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A MAXIMUM LIKELIHOOD WATERMARK DECODING SCHEME

Wenming Lu, Wanqing Li, Rei Safavi-Naini, Philip Ogunbona

University of Wollongong, Australia

ABSTRACT
Based on the observation that an attack applied on a watermarked
image, from a decoding point of view, modifies the distribution of
the detection values away from the ideal distribution (without at-
tack) for corresponding watermarking scheme, we propose a generic
maximum likelihood decoding scheme by approximating the distri-
bution with a finite Gaussian mixture model. The parameters of the
model are estimated using expectation-maximization algorithm. The
scheme allows the decoding to be automatically adapted to attacks
that the watermarked images have undergone and, in consequence,
to improve the decoding accuracy. Experiments on a QIM based wa-
termarking system have clearly verified the significant improvement
of the decoding accuracy achieved by the proposed maximum likeli-
hood decoding in comparison to conventional threshold decoding.

1. INTRODUCTION

A typical image watermarking system consists of three major steps:
1) embedding a message into a host image; 2) the watermarked im-
age undergoing an attack; 3) decoding the message from the attacked
image. Research in the past has mainly focused on devising new or
optimizing existing embedding schemes to achieve the desired em-
bedding capacity and/or robustness against a set of attacks, such as
additive noise, image processing and compression [1, 2, 3]. Charac-
teristics of the attacks are sometimes taken into consideration in de-
signing the embedding schemes. For instance, Local Average QIM
(LAQIM) [3, 2] was designed to be robust against zero-mean ad-
ditive noises and JPEG compression. However, decoding schemes
are usually assumed to be simple and tightly bound to embedding
schemes. Optimization of decoding against attacks has been virtu-
ally ignored [4]. This paper proposes a generic maximum likelihood
(ML) approach, which automatically adapts to attacks through an
unsupervised estimation of the way that the attacks modify the wa-
termarked images, and is applicable to a variety of watermarking
systems with little modifications.

Considering a scenario where a binary message, me, is to be em-
bedded into an image. The image is first divided into blocks, and
each block is then encoded with one bit of me using a chosen em-
bedding algorithm. The watermarked image may undergo a number
of attacks before it is communicated to the decoder where me is to be
recovered. At the decoder, the detection algorithm associated with
the embedding algorithm is employed to each block independently.
It calculates a detection value from each block, compares it with a
threshold and decides the embedded bit, 0 or 1, accordingly. The
detection value may be a correlation coefficient or linear correlation
in the spread spectrum system [1], or the distances to the closest bit
0 and 1 centroid in QIM. We refer this type of decoding as threshold
decoding.

From decoding point of view, any attack to a watermarked im-
age tends to change the detection values away from the ideal val-
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Fig. 1. Distributions of ideal detection values without attacks and detec-
tion values after JPEG 70% and Gaussian noise N(2,2) attacked lena. The
embedding scheme is LAQIM with quantization step Δ=10

ues and, therefore, modifies the distribution of the detection values.
Ideal detection values are the detection values without any attack.
Threshold decoding is to essentially compare the calculated detec-
tion values with the ideal values for bit 0 and 1. If an attack modifies
the detection values in such a way that they form a symmetric dis-
tribution around the ideal detection value, threshold decoding shall
continue to perform well to certain extent. However, attacks some-
times change the detection values in a non-symmetric manner. In this
case, estimation of the statistical distribution of the detection values
not only can improve the decoding, but may also reveal the types of
attacks. Fig.1 shows the distributions of the detection values of all
embedding blocks after the attack of JPEG70% or additive Gaussian
N(2, 2), where the embedding scheme is LAQIM with Δ = 10.
The ideal detection values is concentrated at 0 for bit 0, −5 and +5
for bit 1. The curves show that JPEG tends to modify the detection
values in a symmetric manner whereas N(2, 2) does not.

In this paper, we propose to model the distribution of the detec-
tion values with finite gaussian mixture model (FGMM) and to au-
tomatically estimate the related parameters using the Expectation-
Maximization (EM) algorithm. A maximum likelihood (ML) de-
coding scheme is formulated using the estimated distribution. The
FGMM does not assume any knowledge of the attacks that the wa-
termarked image has undertaken and the EM algorithm tries to adapt
FGMM to the unknown attacks.

The paper is organized as follows. Section 2 presents a generic
ML decoding framework given the probability density function (pdf)
of the detection values. Section 3 describes the Gaussian mixture
modeling of the distribution and the estimation of its parameters us-
ing EM. In Section 4, experimental results of applying the proposed
ML on LAQIM are presented. Section 5 concludes the paper with
remarks and future work.

2. ML DECODING

Without losing generality, we consider embedding an n-bit message
me in the spatial domain of an image I . I is partitioned into n em-

12471-4244-1017-7/07/$25.00 ©2007 IEEE ICME 2007



bedding blocks. A watermarking algorithm, Γ, is chosen to embed
me into I , one bit per block. In decoding, the corresponding detec-
tion algorithm, Γ−1, calculates a detection value from each block of
the watermarked image that may have been subjected to attacks. The
detection values from all blocks form a d-map. Let D be a random
variable and each detection value d is considered as an observation
of the random variable D. The random process of D is governed by
the attacks that the watermarked image has undergone. Let p(D) be
the probability density function (pdf) of D. If the respective propor-
tions of the bit 0 and bit 1 in the message me are α0 and α1, where
α0 + α1 = 1, then p(D) can be written as

p(D) = α0p0(D) + α1p1(D), (1)

where p0(D) and p1(D) are the respective pdfs of the detection val-
ues produced from blocks that are actually embedded bit 0 and 1.

Given a detection value, d, ML estimates a bit b ∈ {0, 1} such
that

b = arg max
b∈{0,1}

αbpb(d), (2)

where αbpb(d) is the likelihood of the originally embedded bit to be
bit b given the detection value d.

Obviously, the proposed ML decoding relies on the estimation of
αbpb(d), b = 0, 1. In the following section, we propose to model
p(D) using finite Gaussian mixture and estimate the underlying pa-
rameters using EM. The αbpb(d), b = 0, 1 is obtained by heuris-
tically partitioning the Gaussian densities that fit to p(D) into two
groups, one for p0(D) and another for p1(D), respectively.

3. FGMM AND PARAMETER ESTIMATION OF P (D)

We assume that p(D) can be approximated by a finite Gaussian mix-
ture model (FGMM) with k components [5], i.e.

p(D|Ψ) =
k∑

i=1

aifi(D|μi, σi), (3)

where ai is the mixture weight for the i′th component,
∑k

i=1 ai =
1; fi(·) is a Gaussian function with mean μi and variance σi. Ψ
denotes the parameter set {ai, μi, σi, i = 1, 2, . . . , k}.

Now the problem becomes how to estimate the parameter set Ψ
such that p(D|Ψ) best fits the given d-map, d, that consists of n
detection values. Let L(Ψ) be the total log-likelihood [5] of the n
detection values fitting to p(D|Ψ), i.e.

L(Ψ) = ln
n∏

i=1

p(di|Ψ) = lnP (d|Ψ), (4)

where
∏n

i=1 p(di|Ψ) = P (d|Ψ). Given a Ψ, L(Ψ) measures the
goodness of fit of p(D|Ψ) to the observed d-map. Hence, maxi-
mization of L(Ψ) with respect to Ψ, for a given d-map d, yields
the maximum likelihood estimation (MLE) of Ψ, i.e., the best fit-
ted p(D|Ψ). The problem of estimating p(D) is then to produce a
parameter set Ψ{ai, μi, σi, i = 1, 2, . . . , k} that maximizes L(Ψ).

EM is an iterative algorithm that is popularly adopted to maximize
the likelihood function L(Ψ) [5]. Assume at the q iteration, there is
a parameter set Ψq . The objective is to find a new parameter set Ψ
that satisfies L(Ψ)>L(Ψq). This goal is equivalent to maximizing
the difference between

L(Ψ)− L(Ψq) = lnP (d|Ψ)− lnP (d|Ψq). (5)

A hidden variable is introduced purely as an artifice for making MLE
of Ψ tractable with the assumed knowledge of the hidden variable.
Denote the hidden random vector as Z and a given realization as z,
the updated value Ψq+1 can formally be updated as

Ψq+1 =argmaxΨ{Ez|d,Ψq{lnP (d,z|Ψ)}},

and clearly, the EM algorithm consists of two iterating steps:

(i) E-step: determining the expectation Ez|d,Ψq{lnP (d,z|Ψ)};
(ii) M-step: maximizing the expression with respect to Ψ.

For Gaussian function fi(·), the concrete updating rules of the
weights, the mean values and the variances are,

aq+1
i =

1

n

n∑
j=1

f(i|dj ,Ψ
q)

μq+1
i =

∑n
j=1 djf(i|dj ,Ψ

q)∑n
j=1 f(i|dj ,Ψq)

σq+1
i =

∑n
j=1(dj − μq+1

i )2f(i|dj ,Ψ
q)∑n

j=1 f(i|dj ,Ψq)

(6)

in which f(i|dj ,Ψ
q)=

fi(dj ,Ψq)∑k
l=1 fl(dj ,Ψq)

. The updating rules actually

include both E-step and M-step in each iteration and the algorithm
keeps iterating until convergence, i.e., L(Ψ) reaching the maxima.

3.1. Determining the number of components k

The iteration equations in ( 6) give the best estimation of the param-
eter set Ψ of FGMM with k components. However, the fitness of
p(D) to the given d-map also depends on the number of components
k in FGMM. Determining the best k for the given d-map is a classi-
cal problem with many existing solutions including likelihood ratio
(LR) test, Akikie’s Information Criterion (AIC) and Minimum De-
scription Length (MDL). A good review and comparative study of
this problem can be found in [6]. In this paper, we adopt the LR ap-
proach. Let Lk(Ψ) be the total log-likelihood of fitting k component
FGMM into the d-map using EM. We choose k such that

k = arg max
ks≤k≤ke

Lk(Ψ) (7)

where [ks, ke] is a range of possible values of k that is sufficient to
capture the characteristic of various attacks. Our experiments have
shown that k usually ranges from 2 to 8 components for attacks.

3.2. Determining αbpb(D)

Given an estimated k-component p(D|Ψ) that best fits the d-map,
we need to separate k components into two groups: one represents
the distribution of the detection values with originally embedded bit
0 and the other represents the distribution of the detection values
with embedded bit 1, i.e., determining αbpb(D), b = 0, 1 for the
ML decoding.

The fact that the ideal detection values for bit 0 and 1 are often
distinguished themselves well from each other leads to a number of
heuristical methods for determining the αbpb(D), b = 0, 1. Let λ0

and λ1 be the ideal detection values for bit 0 and 1, respectively.
The simplest method is to sort k components in an ascending order
by mean values and group the Gaussians into two groups with equal
number of Gaussians. It is easy to determine which group should

1248
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Fig. 2. Deciding k: the actual distribution is compared against assuming
k=2, 4 and 6 from left to right against N (2,2) (Top) and Uniform[-4,6]
(Bottom); in term of MLE, k=4 is the best fit and DER is also at the best
1.6% for N (2,2); also for Uniform[-4,6], k=4 is the best fit and DER is also
optimal of 10.5%
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Fig. 3. estimated p0(d) and p1(d) after the partition against the actual
frequency distribution of bit 0 and 1 components under N (2,2) (left) 2 figs,
and under Uniform[-4,6] (right) 2 figs; for both estimation, k=4

be pb(D), b = 0, 1 based on the relationship between λ0 and λ1. If
λ0 ≤ λ1, then the group with lower means belongs to p0(D). This
method may not work well when the attack tends to influence the
detection values from blocks encoded with bit 0 or 1 in a different
way, or the bits in me is heavily biased to 0 or 1.

The second method is to cluster the k Gaussians into two groups.
The Gaussians with means closer to λ0 are said to belong to p0(D)
and those with means closer to λ1 form p1(D). That is

{ |μi − λ0| < |μi − λ1| : fi(·) =⇒ p0(d)
|μi − λ0| ≥ |μi − λ1| : fi(·) =⇒ p1(d).

(8)

Then α0 and α1 can be estimated as,

{
α0 =

∑
u au, ∀u, fu(d) ∈ p0(d)

α1 =
∑

v av, ∀v, fv(d) ∈ p1(d).
(9)

where u+v = k. As in the first method, this simple clustering-based
method assumes that the attacks modify the detection values moder-
ately such that the relationship, between the detection values for both
bit 0 and 1 and the ideal detection values, remains unchanged after
attacks. If the attacks are strong enough to reverse the relationship,
then the estimated p0(D) is actually for bit 1 and p1(D) for bit 0.
The decoding bits will then be flipped.

To avoid bit flipping in the presence of strong attacks, additional
information may be needed so that pb(D), b = 0, 1 can be properly
obtained from the estimated p(D). Assume the proportions of the bit
0 and bit 1 in me are known, then the grouping of the Gaussians has
to meet the constraint that the estimated α0 matches the proportion
of bit 0 contained in the message and the estimated α1 matches that
of bit 1 of the message. In this case, a search method of estimating
parameters may be developed. It is feasible to employ Brute-Force
search since k is usually small.

Fig. 4. (Top) under Gaussian from left to right: N(2,2), TD-31.76%, ML-
1.6%; N(2,3), TD-68%, ML-98% (bits are flipped under the attack; however,
the quality of the logo is tremendously enhanced), TD-threshold decoding;
(Bottom) two logos decoded from lena under joint attacks by JPEG70%
and N(2,2) from left to right, TD-38.77% and ML-19.25%; TD-38.67%
and ML-20.95%

4. EXPERIMENTAL RESULTS

In the section, we present results of applying the proposed ML de-
coding scheme to recover the binary logos that are embedded into
grey-scale images using LAQIM [2]. We not only compare the ML
decoding with conventional threshold decoding in terms of decoding
accuracy, but also demonstrate how well the estimated p(D) fits the
real distribution of the detection values.

4.1. The LAQIM system and attacks

In LAQIM, an image is divided into n square blocks of size B×B to
embed an n bit message me. Each bit is embedded into the average
pixel intensity of a block using QIM [3]. In decoding, the distances
between the average pixel intensity of the attacked block and the
closest bit 0 and 1 centroid, d0 and d1, are calculated respectively.
Conventional minimum distance decoding is,

{
d0 ≥ d1 =⇒ bit 1
d0 < d1 =⇒ bit 0.

(10)

Since LAQIM is a one-dimension QIM, d0 and d1 are correlated,
d0+d1=Δ/2, where Δ is the quantization step used for embedding.
We define the detection value d as, d = d0, if the average pixel
intensity is bigger than (right to) the closest bit 0 centroid, and d =
−d0 otherwise. The following threshold decoding is then equivalent
to the minimum distance decoding,

{
d ∈ [−Δ/2,−Δ/4), (Δ/4,Δ/2] =⇒ bit 1
d ∈ [−Δ/4,Δ/4] =⇒ bit 0.

(11)

Additive Gaussian noises, N(μ, σ) with the mean μ and standard
deviation σ, and uniform noises, [l, u], where l and u represent the
range of the noise level, are used to simulate attacks.

4.2. Experimental parameters

In our experiments, we set B = 2 andΔ = 10. The PSNRs between
the original and the watermarked images are around 38.8db. The
chosen attacks include Gaussian noises: N (1,2), N (2,2) and N (3,2),
and uniform noises: [-4,6], [-3,7], [-2,8] and [-1,9].
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The decoding error rate (DER) is used to quantitatively compare
the decoding performance, DER= lerr

n
, where lerr is the number of

the error bits in the decoded message. Noticed that when DER >
50%, we could consider that the decoded message is bit-wise flipped
and the original message can be recovered by simply XOR each bit
with 1. In the case that the embedded message is a binary logo,
the effective decoding error rate is 1 − DER. In other words, the
worst decoding performance is DER = 50% as bits are completely
randomized.

Thirty 512×512 8-bit gray-scale images that represent a wide
range of different types of images are carefully selected as the test
images. Five 256×256 binary logos are selected as the embedding
messages. It has to be pointed out that the proposed ML decoding
also works for random messages. We use binary logos for the sake
of easy visual justification of the decoding results.

In threshold decoding, the threshold values are set at −Δ/4=-2.5
and Δ/4=2.5. The bit 0 is decoded for the detection value within
[-2.5,2.5] or bit 1 otherwise.

In the estimation of p(D), the possible values for k are set to
be 2, 4, 6 and 8. For each k, the EM algorithm is employed to
find the best fitted parameters, Ψ. The EM algorithm is initialized
with equal weights. All mean values and variances are randomly
initialized to the values around the mean and variance of the given
d-map, but guaranteed to be different with random perturbation. The
EM estimation stops when the increment of L(Ψ) in two consecutive
iterations is less than 0.001. The p(D) that gives the maximum total
log-likelihood, L(Ψ), is chosen as the final approximation.

4.3. Results

The experiments on lena, pepper, f16, mandrill and boat using
all attacks demonstrate that DER is minimum when Lk(Ψ) reaches
the maxima. This verifies that our proposed method for estimating
p(D) and pb(D)works effectively. For example, L(Ψ) are -139150,
-138554, -139231 and -139308 against N (2,2) on lena for k being
2, 4,6 and 8, respectively; the corresponding DERs are 2.2%, 1.6%,
4.8% and 4.8%. Clearly, L(Ψ) is maximized when k=4 and also
DER reaches the best of 1.6%. Under the attack of uniform[-4,6],
L(Ψ) are -159150, -151122, -1521391 and -152541 for k being
2, 4, 6 and 8, separately; the DERs are 18.8%, 10.5%, 14.7% and
14.7%, respectively. DER is again optimal at k=4 by which L(Ψ)
is also maximized. Fig.2 illustrates the estimated distributions with
k = 2, 4, 6 and the actual distribution of d after Gaussian noise at-
tack N (2,2) and uniform[-4,6]. Fig.3 shows the estimated p0(d) and
p1(d) using the clustering-based partition versus the ground truth.

Table 1 and 2 highlight the decoding results averaged on 30 im-
ages against the additive Gaussian and uniform noise attacks. The
results show that ML outperforms threshold decoding significantly.
Fig.2 shows a few decoded logos from the host image lena. Fig.3
also demonstrates two logos under joint attack of JPEG 70% and
Gaussian noise N(2, 2) in which ML decoding provides substan-
tially better decoding than the threshold decoding.

Note that under attacks of N (3,2) and uniform[-2,8], DER is close
to 100% and most bits in the decoded logo are flipped. This is due to
the clustering-based method allocating the components to the oppo-
site pdfs, p0(d) and p1(d). However, the visual quality of the logo
remains greatly improved. To avoid bit flipping, the partition method
of determining pb(D), b = 0, 1, needs further optimization with or
without the prior knowledge on α0 and α1.

Gaussian attack Threshold ML

N(1, 2) 7.6% 3.1%

N(2, 2) 31.8% 1.6%

N(3, 2) 68.5%(31.5%) 97.4%(2.6%)

Table 1. DER under Gaussian; effective DER in bracket as flipping happens

Uniform attack Threshold ML

[−4, 6] 16.8% 10.5%

[−3, 7] 37.4% 9.9%

[−2, 8] 63%(37%) 89.1%(10.9%)

[−1, 9] 83.3%(16.7%) 91%(9%)

Table 2. DER under uniform; effective DER in bracket as flipping happens

5. CONCLUSION

In this paper, we proposed a generic ML image watermarking de-
coding scheme by approximating the distribution of detection values
with a finite Gaussian mixture model and estimating the parameters
of the model using the EM algorithm. The scheme is able to adapt it-
self to attacks and produce accurate decoding. Experimental results
on LAQIM have clearly demonstrated the significant improvement
of the decoding accuracy compared to conventional threshold de-
coding. More experiments on image processing-based attacks are
being conducted and will be reported in the near future.

It is obvious that the grouping of Gaussians into pb(D), b = 0, 1
is an important step in our proposed ML decoding method. The clus-
tering approach is usually enough for moderate attacks and small k.
Also in the paper, the components are fixed at Gaussian. The re-
search of using large k for complicated attacks, and other distribu-
tion functions as the components, will be explored and addressed in
the future work.
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