5.4.2 Theoretic Analysis and Deductions: the distributed server system with more servers ... 71

5.4.3 Experiment Results Analysis ... 72

5.5 Conclusion ... 79

Chapter 6 Conclusion .. 81

6.1 Overview ... 81

6.2 Summary of Contributions and Findings ... 81

6.3 Future Work .. 82

Reference .. 84
Contents

Appendix I ...88

Appendix II ...95
List of Figures

Figure 2.1 Different Architectures

Figure 2.2 ‘Schrodinger’s cat’ Scenario (Brun et al., 2005)

Figure 2.3 MiMaze communication architecture (Diot et al., 1999)

Figure 2.4 The bucket synchronization mechanism (Diot et al., 1999)

Figure 2.5 Deviation for racing-car game (for 200ms latency). Top: Prediction scheme with constant velocity; Bottom: Prediction scheme with constant acceleration. (Pantel et al., 2002)

Figure 2.6 Local Lag (Mauve et al. 2002)

Figure 2.7 The Playability Space (Brun et al., 2006)

Figure 2.8 Time Diagram: Tuning the Local Lag (Brun et al., 2005)

Figure 3.1 General Game Flow Chart

Figure 3.2 Quake III Arena main loop

Figure 3.3 Simplified Main Loop

Figure 3.4 The Modified Quake III Arena Platform (Servers)

Figure 3.5 A General Server Network

Figure 3.6 Generate Local Lag and Network Lag
List of Figures

Figure 3.7 Timewarp Mechanism..36

Figure 3.8 A Rollback Example ..37

Figure 4.1 Mirrored game server architecture..40

Figure 4.2 Record: Network Lag = 0ms, Local Lag = 100ms ...41

Figure 4.3 Bots Performance (score rate) and Confidence Intervals as a Function of Local Lag with Zero Network Lag...42

Figure 4.4 The CDF of bot score per 10 minutes values while Network Lag = 0 ms and Network Lag = 100 ms...43

Figure 4.5 Bots Performance (score rate) and Confidence Intervals as a Function of Local Lag with Network Lag = Local Lag ...44

Figure 4.6 The Comparison between two groups of results...44

Figure 4.7 Details of Timewarp Frequency (also Paradox Frequency) with 0ms / 100ms / 200ms Local Lag..46

Figure 4.8 Timewarp Frequency as a Function of Local Lag while network lag = 200ms ...47

Figure 4.9 Bot performance with timewarp running ...48

Figure 4.10 The Comparison of Timewarp Frequency and Bot Performance49

Figure 4.11 Normalized Score Rate As a Function of Normalized Timewarp Frequency..........................50

Figure 4.12 The Human Players Performance With Different Local Lag Values51
List of Figures

Figure 4.13 The Human Players Performance With Timewarp Enabled52

Figure 5.1 The Communication Flow of the Symmetric Mirrored Server Architecture ..58

Figure 5.2 The Communication Flow of The Equivalent Client-Server Architecture ..59

Figure 5.3 The Communication Flow of the Unsymmetrical Mirrored Server Architecture ..60

Figure 5.4 The Communication Flow of The Corresponding Unsymmetrical Client-Server Architecture ..61

Figure 5.5 The Comparison of Bots Performance in Simulation 1 and 262

Figure 5.6 Case A: NL_{12} + NL_{13} = NL_{23} ..65

Figure 5.7 The Equivalent Distributed Architecture ..66

Figure 5.8 The Network Lag Triangle ...66

Figure 5.9 Solve the Problem with Geometric Method: The most efficient Solution ..68

Figure 5.10 Solve the Problem with Geometric Method: The fairest Solution69

Figure 5.11 Solve the Problem with Geometric Method: The fairest Solution (II). 70

Figure 5.12 Solve the Problem with Geometric Method: Make The Trade-off Between Two Extremities ..71

Figure 5.13 Models Used in Simulations ..73
List of Figures

Figure 5.14 Model (a) and Model (b) Comparison: Network Lag = Local Lag, Equilateral Triangle Network Topology...74

Figure 5.15 The Comparison Between Two Architectures: The Most Efficient Case ..75

Figure 5.16 The Comparison Between Two Architectures: The Fairest Case........76

Figure 5.17 The Comparison Between Two Architectures: A Trade-off..............78
List of Figures

List of Abbreviations

bot Computer-controlled Player
DR Dead Reckoning
DVE Distributed Virtual Environment
FPS First Person Shooter
fps frame per second
LAN Local Area Network
MMORPG Massive Multiplayer Online Role Playing Game
MOG Multiplayer Online Game
TSS Trailing State Synchronization