Old Dye, New Tricks – Diversity-Oriented Synthesis of Heterocycles from Cascade Reactions of Indigo

Nicholas Matthew Butler
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses1

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Old Dye, New Tricks – Diversity-Oriented Synthesis of Heterocycles from Cascade Reactions of Indigo

Nicholas Matthew Butler
Intl. B. Sc. (Hons.)

Supervisors:
Prof. Paul A. Keller
Dr. Christopher J. T. Hyland

This thesis is presented as part of the requirement for the conferral of the degree:

Doctor of Philosophy

from

The University of Wollongong
School of Chemistry and Molecular Biosciences

This research has been conducted with the support of the Australian Government
Research Training Program Scholarship

March 2019
Certification

I, Nicholas Matthew Butler, declare that this thesis, submitted in fulfilment of the requirements for the conferral of the degree of Doctor of Philosophy from the University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. This document has not been submitted for qualifications at any other academic institution.

Nicholas Matthew Butler
31st March, 2019

Publications

Abstract

A diversity-oriented investigation of the chemical space associated with the ancient blue dye, indigo (31), was undertaken, investigating its reactivity with a variety of coupling partners, namely terminally-substituted (aryl)propargylic halides, various ring-strained epoxides and aziridines, and substituted organometallic reagents. The reaction of indigo with 3-bromo-1-phenyl-1-propyne (132b) gave the new ring-expanded indolobenzonaphthrydinone 133 in 35% yield, in addition to the known azepinodiindole 122 in an improved 37% yield, and the suspected oxadiazepinodiindole 123 in 12% yield. The (4-methoxyphenyl)propargyl bromide 132a also yielded an analogous ring-expanded indolobenzonaphthrydinone (134) in 21% yield. The isolation of this pair of molecules supports the hypothesis that the stronger bromide facilitates di-alkylation prior to N,N'-cyclisation, leading to increase proportions of ring-expanded materials which were subjected to biological testing.

The optimized reaction of indigo with (S)-epichlorohydrin (144) gave a mixture of the N,N'-cyclic pyrazinodiindole 152, and the N,O'-cyclised epoxyazocinodiiodinodes 153-155 in 95% overall yield, while the reaction of indigo with the corresponding (R)-N-tosyl-2-(chloromethyl)aziridine 148 (synthesized in 3 steps from 144) afforded exclusively the N,N'-cyclic pyrazinodiindoles 176-178 in a combined 63% yield. Mechanistic studies revealed that both the leaving group and the heteroatom had a significant effect on the reaction pathway, with bioxirane 149 leading exclusively to N,O'-cyclisation in 81% yield, while epoxides bearing strong leaving groups (145-146) and biaziridine 150 yielded exclusively products of N,N'-cyclisation in 76-93% yield. These cascade reactions proceeded without erosion of the stereochemical identity of their precursor epoxides or aziridines, allowing stereospecific access to a variety of new heterocyclic frameworks whose biological applications were then assessed.

A new methodology for the generation of non-symmetrical \([1H,3'H]-3\)-substituted-2,2'-diindol-3'-ones was devised from a two-step addition-dehydration reaction of indigo with various Grignard reagents. Where only three examples of this scaffold had been reported previously, this method allowed chemoselective access to twenty-seven new members of this class of molecules in yields ranging 72-95%, as well as a previously-unknown 1'H,1"H,3'H-[2,2':3',5'-terindol]-3-one in 61% yield by NMR. Using Boc\(_2\)O as a both a dehydrating and N-trapping agent, fifteen examples featuring alkyl, aryl, and heterocyclic substituents, of which eleven N-Boc materials were successfully deprotected to their free
indoles using TFA under standard conditions. Additionally, the methyl adduct 218 was isolated by a PPh₃.I₂-mediated dehydration in 74% yield, where Boc₂O had failed, and the collected twelve final compounds (in addition to selected N-Boc precursors) were subjected to biological testing.

Preliminary antiplasmodial screening of all generated final compounds revealed potent and selective *P. falciparum* inhibition down to 76 nM for 152, and 52 nM for 218, with SI values >100 for 152 and >1500 for 218, making these scaffolds viable leads for further medicinal chemistry studies. A mode of action for 218 was proposed, where it undergoes hypoxia-induced reduction in parasitised erythrocytes to an active radical species, which is in agreement with previous mechanistic studies of 2-substituted-3H-indol-3-ones, and the preliminary SAR data from this molecule library.
Acknowledgments

Special thanks go to my supervisors, Prof. Paul Keller, and Dr. Chris Hyland for their training, mentoring and guidance over the past few years of my life, and to Dr. Steven Wales, Prof. John Bremner, and Dr. Alireza Shakoori for their valuable chemical insight. Thanks to the past and present members of the Keller research group, particularly to Jayden Gaston, Patrick McCosker, Hendris Wongso, Dr. Andrew Tague and Dr. Rudi Hendra for making a run-down, depressing building a fun place to work. Special and sincerest thanks also to the School of Chemistry at large, especially (but not limited to) Jamie Smyth, Anthony Carroll, Brett Knowles and Melanie Drew for games, drinks, and other chaos.

Special thanks to A/Prof. Glennys O’Brien, A/Prof. Michael Kelso, A/Prof. Stephen Wilson, A/Prof. Clare Murphy and Prof. Stephen Pyne for teaching opportunities throughout my PhD, and to Louisa Willdin for running the whole show.

Thanks to all technical staff for training and their maintenance of all of the ludicrously-expensive pieces of equipment we all take for granted, especially to Wilford Lie and Din Idris (NMR), Karin Maxwell, Celine Kelso and Alan Maccarone (LR-MS and HR-MS), and to Roza Dimeska, Roger Kanitz, Travis Naylor, Cathy Lancaster, Sue Butler, and Joe Daunt for their assistance with teaching. Special thanks also go to Dr. Anthony Willis (ANU) for his assistance with x-ray crystallography, and to Prof. Vicky Avery and Dr. Leo Lucantoni (Griffith University) for performing the antiplasmodial testing on all of my final compounds.

To my mum Julie, my dad Greg, and my brother Josh, for putting up with everything.

Finally, special thanks go to Erin and the Final Five for giving me a place to get away from it all. I would have burned out years ago if not for you and I love you all.

This thesis is dedicated to you all, and to Melissa, Ted, Sue, and everyone else who has had to deal with that bastard of a disease and everything that it brings.
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1H NMR</td>
<td>Proton Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>13C NMR</td>
<td>Carbon-13 Nuclear Magnetic Resonance Spectroscopy</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetyl/Acetate</td>
</tr>
<tr>
<td>app (NMR)</td>
<td>Apparent</td>
</tr>
<tr>
<td>APT (NMR)</td>
<td>Attached Proton Test</td>
</tr>
<tr>
<td>Ar</td>
<td>Aryl</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>n-Bu</td>
<td>n-Butyl</td>
</tr>
<tr>
<td>bs (NMR)</td>
<td>Broad singlet</td>
</tr>
<tr>
<td>δ (NMR)</td>
<td>Chemical shift</td>
</tr>
<tr>
<td>d (NMR)</td>
<td>Doublet</td>
</tr>
<tr>
<td>dd (NMR)</td>
<td>Doublet-of-doublets</td>
</tr>
<tr>
<td>DEPT (NMR)</td>
<td>Distortionless Enhancement of Polarisation Transfer</td>
</tr>
<tr>
<td>DMF</td>
<td>$N,N\text{'}$-dimethylformamide</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>e.g.</td>
<td>Exempli gratia – “for example”</td>
</tr>
<tr>
<td>EI-MS</td>
<td>Electron-impact mass spectrometry</td>
</tr>
<tr>
<td>eq.</td>
<td>Equivalent(s)</td>
</tr>
<tr>
<td>ESI-MS</td>
<td>Electrospray ionisation mass spectrometry</td>
</tr>
<tr>
<td>g</td>
<td>Gram(s)</td>
</tr>
<tr>
<td>h</td>
<td>Hour(s)</td>
</tr>
<tr>
<td>H2BC (NMR)</td>
<td>Heteronuclear 2-Bond Correlation Spectroscopy</td>
</tr>
<tr>
<td>HMBC (NMR)</td>
<td>Heteronuclear Multiple-Bond Correlation Spectroscopy</td>
</tr>
<tr>
<td>HSQC (NMR)</td>
<td>Heteronuclear Single-Quantum Correlation Spectroscopy</td>
</tr>
<tr>
<td>HPLC</td>
<td>High-Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HR</td>
<td>High-Resolution</td>
</tr>
<tr>
<td>Hz (NMR)</td>
<td>Hertz</td>
</tr>
<tr>
<td>IC$_{50}$</td>
<td>Median Inhibitory Concentration</td>
</tr>
<tr>
<td>i-Pr</td>
<td>Isopropyl</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>(J) (NMR)</td>
<td>Coupling Constant</td>
</tr>
<tr>
<td>(\mu \text{M})</td>
<td>Micromolar ((\times 10^{-6} \text{ mol/L}))</td>
</tr>
<tr>
<td>(\text{Mmol})</td>
<td>Millimole(s)</td>
</tr>
<tr>
<td>(\text{m (NMR)})</td>
<td>Multiplet</td>
</tr>
<tr>
<td>(\text{m (IR)})</td>
<td>Medium</td>
</tr>
<tr>
<td>(\text{M}^+)</td>
<td>Molecular Ion</td>
</tr>
<tr>
<td>(\text{Me})</td>
<td>Methyl</td>
</tr>
<tr>
<td>(\text{mg})</td>
<td>Milligram(s)</td>
</tr>
<tr>
<td>(\text{MIC})</td>
<td>Minimum Inhibitory Concentration</td>
</tr>
<tr>
<td>(\text{Min})</td>
<td>Minute(s)</td>
</tr>
<tr>
<td>(\text{mL})</td>
<td>Millilitre(s)</td>
</tr>
<tr>
<td>(\text{Mol})</td>
<td>Mole(s)</td>
</tr>
<tr>
<td>(m/z)</td>
<td>Mass-to-Charge Ratio</td>
</tr>
<tr>
<td>(\text{NOESY (NMR)})</td>
<td>Nuclear Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>(\text{nm})</td>
<td>Nanometres</td>
</tr>
<tr>
<td>(\text{nM})</td>
<td>Nanomolar ((-\times 10^{-6} \text{ mol/L}))</td>
</tr>
<tr>
<td>(\text{Ms})</td>
<td>Methanesulfonyl – “Mesyl/mesylate”</td>
</tr>
<tr>
<td>(\text{Pet Spirit})</td>
<td>Petroleum spirit (40–60 °C)</td>
</tr>
<tr>
<td>(\text{Ph})</td>
<td>Phenyl</td>
</tr>
<tr>
<td>(\text{ppm})</td>
<td>Parts-per-million</td>
</tr>
<tr>
<td>(\text{q (NMR)})</td>
<td>Quartet</td>
</tr>
<tr>
<td>(\text{ROESY (NMR)})</td>
<td>Rotating-Frame Overhauser Effect Spectroscopy</td>
</tr>
<tr>
<td>(\text{s (NMR)})</td>
<td>Singlet</td>
</tr>
<tr>
<td>(\text{s (IR)})</td>
<td>Strong</td>
</tr>
<tr>
<td>(\text{SAR})</td>
<td>Structure-Activity Relationship</td>
</tr>
<tr>
<td>(\text{SI})</td>
<td>Selectivity Index</td>
</tr>
<tr>
<td>(\text{t (NMR)})</td>
<td>Triplet</td>
</tr>
<tr>
<td>(\text{THF})</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>(\text{TLC})</td>
<td>Thin-Layer Chromatography</td>
</tr>
<tr>
<td>(\text{TOCSY (NMR)})</td>
<td>Total Correlation Spectroscopy</td>
</tr>
<tr>
<td>(\text{Ts})</td>
<td>(p)-Toluenesulfonyl – “Tosyl/tosylate”</td>
</tr>
<tr>
<td>(\text{TMS (NMR)})</td>
<td>Tetramethylsilane</td>
</tr>
<tr>
<td>(\text{TMS})</td>
<td>Trimethylsilyl</td>
</tr>
</tbody>
</table>
Table of Contents

Certification i
Publications ii
Abstract iii
Acknowledgments v
List of Abbreviations vi
Table of Contents viii

Chapter 1: Introduction 1
 1.1 The role of nature in modern synthetic chemistry 1
 1.2 Target-oriented synthesis for drug discovery 2
 1.3 Diversity-oriented synthesis for drug discovery 4
 1.4 The role of cascade reactions in modern synthetic chemistry 6
 1.5 Applications of cascade reactions to diversity-oriented and target-oriented synthesis 10
 1.6 The chemistry of indigo 14
 1.7 Cascade reactions of indigo 30
 1.8 Project aims 38

Chapter 2: Reactions of indigo with propargylic electrophiles 39
 2.1 Propargylic systems in organic synthesis 39
 2.2 Cascade reactions of propargylic systems with indigo 44
 2.3 Cascade reactions of (aryl)propargyl electrophiles with indigo 46
 2.4 Conclusions 59

Chapter 3: Reactions of indigo with ring-strained electrophiles 60
 3.1 The role of ring-strained electrophiles in organic synthesis 60
 3.2 Cascade reactions of ring-strained electrophiles with indigo 62
 3.3 Cascade reactions of epihalohydrins with indigo 64
 3.4 Cascade reactions of 2-(halomethyl)aziridines and 2-phenylaziridine with indigo 84
 3.5 Cascade reactions of 2,2'-bioxirane and 2,2'-biaziridine with indigo 109
 3.6 Conclusions 122
Chapter 4: Reactions of indigo with organometallic nucleophiles 124
 4.1 The role of organometallic compounds in synthetic chemistry 124
 4.2 Reactions of indigo with Grignard reagents 126
 4.3 Substrate scope 146
 4.4 Mechanistic discussion 175
 4.5 Boc-deprotection of isolated scaffolds 177
 4.6 Conclusions 179

Chapter 5: Biological activity testing of indigo derivatives 180
 5.1 Biological activity of indigo derivatives 180
 5.2 Antiplasmodial activity of propargylic and strained-ring adducts 181
 5.3 Antiplasmodial activity of non-symmetrical 2,2'-diindoles 185
 5.4 Proposed mechanism of action 189

Chapter 6: Conclusions and future directions 191
 6.1 Reactions of indigo with propargylic electrophiles (Chapter 2) 191
 6.2 Reactions of indigo with ring-strained electrophiles (Chapter 3) 193
 6.3 Reactions of indigo with organometallic nucleophiles (Chapter 4) 197
 6.4 Conclusion 202

Chapter 7: Experimental Data 203
 7.1 General experimental information 203
 7.2 Reactions of indigo with propargylic electrophiles 204
 7.3 Reactions of indigo with ring-strained electrophiles 210
 7.4 Reactions of indigo with organometallic nucleophiles 228
 7.5 Biological testing 248
 7.6 X-ray crystallographic data 249

Chapter 8: References 255
Chapter 1:
Introduction

1.1 The role of nature in modern synthetic chemistry

The design and synthesis of small-molecule inhibitors has long been at the forefront of modern drug discovery and medicinal chemistry efforts. Classically, many of these molecules have been derived from Nature, which remains an indispensable tool for the health and pharmaceutical industries. Examples range from the relatively-simple salicylates (1), derived from pulverised willow bark,[1] to the more complex polycyclic opioids such as morphine (2), derived from the dried latex of Papaver somniferum bulbs,[2] to the large and highly-complex vancomycin (3), derived from Amycolatopsis orientalis (formerly Streptomyces orientalis),[3] and used as an antibiotic of last-resort for the treatment of drug-resistant infections (Figure 1). The innate specificity of Nature in the design of highly-complex, three-dimensional molecules cannot be overstated, and remains a constant source of inspiration for the synthetic chemist, however the need for large quantities of specific inhibitors means that relying on Nature alone may only afford milli- (or micro-)grams of materials from large scale extractions. One example of this is the isolation of the kinase inhibitor staurosporine (4), where only 1.1 g was isolated from a 200 L Streptomyces staurosporius broth (5.5 ppm/volume of culture).[4] A more extreme example is the marine sponge isolate muironolide A (5),[5] of which only 97 μg could be isolated from an individual Phorbas sp. weighing 236 g (0.41 ppm/dry wt. sponge) – as an indicative figure, the isolation of one gram of muironolide A would require the extraction of over 2.4 tonnes of dry sponge material. It is therefore imperative that new and accessible means are developed for both the discovery and synthesis of new, biologically-active molecules.
1.2 Target-oriented synthesis for drug discovery

The development of modern synthetic chemistry has grown upon retrosynthetic analysis, whereby a complex final product may be visualised as a series of ‘disconnections’ of individual fragments by simple bond-forming processes. Continued disconnections, guided by simple chemical principles, allows for the design of a synthetic pathway in the forward direction, and in modern times is a process which may be automated for simple molecules. These principles of target-oriented synthesis (TOS) are based on the concept of ‘ideality’ in chemical synthesis, first coined by Hendrickson in 1975, and refers to the minimisation of unnecessary chemical processes, such as those involving protecting groups, extraneous redox or functional group manipulations, and correction of undesired stereochemistry. In short, an ‘ideal’ synthesis would afford “…a complex molecule from...available small molecules…in a sequence of only construction reactions involving no intermediary re-functionalisations.” While an imperfect metric for the evaluation of synthetic worth (i.e. it does not consider the synthetic feasibility of particular
transformations, instead relying on a mathematical step-count), it informs a *prima facie* comparison between synthetic pathways. For example, in the synthesis of the polyketide marine natural product brevetoxin B (6), a comparison of the step count for the first-generation synthesis (Nicolaou *et al.*, 1995 – 123 steps)[9] and later synthetic strategies toward its construction (Nakata *et al.*, 2004 – 90 steps)[10] would deem the latter process the more-ideal of the two – perhaps unsurprising, since the latter relies upon synthetic disconnections made in the former synthesis to complete the natural product, though with several modifications to the upfield synthesis of the key fragments (Scheme 1).

![Scheme 1: Comparison of two syntheses of the marine natural product brevetoxin B (6) by the Nicolaou and Nakata groups.](image)

This approach is not without its drawbacks. While the synthesis proved an herculean effort, and resulted in the development of numerous new synthetic transformations, the original Nicolaou synthesis of brevetoxin B amounted to an investment of twelve years of intensive study,[11] and resulted in the isolation of just 4.8 mg of material, in an overall process yield of $9.2 \times 10^{-4} \%$ due to the number of physical manipulations required. It is therefore clear that while contiguous step-wise transformations do allow access to highly complex polycyclic molecules, linear TOS does not outright solve the problems of scalability and diversity, considering that modification to the core skeleton of the natural product would likely require years of investment, assuming the desired modifications do not interfere with other key steps further downstream. Moreover, this effectively limits the structural diversity of the molecules that are able to be synthesised in this manner, as they would represent analogues of scaffolds which have already been synthesised. With respect to the discovery of new molecules for medicinal application, it is simply not practicable to adopt a linear, target-oriented approach to synthesis for all desired molecules.
1.3 Diversity-oriented synthesis for drug discovery

There is a growing appreciation for a diversity-based approach to drug discovery (diversity-oriented synthesis, DOS), particularly where the precise identity of the target is not of critical importance e.g. in medicinal or materials applications.12 In comparison to a traditional target-based synthetic methodology, where a single precise chemical architecture is the focus, DOS aims to generate a library of diverse chemical species for rapid scaffold discovery, which may be then iteratively modified based upon the desired characteristics for the particular application, for example, in high-throughput biological screening.13 As an orthogonal approach to TOS, DOS utilises a forward-planning approach, whereby simple molecules may be iteratively combined across multiple (usually no more than five) steps, with the aim of developing a library made up of compounds of varied frameworks and functionalities (Figure 2).

![Diagram of target-oriented synthesis vs diversity-oriented synthesis]

Figure 2: Comparison of the overall rationale of target-oriented (left) and diversity-oriented (right) synthesis.

The major advantage to diversity-oriented synthesis is that the process relies on coupling each fragment together iteratively, thereby allowing a vast window for derivatisation at each of the individual stages. Considering a hypothetical starting point of a single molecule, and utilising three iterative stages of 20 derivatives at each stage, this would constitute a library of up to 8,000 final compounds, which are themselves only three synthetic steps from the starting molecule but diverse in functionality. The major disadvantages of DOS are practicality, for in order for this to be a successful means of generating molecule libraries, each stage must involve reactions which must be robust and produce only the desired product with no by-products, as the necessity of intermediate purification would make this diversity-oriented process exponentially more time-consuming with each iteration. This requirement leads to a second disadvantage, owing to the scarcity of ‘perfect’ reactions, meaning that only specific transformations can realistically be performed in the search of diversity – thus limiting the idea of ‘diversity’ in the first instance. This combined with the predisposition of synthetic chemists toward
well-behaved, accessible starting materials (or privileged scaffolds as starting points)\[^{14}\] leads to selection bias, and narrowing of the overall chemical diversity of the library. This is illustrated by analysis of a random selection of ‘diverse’ molecules, deemed to be largely comprised of products from amide coupling and Suzuki-Miyaura reactions,\[^{15}\] and containing greater proportions of \emph{para-} substituted phenyl substituents (particularly those with \emph{para-} chloro-, fluoro-, or trifluoromethyl groups) than other substituent patterns.\[^{16}\] Particularly in the case of reaction discrimination, this may result in an overall narrowing of the accessible chemical space than is idealised for diversity-oriented synthesis. Finally, a common criticism of a DOS approach is that while generating large libraries leads to greater statistical chance of identifying a ‘hit’, there is no overall guarantee that the generated molecule library will contain any viable leads to begin with, and may instead result in 8,000 individual iterations of how best to generate inactive molecules.

One means by which these issues may be circumvented is through collaborative efforts such as those of the European Lead Factory project,\[^{17}\] where a group of 30 institutions have worked cooperatively since the project’s inception in 2013, with the aim of developing a vast library (consisting of \emph{ca.} 326,000 molecules provided by the Joint European Compound Library, in addition to a further 200,000 new molecules synthesised as part of the project – a milestone reached in June of 2018) of potential leads, which can be assessed for ‘lead-likeness’ and structural diversity \emph{via} computational means,\[^{18}\] as well as through ultrahigh-throughput screening methods.\[^{19}\] An early analysis of a selection of the library (\emph{ca.} 55,000 compounds) revealed considerable structural and functional diversity within typical Lipinski’s rule-of-five parameters,\[^{20}\] expanding into a broad region of unexplored chemical space as denoted by a low Tanimoto coefficient of 0.2 (<20% inter-collection similarity) across these compounds, as well as retaining a high degree of \(sp^3\) character (>40% \(sp^3\) for 86% of the library) – a desirable characteristic for drug design and specificity.\[^{21}\] The project has utilised a series of methodologies, broadly classified as multicomponent reactions,\[^{22}\] and divergent or combinatorial synthesis\[^{23}\] to afford a broad variety of compounds – a small selection of which are depicted in Figure 3.
It is therefore the case that while ‘perfect’ diversity-oriented synthesis would provide significant benefits over target-oriented synthesis with respect to the rapid generation of chemical libraries, there exist significant barriers toward its widespread adoption as the major means of exploring new chemical space, which may be overcome by further exploration.

1.4 The role of cascade reactions in modern synthetic chemistry

The major pitfall for both target-oriented and diversity-oriented synthesis is the necessity of performing multiple sequential synthetic steps, most-often requiring purification of the intermediate product mixtures. While a not-insurmountable obstacle, it would be more convenient to perform multiple synthetic steps in a single reaction vessel, thus providing synthetic shortcuts to the desired architecture.[24] This demonstrates, in part, the power of cascade reactions for the construction of new molecular architectures, as they would serve to eliminate intermediate reaction steps entirely, making the overall start-to-finish process more efficient.[25] To re-invoke the idea of ‘ideality’ in organic synthesis,[8] cascade
reactions represent one logical endpoint, where entire processes can be circumvented, and multiple new bonds can be formed in a single reaction vessel, thus rapidly and efficiently building molecular complexity whilst eliminating intermediate isolation and purification procedures entirely.[26] In the context of current environmental concerns, cascade reactions could also offer a more environmentally-benign means of generating complex molecules, as they necessitate only a single solvent, reagent, and purification, compared with an equivalent bond-forming process over multiple sequential steps.

There are many classical examples (e.g. the Robinson ‘double-Mannich’ synthesis of tropinone)[27] of the use of cascade reactions as late-stage tools in synthesis, and these have been extensively-reviewed in the past.[24, 26a, 28] One particularly elegant example of the power of this approach is the Corey synthesis of the putative structure of the squalenoid natural product glabrescol (7), where a penta-oxirane precursor underwent Brønsted acid-mediated cyclisation with CSA (camphor-10-sulfonic acid) to afford the desired polyfuran scaffold in 31% yield (Scheme 2).[29] Based on these synthetic studies, the structure of glabrescol was revised to 8, and confirmed by synthesis via a modified protocol, though this too relied on an electrophilic cascade reaction from a polyepoxide precursor.[30]

Scheme 2: Key cascade cyclisation from the Corey synthesis of the putative structure of glabrescol 7, and the true structure of glabrescol (8) as confirmed by synthesis.

Cascade reactions can be broadly classified as following one of eight fundamental modes
of reactivity, as depicted in Table 1, where each sequential chemical transformation may be used as a means of discrimination. For the above example of the polycationic epoxide ring-opening to give polyfuran 7, this could be classified as a 1a/2a/3a/4a/5a-type cascade utilising this framework.\cite{28a,31}

Table 1: Classification of different types of cascade reactions. Adapted from Teitze.\cite{28a}

<table>
<thead>
<tr>
<th>First Step</th>
<th>Second Step</th>
<th>Third Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a Cationic</td>
<td>2a Cationic</td>
<td>3a Cationic</td>
</tr>
<tr>
<td>1b Anionic</td>
<td>2b Anionic</td>
<td>3b Anionic</td>
</tr>
<tr>
<td>1c Radical</td>
<td>2c Radical</td>
<td>3c Radical</td>
</tr>
<tr>
<td>1d Pericyclic</td>
<td>2d Pericyclic</td>
<td>3d Pericyclic</td>
</tr>
<tr>
<td>1e Photochemical</td>
<td>2e Photochemical</td>
<td>3e Photochemical</td>
</tr>
<tr>
<td>1f Carbenoid</td>
<td>2f Carbenoid</td>
<td>3f Carbenoid</td>
</tr>
<tr>
<td>1g Metal-catalysed</td>
<td>2g Metal-catalysed</td>
<td>3g Metal-catalysed</td>
</tr>
<tr>
<td>1h Redox</td>
<td>2h Redox</td>
<td>3h Redox</td>
</tr>
</tbody>
</table>

This classification mode allows for modularity in describing cascade processes where the reactivity differs as the reaction proceeds. For the below example (Scheme 3), where an amine-mediated (ethylenediamine diacetate, EDDA) Knoevenagel condensation (anionic – 1b) between Meldrum’s acid (9) and O-prenylsalicylaldehyde (10) precedes a hetero-Diels Alder cyclisation (pericyclic – 2d), to afford the fused-ring system 11 in 73% yield, and with >99% diastereoselectivity toward the cis diastereomer.\cite{32}

Scheme 3: Tandem Knoevenagel/hetero-Diels Alder cyclisation to produce 11 via a 1b/2d-type cascade reaction.

In more complex examples such as multicomponent reactions, several reagents may be combined to afford densely-functionalised systems. One key example of this is the Ugi reaction, which is typically accomplished between four coupling partners: an aldehyde or
ketone, an amine, an isocyanide, and a fourth variable component (typically a carboxylic acid, though this can be substituted for – among others – H₂O, H₂S, H₂Se, CO₂ and an alcohol, HN₃, HCNO, or HCNS). A general schematic for the Ugi reaction is shown in Scheme 4.

Scheme 4: The Ugi four-component reaction is one example of a cascade process with multiple coupling partners, and proceeds via a multi-step mechanism. General schematic and mechanism adapted from Kürti and Czacó.

There are several factors to consider with the use of cascade reactions in synthesis. Cascade reactions typically require densely-functionalised starting materials, requiring multiple synthetic steps of pre-functionalisation. Additionally, as cascade reactions rely on the sequential participation of multiple functional groups, the desired product is typically only obtained in good yields where a) competing reactions are in equilibrium with the desired process (i.e. not irreversible), b) there is a considerable enthalpic or entropic benefit to the formation of the desired product, or c) where the final step in the cascade reaction is irreversible. This is exemplified in the Ugi reaction, where a) the formation of salts, hemiaminals, etc. are reversible, and b) acyl transfer occurs in the final
step to generate a pair of amide bonds – the stability of the dipeptide effectively rendering
the final step irreversible. It is not to say that side-reactions can be eliminated entirely in
all instances, and in many circumstances, multiple branches in the mechanism can result
in undesired (or unexpected) products. Therefore, to effectively utilise cascade reactions
for the construction of complex molecular frameworks, an intimate understanding of the
underlying process and mechanism of the reaction must be present, as well as the desired
starting point and products, to discern conditions most conducive to generating the
desired endpoint.

1.5 Applications of cascade reactions to diversity-oriented and
target-oriented synthesis
One of the key considerations in utilising cascade reactions as a means of either a)
selectively generating the desired product via a TOS approach, or b) developing a library
of compounds via a DOS approach, is the potential manipulations that are possible –
ideally, the selected starting point would possess a variety of functional groups in close
physical proximity, with the ability to undergo spontaneous further reactions upon
addition of a second coupling partner. By moderating the coupling partners, or by using
different chemical additives e.g. Lewis acids, it would therefore be possible to design
specific cascade reactions to favour certain reactive pathways, and thus the formation of
particular chemical scaffolds.

The application of cascade reactions to diversity-oriented synthesis is aptly demonstrated
by the work of the Stockman group, where utilising the relatively-simple keto-diester 12
as the starting point, nucleophilic addition to the central ketone allowed for subsequent
intramolecular cyclisation onto the outer α,β-unsaturated systems, forming a broad
variety of cyclic adducts (13–24) via twelve unique reactive pathways, via both stepwise
and concerted processes. A summary of the major outcomes of this initial study is
presented in Scheme 5.
Scheme 5: Divergent synthesis of structurally-diverse products 13-24 via cascade reactions from common precursor 12.

Spirocycles 13 and 14 were proposed to arise from a three-stage cascade process, where upon condensation of the central ketone with hydroxylamine, the oxime adduct underwent spontaneous Michael addition to forge the piperidine ring while generating an iminium-N-oxide 1,3-dipole. Subsequent nitrene [3+2]-cycloaddition to the remaining olefin gave either the O-internal (13) or C-internal (14) adducts. When oxime condensation was performed in the presence of NaOEt, compound C-internal adduct 14 underwent N,O-fragmentation and recombined to give lactone 15, while heating 14 in chlorobenzene led to the formation of O-internal product 13 via a retro-[3+2]/[3+2]...
cycloaddition, indicating 14 to be the kinetic product, and 13 to be the thermodynamic product. This cascade/interconversion protocol could also be achieved utilising keto-dinitrile 25, with the rearrangement of kinetic product 26 to thermodynamic product 27 occurring upon heating in toluene in a sealed tube, and was utilised in a short-step racemic synthesis of histrionicotoxin 28, isolated originally from poison dart frogs (Scheme 6).[37]

![Scheme 6](image)

Scheme 6: Retro-[3+2]/[3+2]cycloaddition methodology toward histrionicotoxin (28).

An analogous hydrazone [3+2] cycloaddition also occurred using tosylhydrazine, with subsequent oxidative desulfuration affording cyclic hydrazone 19 in 41% yield. Ti(IV)-mediated reductive amination of 12 with ammonia lead to trans-octahydroquinolizine 16 via twofold aza-Michael addition in 74% yield, while aniline underwent sequential Michael/aza-Michael addition via an intermediate enamine, affording trans-octahydroquinoline 17 in 65% yield. Ethyl glycinate could also be condensed with 12 to generate an azomethine ylid in situ, which similarly underwent [3+2]-cycloaddition to afford the cis-tricarboxylate 18 in 71% yield. Interestingly, in the absence of a secondary partner, treatment of 12 with sodium hydride prompted a spontaneous, diastereospecific twofold Michael addition to afford trans-decalin 20, containing four contiguous stereocentres in 70% yield.

Single-electron reduction of 12 with SmI$_2$ afforded either lactone 21 (using 2 eq. SmI$_2$) or cyclopentanol 22 (using 5 eq. SmI$_2$). The divergence in stereochemical outcome was proposed to be a result of the higher degree of Sm$_{III}$-chelation where fewer equivalents of SmI$_2$ were used, resulting in radical 29 with the alkyl groups positioned trans to one-another, while steric hindrance between samarium ions in ketyl radical 30 led to the cis-diastereomer (Scheme 7).
Scheme 7: Radical cyclisation of 12 to either lactone 21 or cyclopentanol 22 with SmI₂.

Finally, treatment of ketone 12 with lithium-based nucleophiles led to tetrahydropyran adduct 23 by addition to the ketone and subsequent oxa-Michael addition in 50% yield using super-hydride (LiBEt₃H), or 19% yield using MeLi. Comparatively, using MeMgBr in place of MeLi gave the acyclic Grignard adduct 24 in 86% yield.

Developing a fundamental understanding of the reactivity of polyfunctional materials can be a powerful tool in reaction discovery. The use of the discretely-functionalised keto-diester 12 allowed for the preparation of twelve distinct chemical scaffolds from a single precursor, lending considerable use toward a diversity-oriented approach. Moreover, modulation of the reactive species allowed specific mechanistic pathways to be favoured. Being able to control these cascade reactions can also be seen to have significant synthetic utility in target-oriented synthesis, as the products can be further elaborated to provide rapid access to highly-functionalised materials. Therefore, it would be of considerable worth to explore the synthetic utility of other highly-functionalised materials, with a view toward utilising cascade reactions for both reaction discovery and diversity-oriented synthesis, as well as for the synthesis of scaffolds of particular interest.
1.6 The chemistry of indigo

Indigo (31) is an ancient natural dye, derived from a wide variety of plant-based sources (e.g. Indigofera sp., Isatis sp., Persicaria sp.), and has been used in the production of textiles and artworks for millennia.[39] The molecule itself consists of a dimeric 2,2’-biindoline core, flanked by carbonyl groups at the 3 and 3’ positions. The trans-geometry about the central olefin is held rigid by intermolecular hydrogen bonding between the adjacent indole and ketone groups, which also contributes to indigo’s characteristic intense-blue colour; hydrogen bonding and π-stacking can also occur between individual indigo molecules, leading to indigo’s poor solubility in many solvents.[40]

Indigo has a rich history of international trade through the ages, forming the basis of the export industry for many countries, including as a major economic commodity in the colonial Americas. At several points throughout history, indigo was worth greater than its weight in gold, and alongside gold and spices, it was one of the primary commodities traded by the East India Company, forming the basis of the modern global economy.[41]

In more recent times, indigo has become synonymous with its use in the production of blue denim jeans since their invention in 1872. The surge in demand associated with the widespread use of blue denim cultivated significant interest in the chemistry of indigo, resulting in a lab-scale synthesis of indigo by Baeyer in 1878, for which in-part he was awarded the 1905 Nobel prize for chemistry.[42] This eventually led to indigo’s industrial-scale synthesis by the early 20th century.[43] Today, most of the indigo produced worldwide is synthetic,[44] though there continues to be considerable interest in developing more environmentally-conscious methods for its production.[45] The first economically-viable industrial methods were based off the second-generation Heumann process (Scheme 8),[43, 46] where anthranilic acid is alkylated with chloroacetic acid to give 2-carboxyphenylglycine (32), which is fused in a NaOH/KOH melt to give a salt of indoxyl-2-carboxylate 33, which upon decarboxylation to indoxyl 34, undergoes spontaneous air oxidation to afford indigo.
The synthesis of indigo proved to be an important contributor to the invention of factory-scale organic chemistry, and indigo factories quickly superseded natural indigo as the dye-of-choice for many applications due to its lower price and higher quality, with fewer indigoid (isoindigo, 35 and indirubin, 36, Figure 4) impurities. The ready availability of indigo led to the development of most of the modern understanding of the chemistry of the indigo family, including fundamentals of redox chemistry, reactions with acids and bases, electrophilic and nucleophilic chemistry, as well as tandem reactions of indigo. An overview of the known chemistry of indigo follows, however much of its history predates modern spectroscopic techniques, and thus the validity of these reported outcomes is variable.

1.6.1 Redox chemistry of indigo

The reduction of indigo is of particular importance to the textiles industry, as leucoindigo 37 is relatively water-soluble and adheres well to fabrics, allowing for back-oxidation to indigo upon air-drying. For this reason, the reduction of indigo is well-known, and can be achieved via a number of methods – most commonly using sodium dithionite or zinc.
dust, or through electrochemical methods,\cite{47} though methods involving urine, arsenic trisulfate and bacterial cultures are also known.\cite{48} Using a Clemmensen-type reduction with zinc, iron, tin or zinc-mercury amalgam in a mixed AcOH/\(\text{Ac}_2\text{O}\) solvent, various deoxygenated and/or acetylated adducts such as \(38\) may be isolated (Scheme 9).\cite{49}

\[
\text{Indigo} \quad 2\text{H}^+ + 2\text{e}^- \rightarrow \text{Leucoindigo}
\]

Scheme 9: Reduction of indigo to leucoindigo. Further reduction of leucoindigo is also possible in the presence of acetic anhydride.

The oxidation of indigo follows two general pathways (Scheme 10) – under aqueous acidic conditions, or under harshly oxidising conditions (e.g. with concentrated nitric or chromic acids, ozone, aqueous bromine or chlorine) indigo undergoes cleavage of the central double bond to afford isatin \(39\), or under anhydrous or milder conditions (e.g. with \(\text{PbO}_2\) or \(\text{Pb}(\text{OAc})_4\) in benzene/acetic acid, \(\text{Cl}_2\) in \(\text{CCl}_4\), or \(\text{KMnO}_4/\text{AcOH}\) then pyridine via \(2,2'\)-diacetoxyindigo \(40\)), affords dehydroindigo \(41\),\cite{50} which is also accessible \textit{via} electrochemical oxidation.\cite{51} The oxidation of indigo carmine (\(42\)) to the corresponding isatin has also been utilised as a means of detecting ozone or superoxide in biological systems.\cite{52}

\[
\text{Isatin} \quad 39 \quad \text{Path A: a), b), c) } \quad \text{Indigo} \quad 31 \quad \text{Path B: d), e)} \quad \text{Dehydroindigo} \quad 41
\]

Path A: a) \(\text{HNO}_3\text{(aq)}\) b) \(\text{H}_2\text{Cr}_2\text{O}_7\) c) \text{O}_3, \text{H}_2\text{O}
Path B: d) i. \text{Cl}_2, \text{CCl}_4\ ii. \text{Ca(OH)}_2\ e) \text{PbO}_2, \text{CaCl}_2, \text{benzene, AcOH}
f) i. \text{KMnO}_4, \text{AcOH}\ ii. \text{Pyridine, PhMe}

Scheme 10: Oxidation of indigo affords either isatin \(39\) or dehydroindigo \(41\), depending on reagent choice.
1.6.2 Reactions of indigo with acids and bases

Like other indolic compounds, indigo undergoes deprotonation with a variety of strong or weak bases. Indigo was also reported to react with mineral acids to give indigo salts in 1902; i.e. treating indigo with a 5:1 mixture of acetic and sulfuric acids, and precipitation with diethyl ether yields indigo monosulfate (43a), while the prolonged digestion of indigo by sulfuric acid (13.5 M) under the same conditions was reported to yield indigo disulfate, 43b.[53] Notably, indigo becomes soluble in acetic acid, benzene and chloroform when dry HCl gas passes through the suspension, while addition of ether to the solution precipitates the hydrochloride salt 44 (Figure 5).

![Figure 5](image) Figure 5: Salts reported from the reaction of indigo with mineral acids.

In a recent study of the closely-related ‘Nindigo’ (indigo-3-arylimine) family (45), it was determined that reversible protoisomerisation takes place upon treatment with strong acids to furnish cis salt adducts (46).[54] While both mono- and di-iminoindigoids react readily with a variety of acids, indigo was noted to be far less reactive, given the low basicity of the indigo carbonyl relative to its imine equivalent, though the reactions of indigo with triflic or sulfuric acids in chloroform were reported to give green, solvated indigo derivatives. These could not be isolated due their instability, therefore it is unknown whether indigo undergoes similar isomerisation upon acidification. The sulfuric acid adduct was observed to gradually form indigosulfonic acid products (47); unsurprising given the known, and controllable sulfonation of indigo with sulfuric acid/SO\textsubscript{3} mixtures.[55] Treatment of the cis-acid adduct with organic bases (e.g. DBU, NEt\textsubscript{3}) restored the trans-configuration about the double bond, presumably due to restoring intramolecular H-bonding between adjacent donor-acceptor functionalities (Scheme 11).
1.6.3 Electrophilic chemistry of indigo with nitrogen nucleophiles

Imine derivatives of indigo were first reported in 1909, by the boric acid-catalyzed condensation of indigo with aniline derivatives, affording the corresponding diimine 48 as purple needles, reported in good yields (Scheme 12). In 1914, the reaction of indigo with ZnCl₂ and aqueous ammonia resulted in the formation of a mixture of indigo monoimine 49 and diimine 50, separable by crystallisation from benzene. Of these, the former method has been demonstrated to be irreproducible, and no yield was reported for the latter, which prompted investigation into indigo-\(N\)-imines.

A more-robust procedure for the generation of indigo-\(N\)-arylimines was developed in 2010 by Hicks et al., by treating indigo with a pre-formed titanium-imido complex, generated in situ by the addition of TiCl₄ to a solution of the desired amine and DABCO in bromobenzene. Heating the resulting complex at reflux led to the desired diimine ‘Nindigo’ 48 in good yields (Scheme 13). This can then be oxidised using silver oxide,
and the resulting ‘dehydroNindigo’ isolated by complexation to a suitable metal, such as PdII, RuII, or CoII, affording adduct 51 via ligand displacement of their corresponding bis-hexafluoroacetoacetonato (hfac) complexes.$^{[61]}$ Dimetallic species are then able to be transmetallated, to afford redox-active, bimetallic Nindigo-metal-borane complexes. It is known that indigo diimines undergo facile keto-enol tautomerisation to adopt an asymmetric structure (i.e. 52), and this process occurs by a dual proton-transfer mechanism.$^{[62]}

Scheme 13: Synthesis of ‘Nindigo’ imines (48) via nucleophilic addition of a titanium imide complex, and their use as ligands for the synthesis of transition metal complexes (51). Diimides such as 48 have been shown to exist as a mixture of the ‘imine’ form 48 and the ‘enamine’ 52, and interconvert easily by proton transfer.

The Wolff-Kishner reduction of indigo was first reported in 1921, performed by heating indigo in an alkaline, alcoholic solution of phenylhydrazine.$^{[63]}$ This firstly generated a proposed phenylhydrazone intermediate 53, which upon thermal decomposition gave the desired methylene compound, mono-desoxyindigo 54 (Scheme 12). In 1945, mono-desoxyindigo 54 was demonstrated to be formed by the action of hydrazine hydrate on indigo, in addition to a reported diazine side-product, 55. In both instances however, no yields were reported, and little characterization beyond elemental analysis was undertaken.$^{[64]}$
The reaction of indigo with hydrazine hydrate or phenylhydrazine is reported to give the mono-hydrazone 53, which is reported to either decompose into desoxyindigo 54, or condense into diazinoindigo 55. No yields were reported for either reaction.

Finally, indigo oxime 56 was obtained in 40% yield from the reaction of indigo with hydroxylamine.[65] Subsequently, it was found that heating an alkaline solution of indigo and hydroxylamine hydrochloride at reflux resulted in isolation of bis-oxime 57, though its yield was not reported (Scheme 15).[66]

Despite the development of an innumerable array of carbon-based nucleophiles in the 20th century, and the demonstrated electrophilicity of the indigo core (particularly at C3), the body of knowledge surrounding the reactions of indigo with readily-accessible carbon nucleophiles is astoundingly limited. The reaction of indigo with several Grignard reagents in diethyl ether was reported in 1909, and resulted in a handful of non-symmetrical adducts (58) in good to excellent yields, though yields were not reported for all compounds, and the absolute structure of these molecules was not unambiguously determined (Scheme 16).[67] The authors of this study ascertained that the Grignard reagent and indigo had reacted in a 1:1 ratio based off elemental analysis, however in the absence of then-unknown spectroscopic techniques, the only structural evidence obtained was from derivatisation of the products. It was determined that nucleophilic attack had occurred at the carbonyl group by the presence of a hydroxyl functionality, and reacting
with cold KMnO₄ revealed the presence of a C=C double bond. Furthermore, this molecule could be alkylated using ethyl iodide and KOH in ethanol, and subjecting this alkylated material to Zeisel’s test (cleaving the alkyl groups with HI, then precipitating the iodide with AgNO₃) revealed the addition of two ethyl groups. The authors determined that the product was likely one of two tautomers (58a or 58b), and that 58b fit better to their observations, however they stated that “attempts to establish the constitution (did not lead) to a uniform, crystallised and well-defined connection” and “partially due to the (rest of the) molecule, did not yield unambiguous results.”

Scheme 16: Reaction of indigo with Grignard reagents to afford the corresponding tertiary alcohol adduct 58, as one of two tautomers. The exact structure was not unambiguously determined, and yields were reported for several compounds, but not for all examples.

1.6.5 Diels-Alder chemistry of dehydroindigo

The oxidation of indigo to dehydroindigo (41) generates a 4π system, which is amenable to [4+2]-cycloaddition chemistry. Several examples of dehydroindigo’s cycloaddition chemistry have been reported previously, and in good yields where specified. The first aza-Diels Alder reactions of dehydroindigo were reported in 1940, where a selection of electron-rich and electron-poor substrates were reported to give the expected N,N’-bridged cycloadducts in good yield. Further reports disclosed similar outcomes, albeit in modest yields. The stereochemical outcome was not investigated in any case (Scheme 17).
Scheme 17: Reactions of dehydroindigo with selected dienophiles via [4+2]-cycloaddition. The yield for compound 60 was not reported.

These bridged structures were also reported to undergo post-synthetic modifications, as in the addition of methyl propiolate to dehydroindigo, to give the expected methyl ester adduct 68. Thermal decarboxylation of the ester gave N,N'-vinyldigo 69 in 22% yield, which could be oxidised by nitric acid to N,N'-oxalylindigo 70 in 31% yield (Scheme 18).[69]

Scheme 18: Synthesis of N,N'-oxalylindigo 70 via N,N'-vinyldigo from decarboxylation of the cycloadduct 68. The yield for compound 68 was not reported.
1.6.6 Nucleophilic chemistry of indigo – electrophilic aromatic substitution

As is typical for other 2,3-disubstituted indoles, electrophilic substitution of indigo, leucoindigo or dehydroindigo affords sulfonated, halogenated or nitro derivatives, firstly at the C5- and C5'-positions, then at C7 and C7'. It is important to re-emphasise that for the derivatives of indigo summarised here, many were reported in the early 20th century, and structural elucidation of these derivatives was based primarily on elemental analysis. Percentage yields were largely unreported, thus the validity or reproducibility of these outcomes cannot be assessed without conducting further experimentation. A summary of reported outcomes follows.

Direct halogenation of indigo using aqueous bromine or chlorine generally affords halogenated isatins from oxidation and/or hydrolysis, while halogenation in glacial acetic acid typically affords mono or di-halogenated indigo.[70] The preparation of 5-chloroindigo has been reported by direct halogenation of indigo in glacial acetic acid, and the procedure was also found to be amenable to the synthesis of 5,5'-dichloroindigo.[71] 5,5'-Dibromoindigo was obtained from the addition of bromine to a solution of indigo in nitrobenzene, under microwave-aided conditions.[72] A quantitative preparation of 5,5',7,7'-tetrabromoindigo (71) from the reaction of indigo with bromine and sodium nitrite in sulfuric acid has also been patented,[73] while 5,5',7,7'-tetraiodoindigo could be prepared from dehydroindigo by the action of iodine monochloride in presence of sodium bisulfate.[74]

Similarly to halogenation, nitration of indigo in water, acetic acid or sulfuric acid leads to the formation of nitroisatins, thus anhydrous media were demonstrated to be essential for the nitration of indigo to 5,5'-dinitroindigo.[75] Treatment of indigo by concentrated sulfuric acid gives indigo carmine (42) as a highly water-soluble blue-green powder,[76] typically isolated and handled as the disodium salt. Application of fuming sulfuric acid was also reported to produce indigo-5,5',7,7'-tetralsulfonic acid.[55, 77]

Halogenated derivatives of indigo demonstrate a variety of colours, based on the position of the halogens on the aromatic rings. For example, 5,5',7,7'-tetrabromoindigo (Ciba blue B, 71) is electric-blue, 6-bromoindigo 72 is a deep violet colour and Tyrian purple (6,6'-dibromoindigo, 73) is bright purple (Figure 10). Perhaps the most widely-acknowledged derivative of indigo is indigo carmine (42), which due to its high water solubility has found common use as a pH indicator with a range of 11.4-13.0, a redox indicator for the detection of ozone and superoxide,[52, 78] and has niche medical uses such as for the
detection of amniotic leakages, and for imaging sections of the renal and urinary tracts (Figure 6). \[79\]

![Indigo derivatives](image)

Figure 6: Selected indigo derivatives bearing substituents on the outer phenyl rings.

Tyrian purple (73), is an ancient pigment among the oldest of dyes, and has been used since the Iron Age by Phoenicians, Chinese and Peruvians as a sacred pigment. \[80\] In Rome, Emperor Nero decreed the exclusive right for the emperor to wear purple robes, \[81\] and the colour purple has been seen as a sign of the opulence of the British monarchy for centuries, earning the name ‘Royal Purple.’ Based on biblical notes, the vestments of Catholic priests are also dyed with Tyrian purple. The history of Tyrian purple is well-recorded, and it has been the subject of numerous synthetic studies. \[82\] Historically, the pigment could only be obtained from exposure of extracts of marine *Murex* sp. to light, and due to its low abundance, the secretions of over 10,000 individual *Murex* were required to produce a gram of the pigment. \[83\] This extreme scarcity, combined with its political and religious significance has meant its value has historically been 10-20 times higher than its weight in gold during different periods of time. \[84\] Much has been reported on the biosynthesis of Tyrian purple and its progeny – a summary of which is depicted in Scheme 19. \[85\]
Scheme 19: Biosynthetic pathway responsible for the generation of Tyrian purple 73 from tyrindoxyl sulfate 74 via the antimicrobial tyriverdin 77.

Briefly, tyrindoxyl sulfate 74 is hydrolysed under the action of either a purpurase or an arylsulfatase to give tyrindoxyl 75. Oxidation to tyrindoleninone 76 leads to dimerization, which results in the green pigment tyriverdin 77. Photolysis of tyriverdin gives rise to Tyrian purple, along with the elimination of odorous dimethyldisulfide.[86] Both tyriverdin and tyrindoleninone exhibit potent antimicrobial activity, though the exact mode of action is unknown, and it is unclear whether this is the result of the molecule itself acting as an inhibitor, or the ready elimination of toxic sulfides or disulfides upon UV irradiation.[87]

1.6.7 Metal complexes of indigo

There has been some interest in the complexes of indigo with metals in the past, owing to indigo’s abundance, strong absorptive characteristics, and low cost. Indigo was first demonstrated to form coordination complexes with metals in 1922, forming bis-indigo homoleptic chelates, such as those of CuII, ZnII, NiII and CoII (78), though yields were not reported.[88] More recently, mono-metalated (M = PdII, PtII) adducts (79) were reported from the addition of chlorido-bridged [(PBu₃)(Cl)M(µ-Cl)]₂ complexes to indigo salts in THF solution (Scheme 20).[89]
The recent resurgence of interest in metal-indigoid complexes, such as those of ‘Nindigo’ and ‘thioNindigo’ ligands\[90\] with noble metals led to the isolation of several complexes of indigo with RuII bearing acetylacetonato (acac),\[91\] and 2-(phenylazo)pyridinyl (pap)\[92\] ligands (79–82) in 2016 (Scheme 21). In subsequent studies, diruthenium complexes were also accessible using Ru(acac)\textsubscript{2}\[93\].

Scheme 21: Mono- and dimetallic complexes of indigo with ruthenium, bearing acac and pap ligands.
1.6.8 Nucleophilic chemistry of indigo with alkyl, acyl, and aryl halides

Early work by Baeyer suggested that indigo’s poor solubility meant that it could not be alkylated. However, it was found that indigo readily undergoes N-alkylation in DMF solution with barium oxide and methyl iodide, affording quantitatively N,N'-dimethylindigo 83 (Scheme 22).

![Scheme 22: Synthesis of dimethylindigo via N-alkylation of indigo.](image)

An alternative approach used sodium hydride in DMF, and gave 83 in 53% yield. Under these conditions, cis-N,N'-bridged indigo derivatives 84–87 were synthesised in low yields from various alkyl dichlorides via sequential nucleophilic displacement by the indigo dianion (Scheme 23). In a similar fashion, indigo was reacted with acyl chlorides to afford cyclic scaffolds 88 and 89 in modest yields.

![Scheme 23: Synthesis of cyclic indigo derivatives via dual-displacement of alkyl dichlorides, or via reaction with oxalyl (88) or malonyl (89) dichlorides.](image)

The N-acylation of indigo with acyl chlorides or anhydrides has been widely utilised as a means of solubilising indigo, as well as performing subsequent chemical transformations. Photochemical isomerisation between the cis- and trans- isomers of indigo derivatives occurs readily in visible light, and has been studied with a view toward the development of photosensors. Interestingly, in many instances, indigo undergoes intramolecular Knoevenagel condensation upon N-acylation. The alkylation of
indigo with diethyl malonate, and subsequently with ethyl phenylacetate in 1926 revealed cyclic, conjugated products by the elimination of water from \(N \)-acylindigo intermediates.\[^{98}\] Such Knoevenagel-type reactions with indigo are relatively well-known, and reliable means of generating intense red pigments containing bay-annulated systems, which have been the subject of numerous recent studies toward the synthesis of new organic semiconducting polymers due to their electron-accepting nature, and small HOMO-LUMO bandgap.\[^{97b, 99}\] In one recent example, thiophene bay-annulated indigo (90) was synthesised in 73% yield by heating a suspension of indigo and 2-thiopheneacetyl chloride in xylene at reflux, and could be further elaborated \(\text{via} \) metal-mediated cross-coupling chemistry to polymers such as 91, which have been demonstrated to have useful photophysical and charge-transporting properties (Scheme 24).\[^{100}\]

![Scheme 24: Knoevenagel condensation of substituted acetyl chlorides gives bay-annulated indigo adducts such as 90, which was converted into polymer 91 over 4 steps.](image)

Early attempts at Ullmann-type \(N \)-substitution of indigo with aryl iodides under \(\text{Cu}^0 \)-mediated conditions led instead to products resulting from fragmentation of indigo, and subsequent radical dimerization.\[^{101}\] Reinvestigation of the reaction in 2003 revealed conditions amenable to the synthesis of a variety of \(N \)-aryl (92b–f) and \(N,N' \)-diarylindigos (93a–d) in modest to excellent yields (Scheme 25).\[^{102}\]
Scheme 25: Aza-Ullmann cross-coupling of indigo with aryl iodides to afford either mono- (92) or bis-arylated (93) indigo adducts.

This methodology was recently adapted toward the preparation of fullerene-free organic photodiodes (OPDs), by the synthesis of 94 from Tyrian purple (73),[103] which demonstrated comparable responsivity and detectivity to silicon- and fullerene-based OPDs, suggesting possible further application of solution-processable N-arylindigo scaffolds as semi-conducting materials (Scheme 26).

Scheme 26: Cu\(^+\)-catalysed cross-coupling of indigo and 1-((2-ethylhexyl)oxy)-4-iodobenzene to afford adduct 94.

1.6.9 Summary of the fundamental chemistry of indigo
A variety of chemical transformations of indigo have been reported previously, including redox chemistry (including reduction to water-soluble substances, oxidation to reactive substances, deoxygenation, and oxidative cleavage reactions), reactions with acids and bases, nucleophilic chemistry (including alkylation, acylation, arylation, and electrophilic aromatic substitution reactions), electrophilic chemistry (including formation of imines, hydrazones, and oximes, and Grignard reactions) as well as tandem reactions of indigo (such as where N-acylation allows for subsequent Knoevenagel condensation). While on face-value, this seems a considerable body of knowledge, closer analysis of many publications from the early 20\(^{th}\) century reveals that they did not disclose percentage
yields, and characterisation of derived products was solely by melting point, elemental analysis, or by derivatisation, as these works pre-date contemporary spectroscopic and/or crystallographic techniques. As a result, much of the information reported on the reactivity of indigo is of unknown validity and would require confirmation.

1.7 Cascade reactions of indigo

Where the reactivity of indigo has been re-investigated, its compact heterocyclic core has served as a useful matrix for the synthesis of biologically-relevant heterocycles,[49b, 49c, 104] though much of the fundamental chemistry of indigo remains unknown, or requires further study. There have been several reported examples of indigo undergoing cascade reactions, resulting in the generation of complex (and in many instances, unexpected) heterocycles in a one-pot setting. Indigo’s extended conjugation is key to its ability to participate in these cascade reactions, as tautomerisation of the indole and carbonyl groups allows its electron density to be delocalised throughout the biindole system, resulting in rapid oscillation of localised partial positive and negative charges. The ability for multiple sites to act as potential nucleophiles (or electrophiles) as the reaction progresses toward an energetically stable product therefore allows for a complex reactivity profile. These reported cascade reactions are summarised below.

1.7.1 The hundred years’ controversy: cascade reactions of indigo with benzoyl chloride

The reaction of indigo with benzoyl chloride sparked a well-catalogued dispute, the outcome of which became a point of contention for more than a century.[105] The controversy surrounding the reaction stems from independent reports from several research groups, each claiming different isolated structures from the same reaction, highlighting in part both the intricacies of indigo’s chemistry, as well as a number of inconsistencies within the literature.

Initially performed in 1863, Schwartz isolated a brown amorphous solid from the prolonged reflux of indigo in excess benzoyl chloride, which was incorrectly assigned the structure N,N'-dibenzoylindigo (95).[106] Compound 95 was however later (correctly) reported as a crystalline violet powder by Posner, obtained from the reaction of indigo with benzoyl chloride in pyridine.[107] Hydrolysis of Posner’s dibenzoylindigo was additionally known to result in the regeneration of indigo, however Schwartz’s unknown compound produced different results, prompting further analysis. The empirical formula
of Schwartz’s product was later found to be \(\text{C}_{30}\text{H}_{17}\text{O}_3\text{N}_2\text{Cl} \), identical to that of a compound reported by Dessoulay in 1909 (commonly referred to as ‘Dessoulay’s compound,’ 96), obtained by the prolonged reflux of indigo with excess benzoyl chloride. More confusingly, later reports on the reaction of indigo with benzoyl chloride in the presence of copper powder, sodium nitrate, or in nitrobenzene solution resulted in the production of Ciba Yellow G (97). The true structure of 97 however proved evasive, and structural elucidation of Ciba Yellow G attracted the attention of organic chemists for decades, during which time a number of structures were proposed, and subsequently modified, however the correct structure was proposed in 1949 and confirmed in 1986 through X-ray crystallography. This final confirmation allowed ambiguities surrounding this compound to finally be put to rest over a century after its discovery (Scheme 27).

Scheme 27: Annulation of indigo with benzoyl chloride leads to diverse structures, with compound 96 as a central intermediate. Unless specified, yields were not reported.

The chemistry of Dessoulay’s compound 96 lies at the heart of the controversy surrounding this reaction, as it serves as a divergence point for a variety of closely-related derivatives. While attempting to elucidate the structure for Ciba yellow G (97), Lucius reported in 1903 that Dessoulay’s compound 96 could be converted into 97 via expulsion of benzoyl chloride at elevated (300-380 °C) temperatures. Simultaneously, the reaction
of indigo with benzoyl chloride in the presence of ZnCl₂ as an additive gave a yellow substance (Hoscht yellow R, 98),[112] which could also be generated from 96 by acidic hydrolysis at room temperature. Finally, upon heating either 96 or 98 with sulfuric acid, both afforded Hoscht yellow U (99) by elimination of benzoic acid.

In summary, the attempted benzoylation of indigo resulted in the production of five diverse structures, depending on the specific conditions under which the reactions were performed. The unanticipated complexity of this process is reflected by the timeline between the initial experiments in 1863 and the finalisation of the outcome in 1986, more than a century later.

1.7.2 Photochemical cascade reactions of \(N,N'\)-diacylindigos

While investigating the photochemical interconversion of \(N,N'\)-diacylindigo derivatives (100), it was observed that many underwent an irreversible photobleaching process.[113] Closer inspection revealed that the compounds underwent a photo-mediated rearrangement, generating cyclic carbamates 101a–e in 40–65% yield. Mechanistically, it was proposed that stabilised diradical 102 is formed upon photoexcitation, which then underwent a 1,3-alkyl migration to give compounds 101a–e (Scheme 28).

![Scheme 28: Photochemical rearrangement of \(N,N'\)-diacylindigo to compounds 101a–e via diradical 102.](image)

Performing the reaction under an oxygen atmosphere instead resulted in the formation of benzoxazinoindoles 103a–f via molecular oxygen intercepting this radical pathway. Irradiation of the acylindigo material under an O₂ atmosphere gave peroxyl diradical 104, which undergoes \(O-O\) fission to give 105 and subsequent ring-expansion to \(C,O\)-diradical.
Attack of the O-radical on the adjacent amide leads to 107, and subsequent $C-N$ bond fission terminates the cascade, affording products 103a–f (Scheme 29).[114]

Scheme 29: Photooxidation of N,N'-diacylindigoids, resulting in ring-expansion to afford benzooxazine-indoles 103a–f.

1.7.3 Cascade reactions of indigo with allylic and propargylic halides

As part of an ongoing project focused on the discovery of new cascade chemistry of indigo, our research group have previously reported on the cascade reactions of indigo with substituted allylic and propargylic halides, producing a diverse array of product heterocycles. Electrophiles with π-systems such as substituted acyl, allyl and propargyl moieties insert additional electron density to the indigo core, and the high reactivity of such systems may influence subsequent transformations. In the case of the allylation of indigo, tautomerisation of the indigo core triggers a variety of tandem cyclisation-isomerisation processes, which furnish a number of structurally complex, highly-functionalised 2,2-biindoles and spiro-bonded moieties.[115] A selection of isolated products from this series of allylation reactions is illustrated in Scheme 30.
Scheme 30: Cascade reactions of indigo with allyl bromide. a) the anticipated reaction to give \textit{N-}
allylindigo 108 b) major isolated products 109–111 c) scaffolds accessible from substituted allylic electrophiles. Stereindicators depict relative stereochemistry.

The structural complexity of the above scaffolds demonstrates both the novelty and the complexity of the cascade reactions that indigo undergoes. It was noted that in short (5 s) reactions that the mono-allylated product 108 predominated (83%), however this quickly undergoes further alkylation, and subsequent cyclisation to give 109 as the major product (41%) after 1 h. Increasing the reaction time to 3 h allowed for the isolation of 110 as the major product (72%), in addition to 111 in 15% yield. Significant control over the product type could also be achieved by moderating the steric environment of the inserted \pi-system, leading to substrate-dependent control over the cascade process. For example, the use of terminal 1,1-dimethyl and phenyl substituents was found to hinder the formation of analogues of 110, instead affording products 111 and 112 in 26% and 16% yields, respectively.

The complexity of the mechanisms involved in these cascade processes is demonstrated further by examining the outcomes of the reaction of indigo with propargyl bromide. Over a short reaction time (5 min), indigo can be seen to have undergone a number of dramatic transformations, producing heterocycles featuring allenic and ring-expanded scaffolds as
part of a complex mixture (Scheme 31).116 Most notably, the enhanced reactivity of the propargyl substrate promotes rapid, cascading nucleophilic processes from \textit{N}-propargylindigo (114), such that the cascade reaction proceeds to over 80\% completion within five minutes.

![Scheme 31](image)

Scheme 31: The reaction of propargyl bromide with indigo results in the rapid formation of a variety of polycyclic derivatives.

In developing an understanding of the unorthodox transformations that indigo undergoes, mechanistic considerations are of considerable importance. Several mechanistic branches diverge from \textit{N}-propargylindigo 114, most simply where it undergoes a base-mediated 6-exo-dig hydroamination to afford 115, which could also be accomplished in 98\% yield by stirring 114 with \textit{Cs}_2\textit{CO}_3 in DMF for 5 min. Compound 116 is generated from an intermediate enol ether, which undergoes a Claisen rearrangement to generate the allene. The core heterocycles of compounds 117 and 118 are the product of three propargyl units, where nucleophilic addition to the indigo carbonyl results in a strain-driven ring-expansion from cyclic allene 119, and simultaneous addition of a nearby electrophile – either \textit{H}^+ or \textit{CO}_2 for 117 and 118, respectively. Further proton abstraction and \textit{O}-alkylation generates the ring-expanded products (Scheme 32).
Scheme 32: Abbreviated mechanism for the formation of compound 117 from indigo via cyclic allene zwitterion 119.

This propargylation reaction was observed to be affected significantly by the nature of the leaving group, where replacing the bromide with a mesylate instead led exclusively to allene 116 and naphthyridinone 117 in 28% and 59% yield, respectively. The mechanistic pathway could also be controlled by the addition of a terminal methyl substituent, which led to the formation of acyclic compound 120 and ring-expanded product 121. Surprisingly, using 3-chloro-1-phenyl-1-propyne as the electrophile resulted in products 122 and 123, which bear little resemblance to any of the molecules accessible from propargyl bromide. Regarding compound 123, exhaustive NMR studies and HR-ESI mass spectral analyses have allowed the assignment of a tentative structure, however the observation of atypically-strong, apparent five-bond correlations in the HMBC spectrum from the H9-C1' would suggest this structure to be incorrect, and its precise structure is as-yet unconfirmed. Furthermore, no logical mechanism has been proposed which would account for the formation of 123 under these conditions. The use of bromoacetonitrile as an electrophile also led mostly to polymerisation over longer reaction times, though the mono-alkylated derivative 124 could be isolated over very short (5 s) reaction times (Scheme 33). It is apparent that the nature of both the leaving group and the terminal substituent (i.e. the substituent’s steric, and electronic characteristics) have a considerable impact on the accessible mechanistic pathways of the reaction, though the full extent of these impacts have not been fully-established.
Scheme 33: Reactions of 1-bromo-2-butyn, 3-chloro-1-phenyl-1-propyn, and bromoacetonitrile with indigo to give compounds 120–124. The exact structure of 123 is in doubt, due to apparent HMBC correlations from H9 to C1’ through five bonds.

In summary, while there has been significant development to date of the use of cascade reactions of indigo for the synthesis of new, bioactive heterocycles, there are significant areas requiring further investigation. Our current diversity-oriented approach has allowed for the exploration of a window of chemical space, however this has been limited by the exclusive use of allylic and propargylic systems to date. Due to both the degree of unsaturation and the trigonal-planar or linear geometry of the incoming electrophile, the products from these reactions are largely two-dimensional in shape, and in the limited examples where stereogenic atoms are generated in the products – e.g. spirocycles 110 and 111 – these molecules have only been synthesised racemically. In developing a more thorough understanding of these cascade processes, it would be advantageous to probe the use of new electrophilic species with greater three-dimensionality, to determine whether the chirality of the products can be controlled by the stereochemistry of the electrophile. In the process of developing more “drug-like” architectures, it could also be advantageous to insert additional H-bonding sites to improve aqueous solubility, hence
sp^3-rich electrophiles containing heteroatoms would seem ideal.

A broad array of chemical transformations of indigo were reported in the early 20th century; however, these predate many modern characterisation techniques, and in several instances, have been reported to be unreliable, or the products have been the subject of many years of repeated structural revision. While previous studies within our group have demonstrated indigo’s nucleophilicity to be a starting point for cascade reactions, there are only a handful of modern reports on indigo’s electrophilic potential, and none have utilised this as a platform for the construction of new, biologically-active molecules.

1.8 Project aims

Therefore, the aims of this project are:

- To further develop the chemistry of indigo with substituted propargylic halides (Chapter 2),
- To develop new nucleophilic cascade chemistry of indigo with multifunctional electrophiles (Chapter 3),
- To re-investigate the electrophilic chemistry of indigo with substituted nucleophiles (Chapter 4), and
- To establish the biological profile of derived species, toward the generation of new, bioactive heterocycles (Chapter 5).
Chapter 2:
Reactions of indigo with propargylic electrophiles

2.1 Propargylic systems in organic synthesis

2.1.1 Synthesis and properties of propargylic systems

Investigation of the synthesis and reactivity of propargylic systems has been one avenue of significant interest within the synthetic chemistry community, due to their ease of incorporation, robustness under many conditions, and unique reactivity under metal-catalysed conditions. Since the development and widespread appreciation of copper-catalysed azide-alkyne (“Click”) cycloaddition chemistry in the early 2000s,[117] there has been a considerable increase in interest for propargyl units as functional handles for synthetic manipulation. A Scifinder scholar search reveals significant growth in the field of propargylic chemistry since the mid-1970s, as represented by an upward trend in the number of publications concerning propargylic systems over time (Figure 7).

![Figure 7: The growth of propargylic systems in synthetic chemistry over time. Data collected from Scifinder Scholar data.](image)

In most instances, the propargyl unit is appended to the desired scaffold by nucleophilic substitution of propargyl bromide onto an amine, alcohol or thiol nucleophile, or by using alkyne synthetic strategies including elimination of haloalkenes or 1,2-dihaloalkanes (easily accessed by halogenation of olefins), and a broad variety of alkyne-substituted systems may be accessed in excellent yields from Sonogashira cross-coupling reactions.
between terminal alkynes and aryl halides under dual Pd0/CuI catalysis. Other methods include Seyferth-Gilbert homologation of ketones, nucleophilic addition of metalated acetylenes (e.g. ethynylmagnesium bromide) to aldehydes and ketones, or to alkyl halides by transmetalation with CuI to produce the corresponding Gilman reagent, which participate readily in S\textsubscript{N}2 displacement reactions (Scheme 34).[118]

2.1.2 Reactions of propargylic systems

Much of the reactivity of propargylic systems may be attributed to the Lewis basicity of the alkyne moiety,[119] and owing to the growing popularity of propargyl units in organic synthesis, their reactivity has been the subject of several reviews.[120] Briefly, in the presence of soft Lewis acids, e.g. AgI, AuI, PdII and RhII among others, the alkyne \(\pi\)-system can undergo reversible coordination, rendering the alkyne electrophilic – this mode of catalysis is common, though Pd and Au catalysts are of particular note due to their applicability toward carbon-carbon \(\pi\)-bond activation. In considering the reactivity of alkynes with various nucleophiles under Lewis acid catalysis (Scheme 35), the degree of back-bonding character that the metal possesses determines whether the Lewis pair acts primarily as a metal-stabilised carbocation (125) or a metallocarbene (126). Nucleophilic addition to carbocation 125 affords the metalated adduct 127, which undergoes protodemetalation to give the substituted product 128. Where the incoming nucleophile is a water molecule, the enol 128 typically tautomerises to afford a ketone –
for this reason alkyne hydration is both a robust methodology for ketone synthesis at low catalyst loading, and a common side-product from reactions not performed under anhydrous conditions.\cite{121}

Scheme 35: Activation of alkynes toward nucleophilic addition under Lewis acid catalysis.

Intercepting this pathway is possible using various alkyne-tethered nucleophiles, leading to intramolecular cyclisation and rearrangement to afford functionalised cyclic systems. One such example involves the intramolecular cyclisation of N-propargylamidines to substituted imidazoles under Au$^+$ catalysis (Scheme 36).\cite{122} The reaction proceeds via Lewis acid activation of the pendant alkyne, which undergoes nucleophilic attack from the nearby nitrogen nucleophile. A [1,3]-hydride shift leads to aromatisation of the imidazolium ion, which affords the trisubstituted imidazole upon protodeauration.

Scheme 36: Gold-catalysed cyclisation of N-propargylamidines to substituted imidazoles.
In similar fashion, this pathway can be intercepted by intermolecular addition to the alkyne upon Lewis acid activation. One elegant example of this is in the gold-catalysed addition of aliphatic alkynes or ynamides to anthranils by the Hashmi group, where N,O-fission of the anthranil-adduct affords a gold vinylidene ion, which undergoes regioselective Friedel-Crafts addition to the adjacent phenyl group, affording 2-substituted-7-acylindoles (129) in good yields and with high selectivity.[123] Interestingly, using propargyl silyl ethers under analogous conditions instead led exclusively to the formation of 3-acylquinolines (130) by rapid protodeauration and subsequent Mukaiyama aldol condensation due to the high nucleophilicity of the silyl enol ether pendant (Scheme 37).[124]

Scheme 37: Intermolecular cyclisation of anthranils with nonsymmetrical alkynes to give divergent access to either 7-acylindoles (129) or 3-acylquinolines (130) under AuI-catalysis.

As could be expected from their high degree of unsaturation, alkynes readily participate in cycloaddition reactions with various coupling partners. One example which has achieved widespread acclaim and practical use is the Cu-catalysed “Click” cycloaddition of alkynes and azides to afford 4-substituted 1,2,3-triazoles. Key intermediates in this mechanism have been observed spectroscopically, computationally and
crystallographically, and as such it is known that the reaction mechanism proceeds via formation of a dinuclear copper acetylide,125 with the second CuI-ion acting to both chelate the incoming azide to the alkyne, and to activate the alkyne to nucleophilic attack (Scheme 38). Elimination of a copper ion forms the triazole heterocycle and subsequent protolysis of the organocuprate leads to elimination of the product, and propagation of the catalytic cycle.126

Scheme 38: Catalytic cycle for the copper-catalysed azide-alkyne "Click" cycloaddition reaction, and several key intermediates observed by crystallography.
2.2 Cascade reactions of propargylic systems with indigo

2.2.1 Limitations of previously-explored chemistry

From the established chemistry of indigo in reactions with propargylic halides, it is apparent that the nature of the leaving group has a significant effect on the reaction pathway, evidenced by the observation that exchanging the bromide leaving group for a mesylate led exclusively to products 116 and 117 in a combined 87% yield,[116] while the corresponding chloride led instead to compounds 114 and 115 in combined 82% yield (Scheme 39).[127]

Scheme 39: The reaction of indigo with propargyl mesylate led exclusively to compounds 116 and 117 in high yield, while propargyl chloride instead gave 114 and 115 in high yield.
Our current working hypothesis is therefore that with weaker leaving groups, spontaneous N,N'-cyclisation occurs prior to a second N-alkylation, producing higher yields of 115 and related structures, while stronger leaving groups lead to more rapid N'-alkylation, which serves as the starting point for subsequent cascade reactions toward the more-complex heterocycles 116 and 117. As a result, it is unknown whether the divergence in outcomes from those reported for the reaction of the methyl-substituted 1-bromo-2-butyne and the phenyl-substituted 3-chloro-1-phenyl-1-propyne are a result of the increased steric effect of the phenyl group, the conjugation of the phenyl group, the weaker chloride leaving group, or a combination of all three factors (Scheme 40). The primary reason for using the (chloro)-phenylpropargyl electrophile in previous studies was its commercial availability, and it is unknown whether the corresponding bromide would show similar or disparate reactivity with indigo. Similarly, if the conjugation of the phenyl group has a significant effect on the outcome of the reaction, it should be possible to tune this reactivity by utilising electron-donating or -withdrawing groups. This effect has not yet been adequately examined, and is the subject of this chapter.

Scheme 40: Differing reactivity of the methyl- and phenyl-substituted propargyl electrophiles, and proposed methodology for determining the cause of this disparate reactivity.
2.3 Cascade reactions of (aryl)propargyl electrophiles with indigo

2.3.1 Synthesis of starting materials

The synthesis of the required aryl-substituted propargyl electrophiles was accomplished on multi-gram scale by a two-step sequence, involving Sonogashira coupling of propargyl alcohol with an aryl iodide to afford an intermediate (aryl)propargyl alcohol, which was brominated under Appel conditions using PPh₃/Br₂. The Pd(PPh₃)₂Cl₂ catalyst utilised for the Sonogashira coupling was prepared on multigram-scale by ligation of PPh₃ to (PdCl₂)n in benzonitrile following a previously-reported procedure;[128] the mixture was heated to reflux under an N₂ atmosphere with vigorous stirring for 20 min, then allowed to cool to room temperature overnight and the collected solids triturated with ether to furnish the desired bis-phosphine complex as small, bright yellow crystals in 95% yield. Initially, the cross-coupling reaction between 4-idoanisole and propargyl alcohol was run at reflux for 3.5 h in neat diethylamine using Pd(PPh₃)₂Cl₂ (3 mol%) and CuBr (10 mol%),[119h] which upon workup and flash chromatography afforded the desired p-methoxyphenyl adduct 131a in 62% yield. Optimal conditions were found using propargyl alcohol (5.0 eq.) and NEt₃ (7.0 eq.) in a 1:1 toluene:MeCN (v/v) mixed solvent, with CuI (10 mol%) and Pd(PPh₃)₂Cl₂ (2 mol%) at room temperature for 2 days, which afforded 131a in 99% yield. This reaction proved amenable to the synthesis of various functionalised arylated substrates, affording the corresponding alcohols 131b–d on gram-scale in high yield (Scheme 41).

Scheme 41: Optimised conditions for the Sonogashira coupling of aryl iodides with propargyl alcohol to yield the substituted propargyl alcohols 131a–d.

Analysis of the HRESI mass spectrum of 131a revealed a peak at 163.0760, assigned to the molecular ion [C₁₀H₁₁O₂]⁺, revealing the substitution of the iodide handle for the propargylic alcohol. Analysis of the ¹H NMR spectrum revealed a pair of 2H doublets at δ 7.37 and δ 6.84, assigned to the alkyne-adjacent H2'/H6' and methoxy-adjacent H3'/H5' respectively of the para-disubstituted phenyl group. Further upfield, the 2H apparent singlet at δ 4.48 was assigned to the H1 methylene protons of the propargyl fragment, which coupled to a broad singlet resonance at δ 1.68 in COSY experiments, which was
assigned to the free hydroxyl proton. The remaining 3H singlet at δ 3.81 was assigned to the para-methoxy group of the aryl substituent. Analysis of the 13C NMR spectrum revealed a downfield quaternary resonance at δ 159.8 and an upfield quaternary resonance at δ 114.7, which were assigned to C4’ and C1’ of the aryl substituent, while the remaining two aromatic-range resonances at δ 133.2 and δ 114.0 were assigned to C2’/C6’ and C3’/C5’, respectively. A pair of adjacent quaternary resonances appeared at δ 85.6 and δ 85.9, which were assigned to the alkyne carbons C2 and C3, respectively, and the remaining resonances at δ 55.3 and δ 51.7 were assigned to the methoxy and methylene carbons, respectively.

Subjecting alcohols 131a–c to a mixture of PPh$_3$/Br$_2$ afforded the desired alkyl bromides 132a–c in excellent yield. Briefly, to a cooled (0 °C) solution of PPh$_3$ (1.1 eq.) in dry CH$_2$Cl$_2$ was added dropwise neat Br$_2$ (1.1 eq.), and the resulting bright yellow suspension warmed to room temperature over 1 h. To this was added slowly dropwise a solution of the selected propargyl alcohol (1.0 eq.) in CH$_2$Cl$_2$, and the mixture stirred at room temperature for 1 h. The resulting triphenylphosphine oxide was precipitated by adding hexanes, then either subjected to repeated recrystallisation from hexane (131a) or subjected to column chromatography (131b–c) to afford the corresponding alkyl bromides 132a–c in excellent yield (Scheme 42).

Scheme 42: Conversion of alcohols 131a–c to alkyl bromides 132a–c by reacting with PPh$_3$/Br$_2$.

The methoxy-substituted (phenyl)propargyl bromide 132a was isolated in 99% yield, following repeated recrystallisation from hexane. Analysis of the EI(+) mass spectrum revealed peaks at 224$^+$ and 226$^+$ in a 1:1 ratio in 8% relative abundance, assigned to the isotopic pair of [C$_{10}$H$_{10}$O$_{79}$Br]$^+$ and [C$_{10}$H$_{10}$O$_{81}$Br]$^+$ ions, and a base peak at 145$^+$, corresponding to the [M-Br$^+$]$^+$ fragment, demonstrating the substitution of the hydroxyl group for the alkyl bromide. Analysis of the 1H NMR spectrum revealed a 2H singlet resonance at δ 4.17, assigned to the bromine-adjacent methylene protons H1a/b, and a 3H singlet resonance at δ 3.81, assigned to the methoxy protons of the aryl substituent. Analysis of the 13C NMR spectrum revealed a highly-shielded resonance at δ 15.9, and a pair of quaternary resonances at δ 83.0 and δ 87.0, which were assigned to C1, C3 and
C2 of the propargylic moiety, respectively. Further downfield, the resonances at δ 133.6 and δ 114.1 were assigned to C2'/C6' and C3'/C5' of the 4-methoxyphenyl substituent, and the remaining resonances at δ 160.1, δ 114.3, and δ 55.5 assigned to C4', C1', and the methoxy carbon, respectively.

Under optimised conditions, this reaction proved reliable and consistently afforded the desired bromides in 90-99% yield, though it proved sensitive to the rate of alcohol addition, as evidenced by diminished yields and the formation of complex mixtures with faster addition rates to the PPh₃Br₂ complex generated in situ. The methoxy-substituted bromide 132a also proved unstable toward silica gel chromatography, though the phenyl- (132b) and 4-nitrophenyl-substituted (132c) propargyl bromides could be easily purified by flash chromatography.

2.3.2 Reactions with indigo

As a direct analogue to the previously-explored (phenyl)propargyl chloride, we examined the reaction between (phenyl)propargyl bromide 132b with indigo under identical conditions to those used previously.[116b] Therefore, a sonicated suspension of indigo (1.0 mmol) in anhydrous DMF (40 mL) was transferred by cannula into a round-bottomed flask containing anhydrous cesium carbonate (3.7 mmol) and 4 Å molecular sieves under a N₂ atmosphere, and the mixture warmed in an oil bath pre-heated to strictly 85-87 °C for 1 h with vigorous stirring.* The N₂ flow was cut, then a solution of 132b (5.0 mmol) in DMF (2 mL) injected through the septum, and the resulting mixture stirred for 30 min. Following aqueous workup, the crude mixture was fractionated on silica, then the individual fractions subjected to flash chromatography, affording the ring-expanded indolobenzonaphthyridinone 133 in 35% yield, as well as the known compounds azepinodiindole 122 in 37% yield, and diindoloxadiazepine 123 in 12% yield (Scheme 43).

* These conditions were optimised previously by Dr. Alireza Shakoori for reactions of indigo with propargylic halides, and were used without modification to allow comparison between systems. The rationale behind this strict temperature control is that in general, the poor solubility of indigo in DMF means that at lower temperatures (e.g. 70 °C), more unreacted starting materials are recovered, and the slower rate of reaction leads to increased proportions of isatins and other byproducts from oxidation and/or hydrolysis.
Scheme 43: Reaction of (phenyl)propargyl bromide 132b with indigo, to afford the known products azepinodiindole 122, oxadiazepinodiindole 123, and the ring-expanded indolobenzonaphthyridinone 133. Adjacent to the structure is a photograph of a single crystal of 133 grown from CH₂Cl₂/hexane, visualised under a light microscope at 40× magnification.

The ring-expanded indolobenzonaphthyridinone 133 was isolated as deep red crystals in 35% yield from indigo following fractionation on silica and flash chromatography using 10% EtOAc/hexane as eluent. Analysis of the HRESI mass spectrum revealed a peak at \(m/z \) 491.1762, assigned to the molecular ion \([\text{C}_{34}\text{H}_{23}\text{N}_2\text{O}_2]^+\), revealing the addition of two (phenyl)propargyl units to the indigo core, while its characteristic deep red colour qualitatively suggested through-conjugation to have been interrupted in the molecule.

Analysis of the \(^1\text{H}\) NMR spectrum revealed a pair of doublets at \(\delta \) 5.18 and \(\delta \) 4.91, which were assigned to the methylene protons of the \(N\)-phenylpropargyl pendant, made chemically-distinct by restricted rotation about the \(N13\)-\(C1'\) axis, as was observed in the \(^1\text{H}\) spectrum for the methyl analogue 121.\(^{[116b]}\) This assignment was supported by analysis of the HSQC spectrum, which showed direct attachment of both doublets to a resonance at \(\delta \) 44.9, assigned as \(C1'\) (Figure 8). The distinctive enamine protons H6 and H7 were assigned to a pair of doublets at \(\delta \) 6.83 and \(\delta \) 5.51, respectively, evidenced by COSY correlations to one-another, and the presence of a strong three-bond HMBC correlation between H6 and the quaternary \(^1\text{C}\) resonance at \(\delta \) 57.2, assigned to the stereogenic carbon atom C7a (Figure 9, Figure 10). Analysis of the \(^{13}\text{C}\) NMR spectrum revealed a pair of carbonyl resonances at \(\delta \) 191.6 and \(\delta \) 178.9, assigned to the C8 and C14 ketone groups, respectively. Analysis of the HMBC spectrum revealed a strong correlation between C14 and a \(^1\text{H}\) resonance at \(\delta \) 7.77, assigned as H1, while C8 coupled strongly to a resonance
at δ 8.01, and coupled weakly to a resonance at δ 7.08, assigned as three-bond and four-bond correlations to the nearby H9 and H10, respectively. The C8 ketone group was additionally correlated to the adjacent enamine H7 through three bonds, confirming the insertion of the propargyl moiety between the indolic C2/C3 bond of the indigo precursor.

Figure 8: HSQC spectrum for compound 133, with key correlations highlighted.

Figure 9: COSY spectrum for compound 133 with key correlations highlighted.
Figure 10: HMBC spectrum for compound 133, with key correlations highlighted.

X-ray quality crystals of compound 133 were grown from slow evaporation of a hexane/CH$_2$Cl$_2$ solution, and its structure was unequivocally confirmed by x-ray crystallography (Figure 11).†

Figure 11: ORTEP depiction of compound 133. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

† X-ray crystallography performed by Dr. Anthony Willis (ANU).
The formation of 133 by nucleophilic ring-expansion was unexpected for several reasons. Firstly, it was hypothesised that the relatively-large steric presence of the terminal phenyl substituent would hinder nucleophilic attack of the alkyne π-system to the indigo carbonyl. Furthermore, there was no evidence for the formation this compound in the previous reaction of 3-chloro-1-phenyl-1-propyne,\cite{116b} with repeated attempts of this reaction giving similar isolated yields of compounds 122 (24%) and 123 (35%) to those reported with no 133 present. Using the bromide leaving group however, phenyl-substituted 133 was isolated in higher yield (35%) than that reported for the methyl-substituted 121 (31%), suggesting the steric effect of this substituent to be negligible. It is therefore the case that the nature of the leaving group has a significant impact on product distribution in reactions with indigo with terminally-substituted propargylic electrophiles.

To determine whether increasing the electron density of the ring system would increase the nucleophilicity of the alkyne system and lead to higher yields of ring-expanded products like 121 and 133, we examined the reaction of indigo with 3-(4-methoxyphenyl)propargyl bromide 132a under identical conditions to those for 132b. Therefore, a sonicated suspension of indigo (1.0 mmol) in dry DMF (40 mL) was transferred by cannula to a round-bottomed flask containing anhydrous cesium carbonate (3.7 mmol) and 4 Å molecular sieves, and the mixture warmed in an oil bath pre-heated to strictly 85-87 °C for 1 h with vigorous stirring.2 The N\textsubscript{2} flow was cut, then a solution of 132a (5.0 mmol) in DMF (2 mL) injected through the septum, and the resulting mixture stirred for 30 min. Following aqueous workup, fractionation on silica and flash chromatography afforded the 4-methoxyphenyl-substituted ring-expanded product 134 in 21% yield as part of a complex mixture of polymers, baseline materials, and other decomposition products (Scheme 44).

1 These conditions were optimised previously by Dr. Alireza Shakoori for reactions of indigo with propargylic halides, and were used without modification to allow comparison between systems.
Scheme 44: Reaction of (4-methoxyphenyl)propargyl bromide 132a with indigo, to afford the ring-expanded indolobenzonaphthyridinone 134. Adjacent to the structure is a photograph of a single crystal of 134 grown from CH$_2$Cl$_2$/hexane, visualised under a light microscope at 40× magnification.

The methoxy-substituted indolobenzonaphthyridinone 134 was isolated as small reddish-pink crystals following repeated chromatographic separation. Analysis of the HRESI mass spectrum revealed a peak at m/z 551.1959, assigned to the molecular ion [C$_{36}$H$_{27}$N$_2$O$_4$]$^+$, revealing the addition of two units of the (aryl)propargyl electrophile to the indigo core. Analysis of the 1H NMR spectrum revealed a pair of 3H singlet resonances at δ 3.51 and δ 3.76, assigned to the two para-methoxy groups attached to the unconjugated Ar1 and conjugated Ar2 substituents respectively. The pair of doublets at δ 5.14 and δ 4.87 were assigned to the methylene protons of the N-propargyl substituent due to hindered rotation about the N-C linkage, which were correlated to each other by both HSQC and COSY experiments (Figure 12, Figure 13). Further downfield, a pair of doublets at δ 5.49 and δ 6.82 were correlated to each other by COSY experiments, and assigned to the enamine protons H7 and H6, respectively. HMBC analysis revealed that both H6 and a 2H proton resonance at δ 7.18 assigned as H2/H6 of Ar1 showed a strong correlation to a weak quaternary 13C resonance at δ 56.4, assigned to the quaternary centre C7a, originally from the alkyne aryl-terminus (Figure 14). The H1ꞌa/b methylene protons showed additional HMBC correlations to a pair of quaternary carbons at δ 81.5 and δ 85.8, which were assigned to C2ꞌ and C3ꞌ of the propargylic pendant.
Figure 12: HSQC spectrum for compound 134 with key correlations highlighted.

Figure 13: COSY spectrum for compound 134 with key correlations highlighted.
Figure 14: HMBC spectrum for compound 134 with key correlations highlighted.

X-ray quality crystals of compound 134 were grown by slow evaporation of a CH$_2$Cl$_2$/hexane solution, and its structure confirmed by x-ray crystallography (Figure 15).\footnote{X-ray crystallography performed by Dr. Anthony Willis (ANU).}

Figure 15: ORTEP depiction of compound 134. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.
Interestingly, an additional product (135) arising from hydrobromination of the alkyne was also observed within the crystal matrix, though this was not observed within the crude mixture (Figure 16). ** The incorporation of the bromide into the final molecule could be a consequence of the preceding step in its synthesis, whereby one of two pathways may lead to undesired hydrobromination. The generation of HBr from the reaction of PPh$_3$.Br$_2$ with alcohols occurs rapidly and in stoichiometric quantities, hence it is possible that the electron-rich propargyl bromide 132a may undergo Markovnikov-addition of HBr to give bromostyrene 136, promoted by the para-methoxy substituent. Alternatively, an ethereal Br' radical from the decomposition of trace Br$_2$ in the product could result in mixtures of 132a and 136. This bromostyrene could also act as a competent electrophile, undergoing N-alkylation in situ to form 135 (Scheme 45), however the exact nature of the formation of 135 is unknown as it was isolated in trace quantities in a single run, and only observed crystallographically. Furthermore, the proposed bromostyrene 136 was not observed spectroscopically in any samples of 132a, hence it is not apparent if it may have been formed in situ in trace quantities, or indeed whether it is involved in the formation of 135 at all.

Scheme 45: Possible origin of 136 from hydrohalogenation of 132a with residual bromine en route toward adduct 135.

** X-ray crystallography performed by Dr. Anthony Willis (ANU).
Given the formation of both the phenyl (133) and 4-methoxyphenyl (134) substituted indolobenzonaphthyridinones from electron-rich substituted (aryl)propargyl bromides, it was of interest to probe the use of electron-poor aryl systems in these reactions. In a tandem study performed by a fellow PhD student, indigo was reacted with (4-nitrophenyl)propargyl bromide (132c) under numerous sets of conditions, however these overwhelmingly led to decomposition and/or extensive polymerisation of the reaction mixture into uncharacterizable baseline materials, and in a control experiment, 132c was treated with cesium carbonate in DMF, and was observed to undergo rapid autopolymerisation within minutes. It is likely that the strongly electron-withdrawing nature of the nitro group led to an increase in the acidity of the methylene H1 protons, forming the resonance-stabilised carbanion 137 in the presence of the weak carbonate base. Elimination of the pendant bromide could then generate a highly-reactive propargyl carbene (138), which would then be susceptible to decomposition (Scheme 46). Given the rapid nature of this decomposition, electron-poor (aryl)propargyl electrophiles such as 132c are unsuitable for application to this methodology.
Scheme 46: Proposed mechanism for the decomposition of (4-nitrophenyl)propargyl bromide with weak base via carbanion 137, and carbene 138 generated by stepwise deprotonation and halide elimination.

2.3.3 Mechanistic discussion

For both the phenyl- and 4-methoxyphenyl-substituted compounds 133 and 134, the reaction mechanism is likely analogous to that for the formation of the methyl-substituted 123 reported previously (Scheme 47), which overlaps with the proposed mechanism for ring-expansion with unsubstituted propargyl halides (See Chapter 1, Scheme 32). Briefly, N,N’-dialkylation of indigo affords 139, which in the presence of amphiprotic bicarbonate ions in solution may be protonated to give N-alkyliminium ion 140. With stronger leaving groups (i.e. with R-Br, rather than R-Cl), this second alkylation would prove more favourable, accounting for the observed disparate reactivity of the phenylpropargyl chloride and bromides. Deprotonation by excess carbonate base may then afford ylid 141, rendering the alkyne nucleophilic. Nucleophilic addition of the ylid to the adjacent carbonyl could then afford key intermediate 142, which features a strained seven-membered ring with an internal allene, for which relief of the ring-strain energy would allow significant driving force for ring-expansion. Reformation of the ketone could then promote simultaneous 1,2-migration of the indole C2 to attack the allene terminus and protonation of C7 to give the iminium ion 143, which is deprotonated to give the isolated compounds 123, 133, and 134. Where the terminal R-group is a proton, the reaction would then continue via enolization of the α,β-unsaturated system and O-alkylation to afford 117, however this pathway does not proceed for substituted propargyl substrates as this abstraction step would require the unfavourable fragmentation of the C7a quaternary centre by loss of cationic alkyl or aryl fragments.
Scheme 47: Proposed mechanism for the formation of compounds 123, 133, and 134 from the reaction of indigo with terminally-substituted propargylic halides.

2.4 Conclusions

Indigo undergoes cascade reactions with terminally-substituted propargyl bromides to afford deep-red crystalline indolobenzonaphthyridinones in modest yields. It was found that the nature of the bromide leaving group was necessary for ring-expansion, presumably due to the faster rate of \(N,N'\)-dialkylation with stronger leaving groups. This would allow for tuneable and predictable access to the desired heterocycles, with the reaction pathway dictated by the leaving group. Throughout the course of this brief study, the electron-rich phenyl and 4-methoxyphenyl substituents were found to be tolerated for the reaction, however the 4-nitrophenyl equivalent proved unstable toward the reaction conditions and the desired product was not isolated.
Chapter 3: Reactions of indigo with ring-strained electrophiles

3.1 The role of ring-strained electrophiles in organic synthesis

3.1.1 Synthesis and properties of ring-strained electrophiles

In both linear and cyclic sp^3-hybridised systems, VSEPR theory dictates that covalently-bonded atoms typically adopt a tetrahedral geometry, where four substituents are separated by an average bond angle of 109.5°, minimizing steric and electronic interactions between atoms.[130] While this general approach has been criticised in the physical chemistry community for its oversimplification,[131] it remains the most widely-taught model for predicting structural features of simple organic molecules. In small or large ring systems where bond angles deviate from these ideal geometries, ring-strain is introduced due to unfavourable steric and/or electronic clashes between adjacent atoms. This ring-strain energy can provide significant driving force toward ring-opening reactions, and is one primary factor responsible for the high reactivity of three- and four-membered ring systems with both nucleophiles and Lewis acids.[132] The synthetic utility of substituted oxiranes, aziridines, thiiranes and cyclopropanes has been well-established, and these are widely-utilised in the synthesis of functional materials.[133] In particular, oxiranes and aziridines have found widespread use in the pharmaceutical and agrochemical industries as synthetic building blocks, and in the polymer industry as precursors in the production of plastics, resins, and adhesives.

Owing to their widespread use and high global demand, there are a broad variety of methods for the synthesis of oxiranes and aziridines from simple chemical feedstocks (Scheme 48). In general, many of these can be classified into one of two approaches – either nucleophilic ring-closing of amines or alcohols by displacement of an α-(pseudo)halide, or direct oxidation of alkenes to the strained system – though there are several alternatives, e.g. Corey-Chaykovsky epoxidation of ketones or imines with sulfurylids, and ring-contraction of cyclic carbonates or carbamates. Olefin epoxidation has been one avenue of particular interest due to the wide commercial availability and low cost of many alkenes, as well as their facile accessibility from cross-metathesis and Wittig- or Horner-Wadsworth-Emmons-type reactions. Classically, epoxidation reactions involve the use of either inorganic or organic peroxides (e.g. H_2O_2/NaOH, TBHP), or peroxy-acids (e.g. m-CPBA), though these systems typically suffer from limited enantioselectivity. The development of asymmetric alkene oxidation methods by
Sharpless was the subject of the 2001 Nobel prize for chemistry, and enantioselective allylic epoxidation featured prominently among these – as a result of this and other methods, a vast array of chiral oxiranes are now commercially-available, with many gaining broad appreciation as ‘chiral pool’ precursors to sp^3-rich frameworks.[134] Methods for direct aziridination of alkenes are less-common and less-general in scope than for epoxidation, though a variety of catalytic processes for asymmetric aziridination are possible using N-haloamines or -sulfonamides, either in the presence or absence of an external oxidant,[135] though there remain issues of stereoselectivity and generality. In practice, chiral aziridines are most-commonly accessed \textit{via} ring-closure reactions of α-halosulfonamides or -carbamates.

![Scheme 48: Common methods used to synthesise oxiranes and aziridines: nucleophilic ring-closure, and direct oxidation of alkenes, as well as C-O or C-N insertion of sulfur ylids, and decarboxylation of carbonates and carbamates.](image)

3.1.2 Reactions of ring-strained electrophiles

The main synthetic application of these strained systems is their use as potent electrophiles. The ring-strain energies of cyclopropane, oxirane, and aziridine have each been experimentally determined as \textit{ca.} 27 kcal/mol, making ring-opening a highly-favourable process.[136] The high degree of polarisation of the C-O or C-N bond renders both C2 and C3 electrophilic, allowing for alkylation with a broad variety of nucleophiles (Scheme 49). Ring-opening also serves to extrude a nucleophilic heteroatom, which may be used for subsequent derivatisation, though this may also lead to undesired polymerisation.
Scheme 49: Nucleophilic ring-opening of oxiranes and aziridines, leading to one of two regioisomers, depending on the steric environment of the particular substrate.

Given the bifunctional reactivity of epoxides and aziridines toward both electrophiles and nucleophiles, these would seem ideal moieties for designing new cascade reactions. As aforementioned, polyepoxide cascade reactions feature prominently in the total synthesis of various marine polyketides (see Chapter 1, Scheme 2),137 and there are numerous examples of strained-ring species undergoing tandem reactions upon ring-opening, including Friedel-Crafts alkylation, oxa- and aza-Michael addition, hydroamination, aminohalogenation, and heterocyclisation reactions.119a, 138 Given their high reactivity, synthetic accessibility, and applicability toward use in cascade reactions, strained-ring systems represent ideal reactive moieties for the development of new cascade chemistry of indigo.

3.2 Cascade reactions of ring-strained electrophiles with indigo

3.2.1 Substrate selection – 2-(halomethyl)oxiranes and aziridines

In establishing a fair comparison with the three-carbon allylic and propargylic electrophiles previously studied, it was important to select a range of strained electrophiles with similar chain length. For this reason, a series of chloromethyl- and bromomethyl-substituted strained systems were proposed – of these, the chiral oxiranes (S)-epichlorohydrin (144), (±)-epibromohydrin (145) and (R)-glycidyl tosylate (146) were available from commercial sources, while the remaining substrates were synthesised from simple materials. Additionally, while there have been previous studies into the reactivity of (±)-N-tosyl-2-bromomethylaziridine (147),139 the related chloromethylaziridine (148) had neither been reported previously, nor was there an established protocol amenable to its enantioselective synthesis (Scheme 50).
As a broad class of molecules, these selected species are 1,2- or 1,3-dication synthons, bearing a potentially-nucleophilic heteroatom at C2. We anticipated that these additional electrophilic sites would facilitate twofold nucleophilic attack by indigo, allowing for controllable N,N'-cyclisation, allowing either six- or seven-membered heterocycles to be generated. Alternatively, liberation of the nucleophilic oxygen or nitrogen atom from the strained ring could allow for nucleophilic addition to the indigo carbonyl or via Michael addition to the central double bond, allowing access to spirocyclic derivatives. Assuming the stereochemical integrity of the epoxide or aziridine could be retained under the reaction conditions, these spirocycles could be accessed diastereoselectively as influenced by the set chirality of the electrophile.

3.2.2 Substrate selection – 2,2'-bioxirane and 2,2'-biaziridine

Previous work within our group has focused on the generation of vicinal diamine libraries for screening as ligands in atropselective cross-coupling reactions. For the generation of C$_2$-symmetric scaffolds, both 2,2'-bioxirane (149), and later 2,2'-biaziridine (150) have been utilised as synthetic starting points for further elaboration after ring-opening.$^{[140]}$

Accessible in enantiopure form over multiple steps from D- or L-tartaric acid.$^{[140c, 141]}$ both enantiomers may be accessed in multigram quantities from the common acetonide-protected dimesylate 151 by stepwise substitution and deprotection reactions (Scheme 51).
Both dimeric species have been previously reported to undergo selective C1/C4 di-ring-opening upon treatment with various nucleophiles. Currently, this reactivity has not been explored using di-nucleophiles, and as such it is unclear whether ring-opening these *bis*-electrophiles with indigo would proceed *via* this known 1,4 pathway to produce an eight-membered ring, or whether the formation of a more-favourable seven-membered ring would instead promote sequential 1,3-cyclisation. Alternatively, the nucleophilicity of the heteroatom may instead lead to spirocyclisation, allowing access to more complex heterocyclic frameworks.

3.3 Cascade reactions of epihalohydrins with indigo

3.3.1 Reaction discovery and structure elucidation

In developing reaction conditions for this methodology, we sought to use the previously-optimised conditions described for the allylation and propargylation of indigo as an initial basis. Therefore, a suspension of indigo (1 mmol) in DMF (40 mL) was sonicated for 30 min, then transferred to a round-bottomed flask containing pre-dried Cs₂CO₃ (3.7 eq.) and 3 Å molecular sieves, and the mixture warmed in an oil bath preheated to strictly 85-87 °C for 1 h under nitrogen. The N₂ flow was cut, and (±)-epichlorohydrin (*rac*-144, 5.0 eq.) injected, and the mixture stirred vigorously for 2 h, after which TLC analysis showed complete consumption of indigo. The deep purple reaction mixture was quenched over crushed ice, and TLC analysis revealed a complex mixture of more than ten distinct materials.†† Attempts to lower the reaction temperature generally led to increased recovery of unreacted starting materials, and raising the temperature increased polymerisation and isolation of baseline materials.

†† Attempts to lower the reaction temperature generally led to increased recovery of unreacted starting materials, and raising the temperature increased polymerisation and isolation of baseline materials.
individual components. Fractional crystallisation of the crude mixture from 60% CH₂Cl₂/petroleum spirit, and subsequent flash chromatography on silica (gradient elution, 5%-50% EtOAc/CH₂Cl₂) afforded the N,N'-cyclic product 152 (43%), as well as spiroketal 153 (6%), cyclic carbonate 154 (6%), and allylic alcohol 155 (7%) in addition to polymeric baseline materials comprising 46% of the dry weight of the crude residue (Scheme 52).

Scheme 52: Products from the cascade reaction of indigo with (+)-epichlorohydrin after 2 h. Stereoindicators show relative configuration of diastereomers.

Tetrahydropyrazinodiindole 152 was isolated as an intense dark blue powder in 43% yield from indigo. Analysis of the HRESI mass spectrum indicated a peak at m/z 341.0888, assigned as [C₁₉H₁₄N₂O₃Na]⁺, revealing the addition of a single glycidyl subunit to the indigo core. The UV-Vis spectrum of 152 in CH₂Cl₂ had an intense absorption band at 303 nM (ε = 6339), and its intense deep blue-purple colour suggested that the central double bond had remained intact. Analysis of the FTIR spectrum revealed a broad absorption band centred at 3432 cm⁻¹, suggesting the presence of a hydroxyl substituent.
Analysis of the 13C APT spectrum indicated the retention of both carbonyls of the parent scaffold, assigned to resonances at δ 179.9 and δ 179.7 ppm. Analysis of the 1H NMR spectrum showed a broad singlet resonance at δ 5.28 which exchanged with D$_2$O and was assigned as the hydroxyl group. The aliphatic protons of the alkyl tether were assigned by analysis of the COSY spectrum, which revealed correlations between the hydroxyl proton and the 2H multiplet from δ 3.60-3.49, assigned as the methylene protons H1'a and H1'b of the hydroxymethyl pendant. This methylene correlated to a multiplet at δ 4.72-4.65, assigned as H6, which correlated to both a doublet at δ 4.46, and a doublet of doublets at δ 3.73, which were assigned as H7b and H7a, respectively (Figure 17). Analysis of the NOESY spectrum revealed through-space correlation of H6 and H7b to H4 and H9, respectively, while there was no apparent correlation between H9 and H7a, supporting the assignment of the diastereotopic C7 methylene protons (Figure 18). The gHMBC spectrum revealed strong, three-bond correlations between methylene H7b with both C8a, and C13a, and the alkyl chain was therefore determined to bridge both indigo nitrogen atoms (Figure 19).

![COSY Spectrum](image)

Figure 17: COSY spectrum of compound 152, with key correlations highlighted.
Figure 18: The NOESY spectrum of compound 152 with key correlations highlighted.

Figure 19: Partial HMBC spectrum of compound 152.
The mother liquor from 152 was subjected to flash chromatography, resulting in the isolation of a fraction with a characteristic yellow-green fluorescence in ambient conditions, and upon irradiation with UV light. The spirokeatal 153 was isolated from this fraction as bright orange crystals in 6% yield from indigo. Analysis of the HRESI mass spectrum revealed a peak at 341.0900, assigned as [C_{19}H_{14}N_{2}O_{3}Na]^+ , and revealing the addition of a single glycidyl chain. Analysis of the FTIR spectrum revealed a sharp band at 3310 cm\(^{-1}\), assigned to an indolic NH stretch, as well as a sharp peak at 1689 cm\(^{-1}\), assigned as a benzylic ketone C=O stretch. Analysis of the \(^1\)H NMR spectrum revealed the molecule to be non-symmetrical, due to the presence of eight distinct aromatic resonances, assigned as the eight aromatic peaks of the parent indigo scaffold. Further upfield, five distinct aliphatic protons were identified and assigned based on analysis of the COSY and HSQC spectra (Figure 20) – a multiplet at \(\delta\) 5.16-5.09 assigned to H7, a geminal triplet at \(\delta\) 4.38 and doublet of doublets at \(\delta\) 4.25 assigned to the oxygen-bound methylene protons H8b and H8a respectively, and a second geminal pair of a doublet of doublets at \(\delta\) 4.20 and a doublet at \(\delta\) 3.74, assigned as the nitrogen-bound methylene protons H6a and H6b respectively (Figure 21). The individual assignment of the two methylenes was confirmed by analysis of the NOESY spectrum, which revealed through-space coupling of H6a and H8a via the rigid spirocyclic tether, suggesting a syn arrangement, and there was no evident correlation between H6a and H8b, suggesting these to be anti. This assignment was further supported by correlations between H6b and H8b, suggesting these to be syn. The bridgehead proton H7 also showed through-space correlation to all other aliphatic protons of the chain (Figure 22). Analysis of the \(^{13}\)C NMR spectrum revealed the retention of a single downfield carbonyl peak at 188.2 ppm, assigned to the C15 ketone moiety. Analysis of the HMBC spectrum revealed correlations between H8a, H8b and H7 to a weak quaternary resonance in the \(^{13}\)C NMR spectrum located at 111.5 ppm, assigned to the spiro carbon C9a (Figure 23).
Figure 20: HSQC spectrum for compound 153.

Figure 21: COSY spectrum of compound 153 with key correlations highlighted.
Figure 22: NOESY spectrum for compound 153 with key correlations highlighted.

Figure 23: HMBC spectrum for compound 153.
In a subsequent experiment using (S)-epichlorohydrin, orthorhombic crystals of 153 were obtained from slow evaporation of a solution in ethyl acetate, and its absolute structure and stereochemistry was confirmed by x-ray crystallography (Figure 24).‡‡

Further elution with 30% EtOAc/CH2Cl2 afforded a deep orange residue. Removal of the solvent and recrystallisation from EtOAc gave the cyclic carbonate 154 as small, luminescent orange crystals in 6% yield from indigo. HRESI mass spectral analysis revealed a peak at \(m/z \) 441.1082, assigned to the molecular ion \([C_{23}H_{18}N_2O_6Na]^+\), showing the addition of two glycidyl subunits to the indigo core, as well as a molecule of CO2. Analysis of the FTIR spectrum revealed two peaks at 1800 cm\(^{-1}\) and 1734 cm\(^{-1}\), assigned as carbonate and ketone C=O stretches, respectively. Analysis of the \(^1\)H NMR spectrum revealed ten aliphatic proton peaks, confirming the presence of two glycidyl fragments. Analysis of the \(^{13}\)C NMR spectrum revealed a pair of carbonyl resonances at \(\delta \) 182.3 and \(\delta \) 178.4, assigned to C15 and the carbonate C=O, respectively. Cross-referencing the COSY spectra for compounds 153 and 154, the spirocyclic N5-O9 linkage was identified by correlating the multiplet at \(\delta \) 5.00-4.94 to the doublet at \(\delta \) 3.68, assigned as H7 and H6b, respectively (Figure 25). H6b showed strong geminal coupling to part of a broad multiplet resonance at \(\delta \) 4.23-4.17, assigned as H6a. The multiplet at \(\delta \) 5.53-5.43 was assigned to the C2\' methine, which showed strong COSY correlations to a triplet at \(\delta \) 5.20, and multiplets centred at \(\delta \) 4.30, \(\delta \) 4.28 and \(\delta \) 4.11, assigned as H3\'b, H3\'a, H1\'b and H1\'a, respectively. These assignments were supported by HSQC experiments, which

‡‡ X-ray crystallography performed by Dr. Anthony Willis (ANU).
showed four distinct methylene carbons at δ 69.1, δ 67.9, δ 55.5 and δ 52.4, assigned as C3', C8, C1' and C6, respectively (Figure 26).

Figure 25: COSY spectrum of compound 154.

Figure 26: HSQC spectrum of compound 154.
Monoclinic crystals of 154 were grown from slow evaporation of a CH$_2$Cl$_2$/EtOAc solution, and its structure was confirmed by x-ray crystallography (Figure 27).§§

Figure 27: ORTEP depiction of compound 154. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

Further elution with 50% EtOAc/CH$_2$Cl$_2$ gave a deep red-orange residue, which was separated by preparative thin-layer chromatography to afford compound 155 in 7% yield as small orange crystals. Analysis of the HRESI mass spectrum revealed a peak at m/z 375.1357 which was assigned to the molecular ion [C$_{22}$H$_{19}$N$_2$O$_4$]$^+$, demonstrating the addition of two glycidyl substituents to the indigo core. Analysis of the FTIR spectrum revealed a broad absorbance band centred at 3395 cm$^{-1}$, assigned to a hydroxyl O-H stretch, as well as a peak at 1726 cm$^{-1}$ assigned to the ketone C=O stretch. The 13C NMR spectrum did not contain all relevant resonances due to small sample quantity, however 2D HMBC analysis revealed a strong, three-bond correlation between a doublet at δ 7.78 and a 13C resonance at δ 181.8, assigned to H1 and C15, respectively (Figure 28). Analysis of the HSQC spectrum revealed three methylene carbons at δ 67.6, δ 61.9, and δ 52.2, §§

§§ X-ray crystallography performed by Dr. Anthony Willis (ANU).
assigned as C8, C3’, and C6, respectively (Figure 29). Analysis of the TOCSY spectrum revealed long-range \(^1\)H-\(^1\)H correlations between the doublet at \(\delta 6.87\), the doublet of triplets at \(\delta 6.07\), and part of a broad multiplet centred at \(\delta 4.36\), assigned as H1’, H2’, and H3’ of the \textit{trans}-enamine moiety. The spirocyclic linkage was also evident in the TOCSY spectrum, which showed correlations between the multiplet spanning \(\delta 5.05\)-5.01, the doublet at \(\delta 3.74\), and a broad multiplet containing an additional three protons, assigned as H7, H6b and H6a/H8a/H8b respectively (Figure 30). The individual protons were assigned by analysis of the COSY and ROESY spectra (Figure 31, Figure 32).

![Figure 28: HMBC spectrum for compound 155 with key correlations highlighted.](image-url)
Figure 29: HSQC spectrum of compound 155 with key correlations highlighted.

Figure 30: TOCSY spectrum of compound 155 with key correlations highlighted.
Figure 31: COSY spectrum for compound 155 with key correlations highlighted.

Figure 32: ROESY spectrum for compound 155 with key correlations highlighted.
In a subsequent experiment using (S)-epichlorohydrin 144, x-ray quality crystals of 155 were grown by slow evaporation of a 9:1 CH₂Cl₂/hexane solution, and its absolute structure and stereochemistry were confirmed by x-ray crystallography (Figure 33).***

Figure 33: ORTEP depiction of compound 155 with absolute stereochemistry. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

3.3.2 Reaction optimisation

The initial reaction was run for 2 hours, and while it allowed access to each of the heterocycles 152–155, the total mass return for the reaction was only 62%. A summary of the optimisation process for this reaction can be found in Table 2.

*** X-ray crystallography performed by Dr. Anthony Willis (ANU).
Table 2: Summary of optimisation data for the reactions of indigo with epichlorohydrin (144, X=Cl), epibromohydrin (145, X=Br), and glycidyl tosylate (146, X=OTs).

<table>
<thead>
<tr>
<th>X</th>
<th>Time</th>
<th>Additives</th>
<th>152 (%)</th>
<th>153 (%)</th>
<th>154 (%)</th>
<th>155 (%)</th>
<th>B/L (%) mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Cl</td>
<td>2 h</td>
<td>3 Å Sieves</td>
<td>44</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>46</td>
</tr>
<tr>
<td>2 Cl</td>
<td>1 h</td>
<td>3 Å Sieves</td>
<td>41</td>
<td>9</td>
<td>b</td>
<td>b</td>
<td>30</td>
</tr>
<tr>
<td>3 Cl</td>
<td>30 min</td>
<td>3 Å Sieves</td>
<td>43</td>
<td>17</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4 Cl</td>
<td>30 min</td>
<td>--</td>
<td>44</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Cl</td>
<td>30 min</td>
<td>--</td>
<td>41</td>
<td>30</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6' Cl</td>
<td>30 min</td>
<td>--</td>
<td>32</td>
<td>21</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Cl</td>
<td>30 min</td>
<td>KI d</td>
<td>5</td>
<td>b</td>
<td></td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>8 Br</td>
<td>30 min</td>
<td>--</td>
<td>84</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 OTs</td>
<td>10 min</td>
<td>--</td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B/L = Baseline materials as a percentage of the mass of the crude reaction mixture. *Racemic materials used. b Detected by TLC/ESI-MS analyses of the crude mixture, but not isolated. c Reaction performed using acetonitrile as solvent at reflux. d 0.1 eq. (based on electrophile).

It was hypothesised that the high degree of polymerisation and decomposition would be reduced by using a shorter reaction time, therefore the reaction was repeated, except that the mixture was allowed to react for 1 h instead of 2 h (Table 2, Entry 2), which led to an increase in the yield of spirocycle 153 from 6% to 9%, and a small decrease in the yield of N,N'-cyclic 152 from 43% to 41%. Compounds 154 and 155 were evident in trace quantities by TLC and ESI-MS analysis of the crude mixture, but not isolated. Further shortening the reaction time to 30 min led to a 17% yield of 153, in addition to a 43% yield of 152 and an 8% yield of 155 (Entry 3).

During the workup procedure, it was noted that the large surface area of the crushed 3 Å molecular sieves retained considerable quantities of the products even after repeated washing, so the reaction was repeated in the absence of molecular sieves using (S)-epichlorohydrin (144), and gratifyingly led to an improved 30% yield of 153 in addition to 152 (44%) and 155 (21%), for a total mass return of 95% based on indigo (Entry 4). Attempts to replicate this outcome however were variable, with repeated runs instead leading to mixtures of 152 (41%), 153 (30%), and 154 (20%), with no 155 evident by TLC or ESI-MS analysis (Entry 5). The exact reason for this variability is unknown, though could be related to the hygroscopicity of the DMF solvent leading to differing quantities of trace water in the absence of a drying agent (Scheme 53).
Scheme 53: Optimised reaction conditions and outcome for the reaction of indigo with \((S)\)-epichlorohydrin. Yields reflect Table 2, entries 4 and 5 respectively.

Due to the low volatility, aqueous miscibility, and high boiling point of the DMF solvent, the reaction was repeated using acetonitrile as the solvent at reflux (82 °C), which gave a mixture of 152 (32%), 153 (21%), and 155 (6%), as well as a 26% isolated recovery of unreacted indigo due to its poor solubility in acetonitrile (Table 2, Entry 6). The overall lower yield of this process however was countered by the significantly shorter processing time for the reaction, whereby the acetonitrile solvent could be removed \textit{in vacuo} and replaced with EtOAc and filtered prior to aqueous washing. For larger (eq. gram-scale) scale preparations this may prove a more practical approach than using larger volumes of DMF, albeit at the cost of yield due to unreacted indigo.

Yields for the \(N,N\)'-cyclic compound 152 were not significantly affected by changes in reaction time, and it was thought that modifying the pendant halide may affect the product distribution. Therefore, indigo was reacted with \((\pm)\)-epibromohydrin (145) under identical conditions to those for \((S)\)-epichlorohydrin (144), resulting in an 84% isolated yield of
152 with no other significant products detected by TLC analysis (Entry 7). Repeating this reaction using (R)-glycidyl tosylate (146), except with a reaction time of 10 min also led to a 76% isolated yield of the (R)-isomer of 152 (Scheme 54).

Scheme 54: Selective formation of (R)-152 from the alkylation of indigo with (R)-glycidyl tosylate. Yields reflect Table 2, Entry 8

3.3.3 Mechanistic discussion

The regioselectivity of nucleophilic attack on halohydrins has been studied previously, where it was shown that epoxide ring-opening is up to 200 times more favourable than direct nucleophilic halide displacement in polar solvents. Therefore, it is likely that ring-opening of the epoxide precedes any processes involving the pendant leaving group, as reflected by the observation that increasing the strength of the leaving group had a dramatic effect on the product distribution, and exclusively gave N,N’-cyclised product 152. The identity of the halide likely plays a crucial role in determination of the mechanistic pathway of the reaction, such that nucleophilic addition of indigo to epichlorohydrin affords key intermediate 156, which serves as a branching point between N,N’-cyclisation (Path A, Scheme 55) and N,O’-cyclisation (Path B, Scheme 56). Compound 152 is derived from 156 via Path A, where the leaving group is displaced by the vicinal alkoxide, resulting in a net epoxide migration from C1-C2 to C2-C3 with retention of stereochemistry. This elimination would become more favourable with better leaving groups, as reflected by the increase in the yield of 152 from 44% to 84% upon replacing X=Cl with X=Br. Reversible base-mediated prototropic isomerisation of the indigo core affords the cis-anion 157, which undergoes an irreversible 6-exo-tet cyclisation to ring-open the newly-reformed epoxide, resulting in inversion of the C2-stereochemistry and the formation of 152 upon protonation (Scheme 55).
Scheme 55: Proposed mechanism for the formation of pyrazinodiindole 152 from key intermediate 156 via Path A. Cesium counter-ions omitted for clarity.

With weaker leaving groups, epoxide reformation would become less-favourable, and where key intermediate 156 lingers, deprotonation of the indigo nitrogen atom may instead lead to O^\prime-attack on the pendant chloride via a dearomative 8-exo-tet cyclisation, leading to semi-rigid intermediate 158. The rigidity of this macrocyclic intermediate may restrict nucleophilic attack by the adjacent alkoxide to the nearby indole C3-position to the re-face, thereby defining the stereochemistry of the C9a position of spirocycle 153 (Scheme 56). An alternative mechanism for ketalisation involves the halide being eliminated by water to give a diol, which undergoes condensation with the ketone, however the presence of 153 was not detected from a trialled reaction between indigo and 2-hydroxymethylxirane (glycidol), suggesting the mechanism does not involve a diol intermediate.
Scheme 56: Dearomative cyclisation of key intermediate 156 to macrocycle 158 by halide displacement en route to spiroketal product 153.

Spirocycle 153 could then undergo further N-alkylation with a further equivalent of epichlorohydrid, and subsequent elimination of the halide could give the intermediate N-glycidyl adduct 159. Ring-opening of this epoxide with either carbonate or bicarbonate could then give an intermediate α-hydroxycarbonate (160), which upon dehydration would afford cyclic carbonate 154. Alternatively, base-mediated elimination of the epoxide 159 – or E2 elimination of the carbonate 154 – could then lead to formation of the allylic alcohol adduct 155 (Scheme 57). The precise mechanism for the formation of alcohol 155 is unknown, as despite its isolation from multiple attempts during the optimisation of the reaction, a reliable means of synthesising it could not be established. Briefly, attempted decarboxylation of carbonate 154 by treatment with potassium tert-butoxide in THF led to decomposition, and attempted alkylation of unsubstituted 153 with additional epichlorohydrid in the presence of cesium carbonate gave a mixture of 154 (43% yield) and polymeric baseline materials, while in the absence of cesium carbonate (e.g. using bases such as K₂CO₃, n-BuLi, LDA and NaH), only unreacted 153 was isolated.
Scheme 57: Proposed divergent mechanism for the formation of *spiro*-oxazocinodiindoles 154 and 155 from indigo via alkylation of compound 153.

There are several previously-reported examples of the addition of oxiranes to ketones to form ketals, though these typically proceed via Lewis or Brønsted acid catalysis, where the oxirane is highly-activated by coordinating to the cationic species.[143] Carboxylation of epoxides with carbon dioxide is also known, though this reaction typically proceeds under high-pressure and/or at elevated temperatures.[144] Here, the relatively-low yields (maximum 20%) of 154 are attributed to the previously-noted nucleophilicity of cesium carbonate.[116]
3.4 Cascade reactions of 2-(halomethyl)aziridines and 2-phenylaziridine with indigo

3.4.1 Synthesis of starting materials

Considering the generation of various spiroketal-containing molecules from reactions of indigo with (halomethyl)oxiranes, we sought to explore whether substituting oxiranes for aziridines would lead to further \(N,N'\)-cyclised pyrazinodiindoles via Path A (see Scheme 55), or instead allow access to \(N,O'\)-cyclised spirooxazolidines via Path B (see Scheme 56). The synthesis of several \(N\)-substituted-2-(bromomethyl)aziridines has been reported previously,\[^{139a, 145}\] though these were generated racemically and by non-stereoselective means. The necessity of using chlorine gas as a reagent was also deemed prohibitive toward the synthesis of chloromethyl derivatives,\[^{146}\] hence a less-hazardous, stereoselective method for the generation of chiral 2-(halomethyl)aziridines had to be devised.

Bromomethylaziridine 147 was prepared as previously reported from the acidic bromination of allylamine (161), and subsequent one-pot \(N\)-sulfonylation/ring-closure reaction in excellent yield (Scheme 58).\[^{139a}\] Briefly, allylamine 161 was treated with 1.3 eq. \(\text{Br}_2\) in aqueous HBr solution at 0 °C and then warmed to RT and stirred for 4 h, which upon removal of excess bromine by distillation and repeated recrystallisation of the crude mixture from isopropanol afforded the intermediate hydrobromide salt 162 in 80% yield. This brominated salt was then reacted with tosyl chloride in aqueous sodium hydroxide solution, to afford the desired aziridine product 147 in quantitative yield. This overall process was amenable to multigram-scale preparation of the desired aziridine, as no further purification was necessary. In two repeated runs, 17.7-17.9 grams of salt 162 was synthesised (79-80% yield), which was reacted over multiple 5.0-gram batches, reliably affording between 4.6-4.8 g (94-99% yield) of \(N\)-tosyl-2-(bromomethyl)aziridine 147.

![Scheme 58: Synthesis of racemic (bromomethyl)aziridine 147 on multi-gram scale from allylamine 161 via hydrobromide salt 162.](image-url)
Analysis of the ESI(+) mass spectrum revealed a pair of peaks at \(m/z \) 312\(^+\) and 314\(^+\) in a 1:1 ratio, assigned as the [M+Na]\(^+\) molecular ion peaks for the \(^{79}\)Br and \(^{81}\)Br isotopes, respectively. Analysis of the \(^1\)H NMR spectrum revealed a pair of 2H aromatic doublets at \(\delta \) 7.82 and \(\delta \) 7.34, assigned to H2'/H6' and H3'/H5', respectively. Further upfield, the 2H doublet at \(\delta \) 3.26 was assigned to the methylene protons of the bromomethyl substituent, and the multiplet ranging from \(\delta \) 3.12-3.04 was assigned to H2. The 3H singlet assigned to the tosyl methyl group was flanked on either side by a pair of doublets at \(\delta \) 2.78 and \(\delta \) 2.21, assigned to H3a and H3b, respectively.

Chloromethylaziridine 148 on the other hand proved more challenging to synthesise than its bromo-substituted equivalent. We sought to utilise a direct substitution of hydroxymethylaziridine 163 via a robust, two-step mesylation-chloridation procedure, necessitating the preparation of 163 on multigram-scale. Direct aziridination of allyl alcohol 164 with chloramine-T trihydrate (165) under I\(_2\) catalysis afforded a mixture of two major products after 3 d at room temperature. Flash chromatography (40% EtOAc/pet spirit) on silica gave good resolution between the desired aziridine 163 (36% yield) and the unexpected by-product disulfonamide 166 (56% yield) from undesired ring-opening of 163 with additional 165.

![Scheme 59: Synthesis of (hydroxymethyl)aziridine 163 and the unexpected disulfonamide 166 from allyl alcohol (164).](image)

Hydroxymethylaziridine 163 was isolated as a clear oil in 36% yield following flash chromatography. Analysis of the ESI(+) mass spectrum revealed a peak at \(m/z \) 250, corresponding to the molecular ion \([C_{10}H_{13}NO_3SNa]^+\), revealing the incorporation of a one equivalent of chloramine-T across the alkene. Analysis of the \(^1\)H NMR spectrum revealed a pair of 2H doublets at \(\delta \) 7.82 and \(\delta \) 7.35, assigned as the N-tosyl aromatic protons. The pair of doublet-of-doublets at \(\delta \) 3.81 and \(\delta \) 3.54 were assigned to the diastereotopic methylene protons of the hydroxymethyl group, and the broad singlet at \(\delta \) 2.18 assigned to the hydroxyl proton. The multiplet at \(\delta \) 3.04-2.99 was assigned to H2, and the remaining pair of doublets at \(\delta \) 2.61 and \(\delta \) 2.30 assigned to the diastereotopic
methylene protons of the aziridine terminus C3.

Disulfonamide 166 was isolated as a pale cream amorphous solid in 56% yield. Analysis of the ESI(+) mass spectrum revealed a peak at \(m/z \) 421, assigned as the molecular ion \([\text{C}_{17}\text{H}_{22}\text{N}_{2}\text{O}_{5}\text{S}_{2}\text{Na}]^+\), revealing the addition of two sulfonamide units to the allylic starting material 164. Analysis of the \(^1\text{H} \) NMR spectrum revealed a pair of 2H doublets at \(\delta \) 7.73 and \(\delta \) 7.64 and a 4H multiplet ranging from \(\delta \) 7.32-7.20, assigned to the aromatic protons of the two tosyl substituents, in addition to a 6H singlet at \(\delta \) 2.39, assigned to both methyl substituents. The downfield doublet at \(\delta \) 5.88 and its neighbouring triplet at \(\delta \) 5.77 showed no direct \(^{13}\text{C} \) attachment by HSQC experiments, and were assigned as the two discrete sulfonamide -NHTs groups attached to C2 and C1, respectively. The C1-adjacent sulfonamide was correlated to a broad 2H multiplet centred at \(\delta \) 2.97, which was assigned as the C1 methylene protons, and the C2-adjacent sulfonamide was correlated to a multiplet ranging from \(\delta \) 3.35-3.26, assigned as the C2 methine (Figure 34). The broad singlet resonance ranging from \(\delta \) 3.30-3.08 was assigned as the hydroxyl proton, and the remaining multiplets located at \(\delta \) 3.63-3.56 and \(\delta \) 3.54-3.46 were assigned to the C3 methylene protons.

Figure 34: COSY spectrum for compound 166 with relevant crosspeaks indicated.
The desired aziridine 163 was produced initially in 36% yield alongside 166 in 56% yield. Reducing the reaction time from three days to two days produced 163 in an improved 43% yield, in addition to 166 (21%) and a mixture of products from undesired aminohalogenation in a combined crude yield of 10%. Repeated attempts did not lead to significant improvements in the yield of 163, which was consistently isolated in 35-45% yield, though this reaction could be run at a multi-gram scale with no significant diminishing of yield, producing sufficient aziridine for our purposes.

The formation of 166 was unexpected and represents a net diamination of the olefin starting material. This was an intriguing outcome, as despite many previous attempts,[147] as well as the well-established and celebrated protocols for dihydroxylation, epoxidation and aminohydroxylation of olefins,[148] there remains no reliable method for intermolecular diamination of non-activated alkenes. This is particularly interesting given that the reaction utilises the inexpensive and environmentally-benign chloramine-T (otherwise used in water treatment, and in iodometric analysis)[149] as the nitrogen source and oxidant. Treatment of allyl alcohol with 2.1 eq. of chloramine-T gave the disulfonamide 166 in 75% yield after 16 h at room temperature, suggesting this aziridination/ring-opening process to be highly favourable.

To probe the tolerance of this method to other alkene species, the reaction was trialled for the diamination of cyclohexene (167) in a single unoptimized run (Scheme 60), and afforded a mixture of meso-aziridine 168 (78% yield) and trans-disulfonamide 169 (20% yield). This is therefore a promising starting point for the development of new methods for olefin diamination and despite being beyond the scope of this dissertation, warrants further examination.

Scheme 60: Unoptimised yield for the reaction of cyclohexene (167) with Chloramine-T (165) to afford aziridine 168 and diaminated product 169.

With the desired hydroxymethylaziridine 163 in hand, it was subjected to a two-step mesylation-chloridation. The aziridinyl alcohol was dissolved in dry CH\textsubscript{2}Cl\textsubscript{2}, and treated with methanesulfonyl chloride and triethylamine at 0 °C for 1 h, then warmed to room temperature and stirred for a further hour, at which time TLC analysis showed complete consumption of starting material. The reaction mixture was subjected to aqueous workup,
the crude mesylate combined with excess LiCl (5.0 eq.) and a phase-transfer catalyst (TBA\(^+\)Cl\(^-\), 0.2 eq.) in THF, and the mixture stirred at 50 °C overnight. Aqueous workup and removal of the solvent afforded the hydrolysis product 170 in quantitative yield (Scheme 61).

Scheme 61: Attempted synthesis of chloromethylaziridine 148 via mesylation/chloridation, resulting in the formation of hydrolysis product 170.

Compound 170 was isolated as off-white crystals in 99% yield from undesired hydrolysis of the desired chloromethylaziridine on aqueous workup. Analysis of the ESI(+) mass spectrum revealed a pair of peaks at \(m/z\) 286 and 288 in a 3:1 ratio, assigned to the two isotopic molecular ions \([C_{10}H_{14}^{35}ClNO3SNa]^+\) and \([C_{10}H_{14}^{37}ClNO3SNa]^+\), respectively. Analysis of the \(^1\)H NMR spectrum revealed a doublet at \(\delta\) 6.05 and a broad singlet at \(\delta\) 3.18, assigned to the sulfonamide and hydroxyl protons, respectively. The five remaining aliphatic protons formed a broad multiplet ranging from \(\delta\) 3.78-3.44, which could not be easily disentangled.

Repeated attempts toward chlorination of 163 using this method continually resulted in 170, as did the use of SOCl\(_2\), which afforded 170 in 76% yield. Attempted Appel chloridation using PPh\(_3\)/CCl\(_4\) led to extensive decomposition, and attempted O-tosylation using tosyl chloride and pyridine led to ring-opening with residual chloride ions. A successful route was identified from the acidic ring-opening of bromomethylaziridine 147 with 36% HCl\(_{aq}\) to give the mixed bromo/chloro species 171 in 82% yield, which underwent selective bromide elimination using cesium carbonate (1.1 eq.) in anhydrous CH\(_2\)Cl\(_2\) (0.01 M), affording the desired chloromethylaziridine 148 in 90% yield, for a total of 74% from the bromomethylaziridine.

Scheme 62: Synthesis of chloromethylaziridine 148 from bromomethylaziridine 147 via mixed dihalide 171.

Dihalide 171 was isolated as a white solid in 82% yield from bromomethylaziridine 147. Analysis of the ESI(+) mass spectrum revealed a cluster of multiple peaks at \(m/z\) 348\(^+\), 350\(^+\), and 352\(^+\) in a 3:5:2 ratio, assigned to the molecular ion \([C_{10}H_{13}NO_2BrClSNa]^+\) due
to the 35Cl/79Br, 35Cl/81Br, 37Cl/79Br, and 37Cl/81Br isotopic pairings. Analysis of the 1H NMR spectrum revealed a doublet at δ 5.03 assigned as the sulfonamide NH, in addition to a 3H multiplet ranging from δ 3.79-3.70, assigned to H2 and the chloride-adjacent H3a/H3b, and a 2H multiplet ranging from δ 3.52-3.46, assigned to the bromide-adjacent H1a/H1b methylene protons.

Chloromethylaziridine 148 was isolated in 90% yield from 171 as a colourless, viscous oil which slowly crystallised into a low-melting solid (mp. 42-44 °C) on standing. Analysis of the 1H NMR spectrum revealed a broad doublet-of-doublet-of-doublets at δ 3.46, assigned to the methylene protons of the chloromethyl group, which showed HSQC correlation to a peak in the DEPTQ 13C NMR spectrum at δ 43.5 (Figure 35). The pair of doublets at δ 2.74 and δ 2.26 were assigned to the methylene protons of the C3 aziridine terminus by HSQC analysis, which showed strong correlations between both protons and a resonance in the DEPTQ 13C NMR spectrum at δ 32.8, and by COSY analysis, which revealed strong correlations between both protons and the multiplet at δ 3.09-2.99, assigned to H2 (Figure 36). Analysis of the HMBC spectrum revealed strong three-bond correlations between the chloromethyl methylene and C3, and between the 3H singlet at δ 2.44 and both C3’ and C4’ of the tosyl group (Figure 37).

![Figure 35: HSQC spectrum for chloromethylaziridine 148.](image-url)
Figure 36: COSY spectrum for chloromethylaziridine 148 with key correlations highlighted.

Figure 37: HMBC spectrum of chloromethylaziridine 148 with key correlations highlighted.
While this procedure proved robust, it did not solve the problem of enantioselectivity, as the precursor bromomethylaziridine 147 was generated racemically. Therefore, an alternative synthesis of 148 from (S)-epichlorohydrin (144) was devised, where the enantiopure starting material was ring-opened using chloramine-T (165) to afford the chiral chlorosulfonamide 172 in 97% yield upon reductive workup. This was then subjected to O-mesylation using MsCl/NEt$_3$ to give the corresponding O-mesylate 173 in 96% yield, followed by mesylate displacement using Cs$_2$CO$_3$ in CH$_2$Cl$_2$ (0.01 M) to afford the ring-closed enantiopure aziridine 148 in 73% yield, or 64% yield from epoxide 144 with complete stereocontrol, and only requiring a single purification step.

![Scheme 63: Second-generation, enantiospecific synthesis of 148 from (S)-epichlorohydrin (144) over three steps.](image)

Finally, to probe the dependence of the cascade process on the presence of a halide, we sought to synthesise N-tosyl-2-phenylaziridine (174) via direct aziridination of styrene (175). Optimal conditions were found using a slight excess of styrene (1.05 eq.), where the desired aziridine could be synthesised in 93% yield on multigram-scale (30 mmol), requiring no purification beyond hexane/acetonitrile extraction to remove unreacted styrene, and aqueous workup.

![Scheme 64: Synthesis of N-tosyl-2-phenylaziridine on multi-gram scale under optimised conditions.](image)
Compound 174 was isolated as a chunky, off-white amorphous solid in 93% yield after hexane/acetonitrile extraction, and aqueous workup. Analysis of the ESI(+) mass spectrum revealed a peak at \(m/z \) 296\(^+\), assigned to the molecular ion \([C_{15}H_{15}NO_2SNa]^{+}\). Analysis of the \(^1\text{H} \text{NMR} \) of 174 revealed a doublet of doublets at \(\delta \) 3.77, assigned to the benzylic proton H2, as well as a pair of doublets at \(\delta \) 2.97 and \(\delta \) 2.38, assigned to the diastereotopic methylene of the aziridine.

3.4.2 Reaction discovery and structure elucidation

With optimised conditions from investigating the ring-opening reactions of halomethyloxiranes, we initially applied these conditions to the reaction of indigo and \(\text{N}-\text{tosyl}-2\)-(bromomethyl)aziridine (147), however it was quickly determined that extended reaction times (i.e. >5 min) led to extensive, uncontrollable polymerisation, hence shorter reaction times were essential. Briefly, a suspension of indigo (1.0 mmol) in DMF (40 mL) was prepared by sonicating in a 60 °C water bath for one hour, and transferred by cannula into a round-bottomed flask containing pre-dried Cs\(_2\)CO\(_3\) (3.7 eq.) and a large magnetic stir bar, and the mixture stirred vigorously under N\(_2\) in an oil bath preheated to strictly 85-87 °C for one hour. The N\(_2\) flow was then cut, and 147 (5.0 eq.) injected as a solution in DMF (1 mL), and the mixture stirred vigorously for 5 seconds, then quenched over crushed ice. Aqueous workup and removal of the solvent afforded an intense blue residue which was subjected to flash chromatography, which after difficult separation resulted in the isolation of \(\text{N,N’-cyclic products} \) 176 and 177, from the addition of one and two units of 147 to the indigo core, respectively (Scheme 65).

![Scheme 65: Outcome of the 5 second reaction of indigo with bromomethylaziridine 147 to give \(\text{N,N’-cyclised products} \) 176 and 177.](image-url)
Dihydropyrazinodiindole 176 was isolated as an intense-blue, glassy amorphous solid in 21% yield following flash chromatography. Analysis of the HRESI mass spectrum revealed a peak at m/z 472.1319, assigned to the molecular ion [C$_{26}$H$_{22}$N$_3$O$_4$S]$^+$, revealing the addition of a single aziridinyl subunit to indigo. Its deep-blue colour and physical characteristics were similar to that of pyrazinodiindole 152, suggesting it to be an analogue of this scaffold. The UV-Vis spectrum (CH$_2$Cl$_2$) showed a pair of broad absorption bands centred at 302 (14297) and 576 (8879) nm. Analysis of the FTIR spectrum revealed a broad absorption peak at 3385 cm$^{-1}$, assigned to a sulfonamide NH, and a peak at 1730 cm$^{-1}$ assigned to the C13 and C14 carbonyls. Analysis of the 1H NMR spectrum revealed a downfield triplet at δ 8.08 which exchanged with D$_2$O and was not correlated to any carbon in HSQC experiments and was assigned to the sulfonamide NH proton (Figure 38). Further upfield, the multiplet at δ 4.70-4.61 showed correlations to a pair of methylene carbons by analysis of the HSQC and COSY spectra (Figure 39), and was assigned to H6, and C6 was correlated weakly to both adjacent methylenes in HMBC experiments (Figure 40). The pair of doublets at δ 4.42 and δ 3.70 were assigned to the H6a/H6b methylene, and the broad 2H multiplet ranging δ 3.06-2.81 was assigned to the amide-adjacent methylene protons, which showed strong correlations to the sulfonamide NH in COSY experiments.

Figure 38: HSQC spectrum for compound 176 with relevant peaks highlighted.
Figure 39: COSY spectrum for compound 176.

Figure 40: HMBC spectrum for compound 176.
\(N,N\'-\text{Cyclic compound 177} \) was isolated as an intense dark blue amorphous solid following flash chromatography. Analysis of the HRESI mass spectrum revealed a peak at \(m/z \) 703.1661, assigned to the molecular ion \([C_{36}H_{32}N_4O_6S_2Na]^+\), revealing the addition of two aziridinyl subunits. Analysis of the \(^1\text{H}\) and \(^{13}\text{C}\) spectra revealed extensive peak-doubling, suggesting the presence of a 1:1 mixture of diastereomers. This is due to the proposed structure containing a pair of stereogenic atoms, and resulting from a statistical mixture of two units of the racemic starting aziridine, thus producing a 1:1 mixture of both enantiomers of the two possible diastereomers. Where both incoming aziridine molecules have the same stereochemistry, this would lead to the \((6R,2'S)(6S,2'R)\) pair, or where both aziridines have opposite stereochemistry, this would lead to the \((6R,2'R)(6S,2'S)\) pair, for a total of four individual stereoisomers. These isomers proved irresolute by fractional crystallisation, flash chromatography and by reverse-phase HPLC separation, hence the reported 35% yield refers to the crude yield of the mixture of diastereomers. Compound 177 was isolated in enantiopure form as the \((6R,2'S)\) diastereomer from \((R)\)-\(N\)-tosyl-2-chloromethylaziridine (148, vide infra), and comparing the overlaid \(^1\text{H}\) NMR spectra for both this individual isomer and the mixture of isomers, it is evident that 50% of this mixture corresponds to the \((6R,2'S)(6S,2'R)\) pair of diastereomers, hence it would follow that the remaining portion of the mixture corresponds to the \((6R,2'R)(6S,2'S)\)-diastereomeric pair (Figure 41, Figure 42).

![Figure 41: \(^1\text{H}\) NMR spectral overlay from \(\delta \) 8.00-6.60 for the mixture of diastereomers of 177 (teal) and the 6R,2'S isomer of 177 (maroon),](image-url)
Figure 42: 1H NMR spectral overlay from δ 5.30-2.00 for the mixture of diastereomers of 177 (teal) and the 6R,2’S isomer of 177 (maroon).

3.4.3 Reaction optimisation

The isolation of a 35% yield of di-alkylated product 177 within a 5 second reaction time is testament to the high reactivity of the bromomethylaziridine 147. This however meant that over extended reaction times, greater proportions of polymeric materials were isolated. In a repeated run, using a 30 minute reaction time, a similar diastereomeric mixture of 177 was isolated in 43% yield, with the remainder of the mixture being uncharacterisable polymer. Repeating the reaction with a 5 minute reaction time and with a reduced quantity of aziridine (3.5 eq.) afforded a 52% yield of 176, in addition to a 38% yield of 177. In an effort to reduce the reactivity of the aziridine, the tosyl activator was replaced with the N-mesyl activator, however upon treatment with indigo, this led to rapid decomposition, and the exclusive isolation of baseline materials, presumably due to the high acidity of the methyl group of the methanesulfonamide substituent, thus generating additional reactive nucleophilic sites for polymerisation.

Replacing the electrophile with (R)-N-tosyl-2-(chloromethyl)aziridine (148) and allowing the mixture to react for 30 minutes similarly afforded 176 (46%), in addition to an inseparable mixture of three additional components. The mixture was subjected to preparative RP-HPLC over 5×2.0 mL injections, and afforded three major fractions at $t_R = 35$ min (177, 8%), 37 min (178, 9%), and 47.7 min (polymer) (Scheme 66).
The \textit{N}-aziridinylpyrazinodiindole 177 was isolated in 8\% yield from indigo following preparative HPLC separation. Analysis of the \textit{^1}H NMR spectrum revealed sixteen aromatic-range protons, assigned to the two tosyl groups, and the eight indigo aryl protons. In the alkyl region, a pair of overlapping 3H singlets at δ 2.39/2.38 were assigned to the two tosyl methyl groups. Key to the structural assignment of 177 was analysis of the TOCSY spectrum, allowing for disentanglement of the ten individual proton resonances in the aliphatic range, and revealing the two individual alkyl chains (Figure 43). By cross-referencing the TOCSY, COSY and HSQC spectra, each proton and carbon resonance could be individually assigned in these two subunits.

In chain A, the multiplet ranging from δ 4.69-4.58 was assigned to H6, and showed COSY correlations to resonances at δ 3.25 and δ 2.93, assigned as the sulfonamide-adjacent methylene protons H5'a/H5'b, and δ 4.47 and δ 3.46, assigned to the indole-adjacent methylene protons H7'a/H7'b (Figure 45). HSQC analysis allowed for assignment of the resonances at δ 49.4, δ 49.7, and δ 40.6 to C5', C6, and C7, respectively (Figure 45). In chain B, the shielded methylene proton resonances at δ 2.21 and δ 2.57 were assigned to the terminal aziridine protons H1'a/H1'b, which showed COSY correlations to a resonance at δ 2.93, assigned to H2'. The remaining methylene protons at δ 3.64 and δ 3.00 were assigned to the amide-adjacent H3'a/H3'b couple. HSQC analysis allowed the remaining 13C resonances at δ 30.9, δ 37.4, and δ 51.6 to be assigned to C1', C2', and C3', respectively.
Figure 43: TOCSY spectrum for compound 177 with correlations highlighted for both chains.
Figure 44: COSY spectrum for compound 177 with key correlations highlighted.

Figure 45: HSQC spectrum for compound 177.
The N-chloroalkylpyrazinodiindole 178 was isolated as an intense dark-blue amorphous solid in 9% yield from indigo following RP-HPLC separation. Analysis of the HRESI mass spectrum revealed a peak at \(m/z \) 739.1448, assigned to the molecular ion \([C_{36}H_{33}N_{4}O_{6}S_{2}^{35}ClNa]^+\), revealing the incorporation of two aziridinyl subunits and one chlorine atom. Analysis of the \(^1\)H NMR spectrum revealed a broad multiplet ranging from \(\delta \) 5.71-5.60 which did not show correlation to a carbon resonance in the HSQC spectrum, and was assigned to the free N2' sulfonamide proton on the B chain. This proton showed correlations in the TOCSY spectrum to resonances at \(\delta \) 3.99, \(\delta \) 3.85, \(\delta \) 3.42, \(\delta \) 3.41 and \(\delta \) 3.19, which were assigned by COSY and HSQC analysis as H2', H1'a, H1'b, H3'b and H3'a, respectively, and the \(^{13}\)C resonances at \(\delta \) 45.3, \(\delta \) 53.9 and \(\delta \) 53.0 assigned to C1', C2' and C3', respectively (Figure 46, Figure 47, Figure 48). The doublet at \(\delta \) 4.40 showed through-space correlations to H10 in the ROE spectrum, and was assigned as H7b of the pyrazinodiindole core (Figure 49). TOCSY analysis revealed long-range coupling to \(^1\)H resonances at \(\delta \) 4.61, \(\delta \) 3.52, \(\delta \) 3.47, and \(\delta \) 2.66, which were assigned as H6, H7a, H5'a and H5'b, respectively, and the \(^{13}\)C resonances at \(\delta \) 50.9, \(\delta \) 49.4, and \(\delta \) 40.2 were assigned to C5', C6 and C7, respectively. The direct linkage of the two chains through N4' was supported by through-space correlation of H5'a and H3'a in the ROESY spectrum, suggesting the pair to be in close proximity.

![TOCSY spectrum of compound 178 with correlations highlighted for both chains.](image-url)
Figure 47: HSQC spectrum for compound 178.

Figure 48: COSY spectrum for compound 178.
Figure 49: ROESY spectrum for compound 178.

To examine whether indigo could undergo cascade reactions in the absence of a halomethyl substituent, it was reacted with N-tosyl-2-phenylaziridine (174) under the optimised conditions. In a single run, indigo was treated with 174 (5.0 eq.) for 10 minutes, after which TLC analysis showed complete indigo consumption. The reaction was quenched over crushed ice and subjected to aqueous workup, and subsequent flash chromatography of the deep blue-green residue afforded the acyclic, mono-addition products 179 and 180 in a combined 98% yield (Scheme 67).
Scheme 67: Synthesis of acyclic aziridine adducts 179 and 180 from phenylaziridine 174.

The terminally ring-opened aziridine adduct 179 was isolated as a deep blue-green powder in 62% yield from indigo following flash chromatography and recrystallisation from 9:1 pet spirit/CHCl₃. Analysis of the HRESI mass spectrum revealed a peak at m/z 536.1664, assigned to the molecular ion [C₃₁H₂₆N₃O₄S]⁺, demonstrating the addition of a single unit of the phenylaziridine. Analysis of the ¹³C NMR spectrum revealed a pair of downfield quaternary resonances at δ 188.9 and δ 188.7, assigned as C3 and C3' respectively, showing the retention of both carbonyls. Analysis of the ¹H NMR spectrum revealed a deshielded sharp singlet resonance at δ 10.65, assigned to the hydrogen-bound indigo NH, which correlated with C3' by HMBC experiments, in addition to quaternary resonances at δ 151.6 and δ 119.8, assigned as C7a' and C2', respectively (Figure 51). Analysis of the HSQC spectrum showed correlations between the ¹H resonances at δ 5.20 and δ 3.94 and the ¹³C resonance at δ 51.7, and the ¹H resonance at δ 4.95 and the ¹³C resonance at δ 55.4, assigned to the methylene and methine groups of the pendant α-phenylethylamine, respectively (Figure 51). Further analysis of the HMBC spectrum revealed correlations between the aziridine methine group and ¹³C resonances at δ 139.8 and δ 126.5, assigned as two- and three-bond coupling to C1'' and C2'' of the phenyl substituent, and COSY experiments showed coupling with the adjacent sulfonamide NH, confirming the assigned regiochemistry of the product (Figure 52).
Figure 50: HMBC spectrum for compound 179 with key correlations highlighted.

Figure 51: HSQC spectrum of compound 179 with expansion of the aromatic region (inset). Assignments for the Ph and Ts substituents are omitted for clarity.
The benzylic aziridine adduct 180 was isolated as small, fluffy dark-blue crystals in 36% yield from indigo following flash chromatography and recrystallisation from 9:1 pet spirit/CHCl₃. Analysis of the HRESI mass spectrum revealed a peak at m/z 558.1481, assigned to the molecular ion [C₃₁H₂₅N₃O₄SNa]⁺, revealing the addition of a single unit of the phenylaziridine. Analysis of the ¹³C NMR spectrum revealed a pair of downfield quaternary resonances at δ 189.3 and δ 188.2, showing both indigo carbonyls to be intact, and these were assigned as C3 and C3’, respectively by HMBC experiments, which showed correlations between C3’ and the ¹H resonance at δ 10.74, assigned to the indolic NH proton (Figure 53). The methylene resonance at δ 4.12 was correlated to the ¹³C resonance at δ 43.4 by HSQC experiments (Figure 54), and showed COSY correlations to both the adjacent methine proton at δ 6.56, and the sulfonamide NH proton at δ 5.89, inferring the assigned regiochemistry of the product (Figure 55).
Figure 53: HMBC spectrum for compound 180 with key correlations highlighted.

Figure 54: HSQC spectrum for compound 180 with expansion of the aromatic region (inset). Assignments for the Ph and Ts groups are omitted for clarity.
Figure 55: COSY spectrum for compound 180, with key correlations highlighted.

X-ray quality crystals of compound 180 were grown by slow vapour-diffusion of petroleum spirit into a solution of 180 in 1:1 MeOH/CHCl₃ in a sealed chamber at room temperature, and its structure confirmed by x-ray crystallography (Figure 56).†††

Figure 56: ORTEP depiction of compound 180. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

††† X-ray crystallography performed by Dr. Anthony Willis (ANU).
3.4.4 Mechanistic discussion

In all reactions of indigo with (halomethyl)aziridines examined, there was no evidence of spirocyclisation having occurred, despite the high reactivity of these strained electrophiles. Presumably this is a result of the steric influence of the large tosyl activating group preventing intramolecular $N,O\text{'}$-cyclisation. This is evident for the case of the 2-phenylaziridine adducts 179 and 180, which showed no evidence of internal cyclisation even upon prolonged heating, despite the close proximity of the nucleophilic sulfonamide and electrophilic ketone functionalities. In considering a similar divergent mechanism for the reactions of aziridines to that previously determined for reactions of oxiranes (Scheme 55, Scheme 56), it is therefore the case that contrary to oxiranes, aziridines exclusively follow Path A, where steric impedance from the N-tosyl group prevents halide elimination by the adjacent oxygen atom of intermediate 181, instead leading to aziridine reformation and prototropic isomerisation to intermediate 182. Nucleophilic inversion of the aziridine C2 leads to the final C6 stereochemistry of the pyrazinodiindole, and subsequent N''-alkylation of 176 leads to both N''-chloroalkyl 178 and N''-aziridinyl 177, in addition to polymeric species from prolonged reactions.

Scheme 68: Proposed mechanism for the formation of aziridine adducts 176–178 from Path A cyclisation of key intermediate 181 to give intermediate 182.
Phenylaziridine adducts 179 and 180 were isolated in a 1.7:1 ratio of terminal- and benzylic ring-opened products. The preferential benzylic electrophilicity of 2-arylaziridines has been established in the presence of strong Lewis acids (e.g. BF₃·OEt₂ or Pd(II)), where spontaneous ring-opening of the aziridine forms an externally-stabilised 1,3-dipole where a benzylic carbocation and a negatively-charged sulfonamide-Lewis acid complex are formed, which readily participate in [3+2]-cycloaddition, benzylic nucleophilic addition and/or dimerization reactions. Under basic conditions and in the absence of transition metals, the 36% yield of compound 180 reflects the partial hindrance of C2-attack at 85 °C by the pendant phenyl group.

3.5 Cascade reactions of 2,2'-bioxirane and 2,2'-biaziridine with indigo

As direct, dimeric homologues of the investigated (halomethyl)-substituted aziridines and oxiranes, we sought to investigate the reactions of 2,2'-bioxirane and N,N'-ditosyl-2,2'-biaziridine with indigo, to determine whether these too could participate in cascade reactions, and if so, whether they follow similar trends in reactivity to their monomeric counterparts. As previously-mentioned, these are accessible on multigram-scale over several steps from D- or L-tartaric acid (see Scheme 51), and for the purposes of this investigation, both (2S,2'S)-2,2'-bioxirane (149) and (2R,2'R)-N,N'-ditosyl-2,2'-biaziridine (150) were synthesised in divergent fashion via literature methods using dimesylate 151 as the starting material, as derived from L-tartaric acid.\(^{[140c, 141]}\)

3.5.1 Reaction discovery and structure elucidation

Indigo was reacted with 2,2'-bioxirane 149 under analogous conditions to those optimised for the reaction with (S)-epichlorohydrin 144. Therefore, a suspension of indigo (1 mmol) in DMF (40 mL) was sonicated while warming to 60 °C for one hour, then transferred by cannula to a round-bottomed flask containing pre-dried Cs₂CO₃ (3.7 eq.) and a large magnetic stir bar, and the mixture warmed in an oil bath preheated to strictly 85-87 °C for one hour. The N₂ flow was cut and (2S,2'S)-2,2'-bioxirane (3.3 mmol) injected, and the bright-orange mixture stirred vigorously for 30 min. The mixture was quenched over crushed ice and separation of the crude mixture afforded spirocyclic adducts 183 and 184 in a combined 81% yield.
Scheme 69: Synthesis of spiroketal 183 and 184 from the reaction of indigo with 2,2'-bioxirane 149. Adjacent to both molecules is a picture of a solution in acetone, depicting their colour. Note: The photograph of 183 shows a solution upon UV irradiation (365 nM).

The hydroxymethyl-substituted spiroketal 183 was isolated as small bright-orange crystals in 62% yield from indigo following fractionation on silica gel and subsequent flash chromatography, and exhibited a characteristic, brilliant-green fluorescence in solution under ambient conditions, or upon long-wave (λ=365 nM) UV irradiation. Analysis of the HRESI mass spectrum revealed a peak at m/z 349.1192, assigned to the molecular ion \([\text{C}_{20}\text{H}_{17}\text{N}_2\text{O}_4]^+\), showing the addition of a single unit of the bioxirane starting material to indigo. Analysis of the FTIR spectrum revealed a broad absorptive band centred at 3420 cm\(^{-1}\), assigned to the hydroxyl O-H stretch of the hydroxymethyl pendant. Analysis of the \(^{13}\text{C}\) DEPTQ spectrum revealed a single downfield resonance at δ 184.1, assigned to the C15 carbonyl, which showed correlations in the HMBC spectrum to a downfield \(^1\)H doublet resonance at δ 7.81, assigned to H1 (Figure 57). Analysis of the COSY spectrum revealed successive correlations from H1 to a resonance at δ 7.00, which coupled to δ 7.50, which itself correlated with δ 7.10. These three resonances were assigned as H2, H3 and H4, respectively (Figure 58). Analysis of the ROESY spectrum revealed through-space coupling of H4 with a diastereotopic methylene proton at δ 4.38 assigned to H6b. Further analysis of the ROESY spectrum revealed correlations from H6b to both the doublet of doublets at δ 3.70 (assigned to H6a) and a doublet of triplets at δ 5.01, assigned to H7 (Figure 59). Methine protons H7 and H8 additionally showed strong ROESY correlations, suggesting them to be \(\text{syn}\) to one-another on the \(\text{cis}\)-dioxolane ring. The remaining diastereotopic methylene protons were assigned through HSQC analysis, which showed strong coupling between a pair of doublet-of-doublets at δ 4.17 and δ 3.96.
and a 13C resonance at δ 60.3, assigned as the hydroxymethyl carbon C1' (Figure 60). The spiroketal carbon was identified by analysis of the HMBC spectrum, which revealed three-bond coupling of both H10 and H7 to a weak quaternary resonance at δ 111.7, assigned to C9a.

Figure 57: HMBC spectrum for compound 183 with key correlations highlighted.
Figure 58: COSY spectrum for compound 183 with key correlations highlighted.

Figure 59: ROESY spectrum of compound 183 with key correlations highlighted.
Figure 60: HSQC spectrum for compound 183 with assignments as indicated.

X-ray quality crystals of 183 were grown by slow evaporation of a saturated solution in hexane/EtOAc, and its absolute structure and stereochemistry were confirmed by X-ray crystallography (Figure 61).‡‡‡

Figure 61: ORTEP depiction of compound 183. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

‡‡‡ X-ray crystallography performed by Dr. Anthony Willis (ANU).
The epoxy alcohol-substituted spirocycle 184 was isolated as a pale lime-green amorphous solid in 19% yield from indigo following fractionation on silica gel and subsequent flash chromatography. Analysis of the HRESI mass spectrum revealed a peak at \(m/z 435.1556 \), assigned to the molecular ion \([C_{24}H_{23}N_{2}O_{6}]^+\), demonstrating the addition of two bioxirane units to the indigo core. Analysis of the \(^{13}\text{C}\) and \(^{1}\text{H}\) NMR spectra in CDCl\(_3\) solution showed evidence of peak doubling, presumably due to slow rotation about the N14-C1'' axis and/or rotational tumbling, which was eliminated by instead using \(d_6\)-DMSO for the acquisition of 1D and 2D NMR spectra.\(^{[151]}\) Analysis of the \(^{13}\text{C}\) DEPTQ spectrum revealed the presence of a deshielded quaternary resonance at \(\delta 193.5 \), assigned to the C15 ketone. Integration analysis of the aliphatic region of the \(^{1}\text{H}\) spectrum revealed fourteen protons, which HSQC analysis revealed to consist of four methylene groups, four methine groups, and two doublets at \(\delta 5.83 \) and \(\delta 5.22 \) which were not directly attached to a carbon, assigned to the two distinct hydroxyl groups at C1' and C2'', respectively (Figure 62). Analysis of the TOCSY spectrum revealed long-range through-bond coupling of each distinct alkyl chain, and paired with COSY, HSQC, and ROESY analysis, allowed for the individual assignment of each proton and carbon environment (Figure 63). Briefly, the C2''-hydroxyl of the epoxy alcohol unit showed COSY correlations to a doublet-of-doublet-of-doublets at \(\delta 3.24 \), assigned as H2'', which was adjacent to the diastereotopic methylene protons at \(\delta 3.83 \) and \(\delta 3.73 \), assigned as H1''a and H1''b (Figure 64). H2'' also showed COSY correlations to the multiplet spanning \(\delta 2.73-2.66 \), assigned to H3'', which also showed correlations to both the triplet at \(\delta 2.57 \) and the doublet of doublets at \(\delta 2.33 \), assigned as the geminal protons of the terminal oxirane unit at C4''. On the hydroxymethyl spiroketal chain, the assigned \textit{cis}-dioxolane stereochemistry was supported by analysis of the ROESY spectrum, which showed through-space correlation of the C1'-hydroxyl group to the doublet at \(\delta 4.53 \), assigned to the nearby H6b (Figure 65). The overlap of the H1'a and H8 resonances led to difficulties in unambiguous identification from COSY and ROESY analysis alone, however HMBC analysis revealed correlations between the hydroxyl proton and \(^{13}\text{C}\) resonances at \(\delta 43.2, \delta 62.8, \) and \(\delta 70.7 \), assigned to C1', C8, and C7, respectively (Figure 66).
Figure 62: HSQC spectrum for compound 184, with assignments as indicated.

Figure 63: TOCSY spectrum for compound 184, with key correlations of the hydroxyl protons to both chains highlighted.
Figure 64: COSY spectrum for compound 184.

Figure 65: ROESY spectrum for compound 184.
Given the noted tendency of the aziridines 147 and 148 to undergo Path A-type cyclisation, it was anticipated that N,N'-cyclic derivatives would predominate from reactions of indigo with 2,2'-biaziridine. To probe this hypothesis, indigo was reacted with $(2R,2'R)$-2,2'-biaziridine (150, 1.3 eq.) under the previously-optimised conditions for (R)-N-tosyl-2-(chloromethyl)aziridine (148), which afforded cleanly the diazepinodiindole 185 in excellent yield (Scheme 70).

Scheme 70: Synthesis of diazepinodiindole 185 from the reaction of indigo with biaziridine 150. Adjacent to the structure is pictured a solution in dichloromethane.
The diazepinodiindole 185 was isolated as an intense dark-blue powder in 93% yield from indigo, following repeated recrystallisation of the crude reaction mixture. Analysis of the HRESI mass spectrum revealed a peak at m/z 677.1513, assigned to the molecular ion $[C_{34}H_{30}N_4O_6S_2Na]^+$, revealing the incorporation of a single biaziridine fragment to the indigo core. Analysis of the 13C NMR spectrum revealed a pair of downfield quaternary resonances at δ 180.9 and δ 180.8, assigned to the C14 and C15 ketone groups, and the presence of 32 peaks in the 13C NMR spectrum indicated the molecule to be non-symmetrical. Analysis of the 1H NMR spectrum revealed a distinct pair of 3H singlet resonances, assigned to the two tosyl methyl substituents in discrete chemical environments to each other. Analysis of the HSQC spectrum revealed a pair of methylene carbons at δ 42.4 and δ 39.4, assigned as C1' and C8, respectively, and two peaks which showed no direct attachment to a carbon at δ 6.69 and δ 5.71, which were assigned to the two sulfonamide groups at C7 and C1', respectively. Analysis of the COSY spectrum revealed coupling between the C7 sulfonamide NH and a vicinal methine proton resonance at δ 3.61, assigned as H7, which was coupled to a doublet at δ 4.63, assigned to H8a. ROESY experiments determined H7 to show strong through-space coupling to an apparent triplet methine resonance at δ 4.95, assigned to H6, supporting the assigned cis-stereochemistry of the C7-sulfonamide and C6-(sulfonamidomethyl) substituents. Weak through-space coupling was also observed between H8a and H6, due to their proximity in the bent 7-membered ring. The remaining methylene protons were assigned from HSQC analysis, which showed direct attachment of the diastereotopic proton resonances at δ 3.06 and δ 2.84 to C1'. Closer examination of the resonance assigned to H6 revealed a $^3J_{H-H}$ coupling constant of 4.7 Hz, which is consistent with axial-equatorial coupling with H7 ($^3J_{ax-equ}$ expected 1-6 Hz), suggesting the two protons to be cis to one-another and supporting the assigned stereochemistry.
Figure 67: HSQC spectrum for compound 185 with assignments as indicated. Correlations for the Ts groups are omitted for clarity.

Figure 68: COSY spectrum for compound 185 with key correlations highlighted.
3.5.2 Mechanistic discussion

Comparing the outcomes of the 2,2'-bioxirane reaction with the reaction of epichlorohydrin, there was considerably greater preference toward Path B spirocyclisation reactions using 2,2'-bioxirane, while epichlorohydrin showed little discrimination between Path A and Path B. This is evidenced by comparing the isolated yields of compounds isolated from both mechanistic pathways in each reaction, where epichlorohydrin showed a 46:54 ratio, and bioxirane showed a 0:100 ratio of products resulting from Paths A:B, respectively. As noted previously, both the strength of the leaving group and the steric environment of the released heteroatom contribute significantly to pathway discrimination, and for the case of the bioxirane, it is apparent that both factors contribute to promote spirocyclisation. Therefore, we propose that mono-ring-opening of 149 generates key intermediate 186, which undergoes O'-alkylation via an 8-exo-tet ring closure to give macrocycle 187. The defined stereochemistry of the bioxirane C2 position results in facial selectivity upon re-aromatisation, and attack at the si-face via a 5-exo-trig hydroalkoxylation affords spirocycle 183, which upon alkylation with a second equivalent of bioxirane 149 affords 184 (Scheme 71). The observed conservation of the stereochemical identity for spirocycle 183 in the x-ray crystal structure suggests that Payne rearrangement of intermediate 186 to an internal epoxide
(which could also undergo O'-nucleophilic attack to afford the trans-dioxolane 8-epi-183 via the C8-epimer of intermediate 187) had not occurred. It is also interesting to note that relative to sequential ring-opening reactions of bioxiranes reported previously (which proceed via nucleophilic attack at the less hindered C1 and C4),[140a, 140b, 141] intramolecular cyclisation occurs exclusively by initial C1 ring-opening, and subsequent ring-opening at the more-hindered C3 position. Attack at C4 is likely disfavoured by the entropic penalty and ring-strain of the larger nine-membered ring, making C3-attack more kinetically-favourable despite the enthalpic barrier of overcoming the increased steric bulk of internal attack.

Scheme 71: Proposed mechanism for the formation of spiroketalys 183 and 184 from the reaction of indigo and 2,2'-bioxirane via Path B.

Contrary to bioxirane 149, the reaction of indigo with biaziridine 150 afforded exclusively the N,N'-cyclised product 185, and there was no evidence of any additional products in the mixture. Therefore, upon ring-opening of biaziridine to key intermediate 188, base-mediated protoisomerisation affords the cis-anion 189, which undergoes a 7-exo-trig ring-closure to afford the cis-diazepinodiindole product 185 (Scheme 72). Similarly to the sequential C1, C3 ring-opening of bioxirane, biaziridine also underwent sequential C1, C3 ring-opening under these conditions, in contrast to its previously-established reactivity.[140b-d] Presumably this is due to both the decreased entropic cost of forming the seven-membered ring, and the considerable enthalpic barrier of orienting the C4 position.
toward the indigo nitrogen due to unfavourable steric interactions between adjacent tosyl groups and the aromatic indigo core.

Scheme 72: Proposed mechanism for the formation of diazepinodiindole 185 from the reaction of indigo with biaziridine 150.

3.6 Conclusions

Indigo undergoes cascade reactions with a variety of (halomethyl)oxiranes to afford mixtures of both N,N'- and N,O'-cyclic heterocycles by one of two major mechanistic pathways. By moderating the leaving group, these reactions could be optimised to either produce exclusively N,N'-cyclic products in up to 84% yield, or predominantly N,O'-cyclic products in a combined 51% yield by changing the rate of halide elimination from a common mechanistic intermediate. Under similar reaction conditions, (halomethyl)aziridines showed considerably-greater preference toward N,N'-cyclisation, however the high reactivity of these electrophiles led to uncontrollable polymerisation over longer reaction times. Optimal conditions afforded a combined 63% yield of enantiomerically-pure adducts bearing useful functional groups. Furthermore, optimising this reaction led to a practical synthesis of the useful chiral starting material 148 from readily-available materials, which could be used as an entry point toward the enantioselective synthesis of non-symmetrical 1,2-diamines or amino alcohols.

Reactions of indigo with the dimeric bioxirane and biaziridine had distinct mechanistic
pathway preferences to one-another, however they both followed a common trend in regioselectivity, reacting exclusively by sequential 1,3-ring opening, rather than the established 1,4-ring opening. For bioxirane, selective \(N,O\)-cyclisation afforded a pair of spirocycles in 81% combined yield, while biaziridine led exclusively to a single \(N,N\)-cyclic adduct in 93% yield. The observation of this 1,3-selectivity in both instances suggests that by selecting appropriate di-nucleophiles, that intramolecular cyclisation of both bioxirane and biaziridine should favour attack at C1 and C3, allowing access to enantiomerically-pure desymmetrised systems, further demonstrating the synthetic value of these simple chiral precursors.

Compared with the previously-studied reactions of indigo with allylic and propargylic electrophiles, \(\pi\)-nucleophiles tend to undergo cascade reactions by C2 or C3 nucleophilic attack leading to spirocyclic adducts for allylic substrates, or ring-expansion of the biindole core to indolonaphthiridinones for propargylic substrates, whereas these reactions with strained-ring systems have largely preserved the structural integrity of the indigo nucleus. These reactions proceed with conservation of the stereochemical identity of their precursors, allowing for the chemo- and stereoselective generation of desymmetrised, three-dimensional polycycles. The generation of the epoxyoxazocinodiindole framework had not been established previously, and compounds 153-155, 183 and 184 represent the first known examples of this ring system. The presence of pendant functional groups in all generated molecules moreover could allow for their incorporation into other scaffolds, allowing for rapid diversification and/or library generation with a broad variety of coupling partners.
Chapter 4:
Reactions of indigo with organometallic nucleophiles

4.1 The role of organometallic compounds in synthetic chemistry

The ubiquity of carbon in all manner of natural and synthetic molecules have rendered the formation of new carbon-carbon bonds an area of continuous interest in both methodology development, and in the design and synthesis of new molecular architectures. With a Pauling electronegativity of 2.54, carbon is amphoteric and can adopt numerous oxidation states ranging ±4, hence it is rendered either an electrophile or nucleophile depending on its electronic environment. Carbon electrophiles are common (e.g. functional groups including alkyl (pseudo)halides and carboxylates) where the net oxidation state of the carbon atom is positive, while it is rendered nucleophilic when bonded to more-strongly electropositive elements such as metals.

Organometallic complexes are those which features carbon-metal bonds, and feature prominently both as reagents and as intermediates in numerous metal-catalysed cross-coupling reactions. Grignard reagents are distinguished by the presence of a carbon-magnesium bond – the strongly-electropositive magnesium atom renders the carbon atom both highly nucleophilic and strongly basic, allowing it to react with a broad variety of functional groups (Scheme 73). This high reactivity however means that Grignard reagents are typically unstable toward air, moisture, and often undergo undesired reactions with even relatively-inert substituents such as esters, amides, and terminal alkynes. Nevertheless, their simple generation, low cost, and wide applicability to a broad variety of chemical transformations has made the Grignard reaction a mainstay of contemporary organic chemistry, and Victor Grignard was awarded the Nobel Prize for Chemistry in 1912 for its discovery.
Scheme 73: A brief summary of the reactivity of Grignard reagents with various common functional groups. Clockwise from top left: deprotonation of acidic functional groups, formation of alcohols from aldehydes and ketones, ketones from Weinreb amides, imines from nitriles, alcohols from esters or amides, carboxylic acids from CO₂, and alkyl groups from transmetallation and nucleophilic substitution.

Grignard reagents can be readily generated by direct oxidative addition of Mg⁰ to alkyl- or aryl halides, or by magnesium-halogen exchange with commercially-available isopropylmagnesium chloride (190). Of these methods, there are several advantages to the magnesium-halogen exchange as pioneered by the Knochel group, which occurs rapidly under mild conditions and allows highly-functionalised Grignard reagents to be generated in situ (Scheme 74).[154] These reactions can be performed at cryogenic temperatures (typically -40 °C), allowing functional groups such as nitriles, esters, amides and nitro groups to be tolerated, and polyhalogenated compounds may be regioselectively metalated in a predictable and reliable fashion.[155] The addition of LiCl to these reactions is typically beneficial to both reaction rate and regioselectivity, and is thought to activate the incoming Grignard reagent by formation of a lithium dichloromagnesiate “turbo-Grignard” complex (191),[156] which significantly enhances the nucleophilicity of the adjacent carbon atom. Addition of a suitable halogenated starting material (e.g. the tribrominated pyridine 192) results in metal-halogen exchange selectively at the 3-position, and the eventual formation of the desired heteroaryl “turbo-Grignard” reagent 193. Combined with the well-established methodology for directed ortho-metalation,[157] and developing methods for regioselective directed meta- and para-metalation of various
substituted (hetero)aryl C-H bonds\cite{158}, a vast array of functionalised organometallic nucleophiles are now readily-accessible.

Scheme 74: The metal-halogen exchange reaction for the formation of substituted Grignard reagents. Above: an example of the reaction using “turbo-Grignard” 191 toward the formation of dibromopyridylmagnesiate 193. Below: selected examples of tolerated functionalities to this reaction, with the metallation site highlighted in blue, and typically-incompatible functional groups highlighted in red.

4.2 Reactions of indigo with Grignard reagents

As mentioned previously, the reaction of indigo with Grignard reagents was first reported in 1909, and resulted in the isolation of eight mono-addition products in modest to excellent yields\cite{67}. The authors of the original study did not unambiguously assign a structure to the products, however they proposed the structure to be one of a pair of tautomeric species (58a and 58b) on the basis of elemental analysis and synthesis of derivatives. The reported selectivity for mono-addition to indigo is intriguing, as this allows for desymmetrisation of the biindole nucleus. The high functional density of indigo could therefore allow for the facile and selective synthesis of various 3-aryl-2,2'-diindoles (194) from a conceptually-simple dehydration of the tertiary alcohol adduct (Scheme 75). This reaction was serendipitously re-discovered through the course of our exploration, though it was quickly recognised to be a useful starting point for the development of new methods toward the synthesis of functional diindoles (see Section 4.2.1 Reaction discovery and structural assignment, vide infra).
Non-symmetrical 2,2'-biindole moieties are a key component of numerous natural products and pharmaceuticals (Figure 70). These include the natural product staurosporine (4), and its derivatives lestaurtinib (195), and midostaurin (196), which are highly-potent and selective kinase inhibitors – midostaurin recently gained FDA approval for the treatment of FLT3+ acute myeloid leukaemia under the name Rydapt.\[159\] Other significant examples of the 2,2'-biindole moiety include the natural products iheyamine A (196) and indimicins A-D (197–200), as well as the clinical lead birinapant (201), investigated for the treatment of myelodysplastic syndrome and chronic myelomonocytic leukaemia. Furthermore, while 1\(H\)-3\(\text{H}\)-2,2'-biindoles have received sporadic attention as synthetic intermediates\[104b, 104c, 160\] and oxidation products,\[161\] there are only three reported examples of 3'-oxoindolenine-indoles – the natural product bisindigotin (202) and two synthetic precursors (203 and 204) encountered in Sperry’s 2016 total synthesis of iheyamine A and a des-methoxy analogue.\[162\] Neither the innate biological profile, nor the synthetic value of these molecules has been adequately established, therefore making this an avenue worthy of closer examination. Furthermore, this would allow a simple means of exploring the chemistry of indigo’s carbonyl groups, which until now has been an area of very limited study.
4.2.1 Reaction discovery and structural assignment

During the course of our exploration of the chemistry of indigo in reactions with strained-ring systems (see Chapter 3, *vide supra*), we sought to examine the reactivity of the doubly-strained 1-azabicyclo[1.1.0]butane (205). Highly-strained molecules such as these have been used recently by the Baran group for the direct azetidinylation, cyclobutylation (206) and “propellerisation” (207) of secondary amines in the presence of i-PrMgCl.LiCl (191) as an activator – generating a highly nucleophilic R_2N-MgCl.LiCl “turbo-amide” intermediate species *in situ* (Scheme 76, A). Given the vast substrate scope reported for this transformation, we sought to replicate the reaction of 205 using...
indigo in place of the secondary amine to determine whether the appended azetidine ring would be sufficiently-strained to undergo further reactions with the indigo core. Therefore, to a cooled (-84 °C) suspension of dibromoamine hydrobromide salt 162 (3.0 mmol) in dry THF (10 mL) was added a freshly-titrated (0.98 M) solution of phenyllithium in THF (9.0 mmol) slowly dropwise, and the mixture stirred for 2 h. Meanwhile, to a vigorously-stirred suspension of indigo (1.0 mmol) and LiCl (2.5 mmol) in THF (10 mL) was added a freshly-titrated (0.87 M) solution of i-PrMgCl in THF (2.5 mmol), and the mixture stirred at room temperature for 2 h. The resulting indigo/turbo-Grignard solution was transferred by cannula into the azabicyclobutane solution at -84 °C, and the intense-red mixture allowed to warm to room temperature overnight. This mixture was then cooled to 0 °C, and a solution of Boc₂O (6.0 mmol) in THF (5 mL) added slowly, and the resulting red-brown solution stirred for 3 h. Aqueous workup and subsequent flash chromatography afforded a mixture of four major components – the deep burgundy mono-N-Boc indigo 208, the deep purple N-H isopropyl adduct 209, and the bright orange N-Boc isopropyl 210 and phenyl 211 adducts in a combined 77% yield, with no azetidine incorporation (Scheme 76, B).
Scheme 76: A: Literature protocol for 'strain-release' functionalisation of amines by addition across the highlighted (red) bond.164 B: Outcome of the attempted 'strain-release' azetidinylation of indigo, producing N-Boc indigo 208 and Grignard adducts 209–211. Adjacent to the structure of 208 is a photograph showing its colour in its crystalline form. Adjacent to 209–211 is a photograph of a solution in acetone at a concentration of approximately 0.1 mM.

Mono-N-Boc indigo 208 was isolated as small burgundy crystals in 20% yield following flash chromatography. Analysis of the HRESI mass spectrum revealed a peak at m/z 363.1342, assigned to the molecular ion $[C_{21}H_{19}N_2O_4]^+$, revealing the addition of a Boc substituent to the indigo molecule, and its deep red-purple colour in solution qualitatively suggested the indigo core to have remained intact. Analysis of the 1H spectrum revealed eight distinct aromatic resonances, and a pair of carbonyl resonances were evident in the ^{13}C NMR spectrum, suggesting the molecule to be unsymmetrical. The 9H singlet at δ 1.62 was assigned to the degenerate methyl groups of the N-Boc substituent, while the broad singlet at δ 10.02 was assigned to the free NH group.
Isopropyl adduct 209 was isolated as small, dark purple crystals in 21% yield following flash chromatography, with its deep purple colour qualitatively suggesting the retention of intramolecular hydrogen bonding. Analysis of the HRESI mass spectrum revealed a peak at \(m/z \) 289.1349, assigned to the molecular ion \([C_{19}H_{17}N_{2}O]^+\), revealing the net substitution of one oxygen atom for an isopropyl group. Analysis of the \(^1\)H NMR spectrum revealed a 1H heptet at \(\delta \) 4.55, which showed COSY correlations to a 6H doublet at \(\delta \) 1.54, assigned to H2" and the adjacent H1" methyl groups, respectively (Figure 71). Further downfield, the broad singlet at \(\delta \) 10.11 exchanged with D\(_2\)O, and was therefore assigned to the free NH of the indole. Analysis of the ROESY spectrum revealed through-space correlation of the H1" methyl groups with a doublet at \(\delta \) 7.92, assigned to H4 of the adjacent aromatic ring (Figure 72). Having identified H4, this was used as an entry point to this ring, and analysis of the COSY spectrum allowed the assignment of H5, H6 and H7 to resonances at \(\delta \) 7.08, \(\delta \) 7.29, and \(\delta \) 7.41, respectively, therefore allowing for the assignment of C4, C5, C6 and C7 to \(^{13}\)C resonances at \(\delta \) 122.6, \(\delta \) 119.8, \(\delta \) 125.7, and \(\delta \) 112.2, respectively, by analysis of the HSQC spectrum (Figure 73). These assignments were confirmed by HMBC experiments, which showed strong, three-bond coupling between H4-C6, H6-C4, H5-C7, and H7-C5 (Figure 74). Both H4 and H6 additionally showed three-bond coupling to a quaternary \(^{13}\)C resonance at \(\delta \) 138.8, assigned to the indole C7a, and both H5 and H7 were coupled to a quaternary resonance at \(\delta \) 126.6, assigned to C3a, which also showed three-bond coupling to the isopropyl H2". The remaining positions of the indole were assigned by identifying HMBC correlations to the isopropyl substituent – both H1" and H2" were coupled to a quaternary resonance at \(\delta \) 135.0, assigned to C3, however only H2" was coupled to the resonance at \(\delta \) 123.8, assigned to C2.
Figure 71: COSY spectrum for compound 209, with expansion of the aromatic region (inset), and key correlations highlighted.

Figure 72: ROESY spectrum for compound 209 with key correlations highlighted.
On the opposite hemisphere, the remaining C3' carbonyl was assigned to the resonance at δ 197.1, and showed HMBC correlations to a 1H resonance at δ 7.54, assigned to H4'. This was coupled to a protic 13C resonance at δ 137.6, and a quaternary resonance at δ 162.7, assigned to C6' and C7a', respectively. The C2' C=N group was assigned to a quaternary resonance at δ 154.6, and while its remoteness meant it did not show any correlations in the HMBC spectrum, in the twelve synthesised examples of this scaffold (vide infra), the indolenine C2' was always observed within the range of δ 156.3±2.8. The chemical shift of this position, as well as the considerable downfield shift of the C6' and C7' positions (cf. C6 and C7a on the opposite ring, located at δ 125.7 and δ 138.8, respectively) is typical of other reported 2-aryl-3H-indol-3-one,[165] supporting the assignment of this ring system. Therefore, we were able to definitively assign all proton and carbon environments of the molecule (Figure 75).

Figure 73: HSQC spectrum for compound 209 with expansion of the aromatic region (inset) and assignments as indicated.
Figure 74: HMBC spectrum for compound 209 with key correlations highlighted.

Figure 75: Summary of correlations from 2D NMR data allowing the structural assignment of compound 209.
The N-Boc isopropyl adduct **210** was isolated as bright orange crystals in 12% yield following flash chromatography on silica gel. Analysis of the HRESI mass spectrum revealed a peak at *m/z* 389.1860, assigned to the molecular ion \([C_{24}H_{25}N_2O_3]^+\), revealing the substitution of one oxygen for an isopropyl unit, and the addition of a Boc substituent. Analysis of the \(^1H\) NMR spectrum revealed a 9H singlet at \(\delta 1.49\), assigned to the degenerate methyl groups of the Boc group, as well as a 1H heptet at \(\delta 3.58\) and a 6H doublet at \(\delta 1.46\) which correlated strongly to one-another in the COSY spectrum, and were assigned to H2" and H1" of the isopropyl unit, respectively (Figure 76). Analysis of the ROESY spectrum revealed through-space correlation between the Boc CH\(_3\) group and a heavily-deshielded doublet at \(\delta 8.21\), assigned to the nearby H7, as well as correlations of the isopropyl protons H2" and H1" with a doublet at \(\delta 7.83\), assigned to H4 (Figure 77). H4 showed correlations in the COSY spectrum to an apparent triplet at \(\delta 7.25\), assigned to H5, and both H5 and H7 showed correlations with the apparent triplet at \(\delta 7.38\), which was assigned to H6. With H4-H7 unambiguously assigned, HSQC analysis allowed assignment of C4, C5, C6, and C7 to the \(^{13}C\) resonances at \(\delta 121.8\), \(\delta 122.7\), \(\delta 126.1\), and \(\delta 115.9\), respectively. Of the remaining carbons of the indole moiety, C2, C3, and C7a were assigned to carbon resonances at \(\delta 124.0\), \(\delta 134.0\), and \(\delta 137.6\), respectively, by analysis of the HMBC spectrum (Figure 79). The precise chemical shift of C3a was ambiguous due to peak overlap in the \(^{13}C\) NMR spectrum. The shape of the overlapped \(^{13}C\) resonance ranging \(\delta 128.54-128.47\) was broadened and asymmetric in the 1D spectrum, and the HMBC spectrum demonstrated correlations to both H7 and H7' which are chemically-distinct and separated by a shortest path of nine covalent bonds, therefore correlation of either H7-C3a' or H7'-C3a are highly unlikely. Therefore, the broad resonance at \(\delta 128.54-128.47\) was assigned as a pair of overlapped resonances at \(\delta 128.51\) and \(\delta 128.50\), with both peaks belonging to either C3a or C3a'.

The 3\(H\)-indol-3-one fragment of the N-Boc indole **210** showed similar chemical shifts and 2D connectivity to the N-H indole **209**, with the exceptions of C2', which was relatively-deshielded by \(\Delta \delta +6.1\) in the \(^{13}C\) NMR spectrum (\(\delta 160.7\) in **210**, cf. \(\delta 154.6\) in **209**), and C3', which was relatively-shielded by \(\Delta \delta -5.0\) (\(\delta 192.1\) in **210** cf. \(\delta 197.1\) in **209**). These values are consistent across fifteen derivatives of this N-Boc scaffold (**vide infra**), and lie within the range of \(\delta 160.4\pm0.9\) at C2' and \(\delta 191.9\pm1.2\) at C3'. We can therefore confidently assign each proton and carbon environment of **210** (Figure 80).
Figure 76: COSY spectrum for 210, with expansion of the aromatic region (inset) and key correlations highlighted.

Figure 77: ROESY spectrum for compound 210, with key correlations highlighted.
Figure 78: HSQC spectrum for compound 210 with expansion of the aromatic region (inset) and assignments labeled.

Figure 79: HMBC spectrum for compound 210, with key correlations highlighted.
Figure 80: Summary of correlations from 2D NMR data allowing the structural assignment of compound 210.

The N-Boc phenyl adduct 211 was isolated in 24% yield as small, bright orange crystals following flash chromatography. Analysis of the HRESI mass spectrum revealed a peak at \(m/z \ 423.1702 \), assigned to the molecular ion \([\text{C}_{27}\text{H}_{23}\text{N}_{2}\text{O}_{4}]^+\), demonstrating the substitution of a phenyl group for one oxygen atom, and the addition of an N-Boc substituent to the indigo core. Analysis of the \(^1\text{H}\) spectrum revealed a lone doublet resonance at \(\delta \ 8.24 \) which was correlated to the Boc group in the ROESY spectrum, and therefore assigned to H7 (Figure 81). The \(^{13}\text{C}\) resonance at \(\delta \ 191.8 \) was assigned to C3', which showed a strong three-bond correlation in the HMBC spectrum to the doublet at \(\delta \ 7.54 \), assigned to H4'. Using the H7 and H4' protons as entry points to both rings, the remaining proton and carbon environments were assigned from analysis of the COSY (Figure 82), HMBC (Figure 83), and HSQC spectra (Figure 84). The H2"/H6" and H3"/H5" protons of the phenyl substituent were assigned to a pair of multiplets at \(\delta \ 7.44-7.38 \) and \(\delta \ 7.66-7.60 \), respectively, and H4" was assigned to a multiplet at \(\delta \ 7.38-7.34 \). The \(^{13}\text{C}\) resonances at \(\delta \ 128.3, \delta \ 131.0, \) and \(\delta \ 122.7 \) were therefore assigned to carbon atoms C2"/C6", C3"/C5", and C4", respectively, and H3"/H5" showed strong three-bond coupling to a quaternary resonance at \(\delta \ 128.1 \) in the HMBC spectrum, and was therefore assigned to C1".
Figure 81: ROESY spectrum for compound **211** with key correlations highlighted.

Figure 82: COSY spectrum for compound **211** with assignments.
Figure 83: HMBC spectrum for compound 211 with assignments listed.

Figure 84: HSQC spectrum for compound 211 with assignments listed.
Large crystals of 211 were grown by slow evaporation of a hexane solution, and its structure was therefore unambiguously determined by x-ray crystallography (Figure 85). Of note is the loss of planarity despite the retained conjugation of the system, as a result of the steric repulsion of the N-tert-butylcarbamate group. The N1-C8-C9-C10 linkage exhibits a dihedral angle of 60.3° in the solid state, thus preventing orbital overlap and limiting electronic interaction between the 3H-indole and 1H-indole moieties.

Figure 85: ORTEP depiction of compound 211. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

4.2.2 Reaction optimisation

Despite indigo’s poor solubility in THF and the presence of numerous extraneous reagents, the combined 57% yield of Grignard adducts suggested nucleophilic addition of the organometallic species to the indigo core to be highly favourable. Using i-PrMgCl.LiCl 191 as a model substrate (5.0 eq.), we sought to optimise the reaction by

\[\text{X-ray crystallography performed by Dr. Anthony Willis (ANU).} \]

\[\text{***Calculated using Mercury v. 3.9, © Cambridge Crystallographic Data Centre.} \]
removing both the competing phenyllithium and the extraneous dibromoammonium salt (162) and repeating the reaction under identical conditions in a one-pot setting. We observed complete consumption of the indigo, however despite the presence of excess Boc₂O, dehydration of the intermediate alcohol (212) to 209 was sluggish, and only di-Boc indigo (213) was isolated in 19% yield, as identified by analysis of the LRESI mass spectrum (M+H⁺ = m/z 463⁺), comparison of the ¹H NMR and ¹³C NMR spectra with those previously-reported,[167] and x-ray crystallographic analysis of crystals grown from CH₂Cl₂ (Figure 86).††††

![Figure 86: ORTEP depiction of di-Boc indigo 213. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.](image)

We surmised that the amine’s absence may have slowed the rate of dehydration, and thus repeated the reaction in the presence of TMEDA (6.0 eq.), however this gave inconsistent yields ranging 20-40% on repeated attempts, and considerable quantities of the intermediate alcohol remained unreacted, as detected by TLC analysis. Therefore, to determine the best conditions for displacing the oxygen atom, a variety of dehydration

†††† X-ray crystallography performed by Dr. Anthony Willis (ANU).
reactions were trialled on small-scale using the crude isopropyl alcohol adduct (212, ca. 5 mg), and the outcomes of this are presented in Table 3.

Table 3: Summary of small-scale attempts at dehydration (dehyd.) of isopropyl adduct 212. Reactions were performed on ca. 5 mg of material, and the outcome determined by TLC and/or ESI-MS analysis. Decomposition is denoted as dec.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Reagent</th>
<th>Temp.</th>
<th>Dehyd.?</th>
<th>Dec.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeOH</td>
<td>Δ</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>MeOH</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>CH₂Cl₂</td>
<td>Δ</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>4</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>CH₂Cl₂</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>6</td>
<td>CH₂Cl₂</td>
<td>MsCl²</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>7</td>
<td>CH₂Cl₂</td>
<td>Boc₂O⁶</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>8</td>
<td>CH₂Cl₂</td>
<td>TiCl₄</td>
<td>RT</td>
<td>×</td>
</tr>
<tr>
<td>9</td>
<td>CH₂Cl₂</td>
<td>PPh₃·I₂</td>
<td>RT</td>
<td>×</td>
</tr>
<tr>
<td>10</td>
<td>Toluene</td>
<td>Δ</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>11</td>
<td>Toluene</td>
<td>RT</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12</td>
<td>Toluene</td>
<td>P₂O₅</td>
<td>RT</td>
<td>×</td>
</tr>
<tr>
<td>13</td>
<td>Pyridine</td>
<td>Δ</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>14</td>
<td>H₂SO₄</td>
<td>--</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15</td>
<td>THF</td>
<td>PCl₃</td>
<td>Δ</td>
<td>×</td>
</tr>
</tbody>
</table>

⁵NEt₃ added ⁶DMAP added ⁷Imidazole added

Of these trialled conditions, dehydration was observed with BF₃.OEt₂ (Entry 4), MsCl/NEt₃ (Entry 6), and H₂SO₄ (Entry 14), however only Boc₂O/DMAP (Entry 7), and heating in toluene (Entry 10) did not lead to significant decomposition. On full-scale (0.5 mmol), attempted dehydration using toluene in the presence of 3 Å molecular sieves showed moderate progression by TLC analysis after heating at reflux for 3 h, however the dehydrated material decomposed after leaving at reflux overnight, and trace products from undesired Wurtz coupling of i-PrMgCl.LiCl with 4- or 7-metallated indigo were isolated. We hypothesised that the inconsistency of the one-pot addition/dehydration with Boc₂O may be due to the remaining strongly-coordinating Li⁺ or Mg²⁺ ions, which were not present in the small-scale reaction, therefore the reaction was repeated with an additional aqueous workup between the Grignard addition and Boc₂O addition. Treatment with Boc₂O/DMAP in CH₂Cl₂ quickly led to the formation of 210, which was isolated in 80% yield following flash chromatography (Scheme 77).
Scheme 77: Optimised reaction outcome for the two-step isopropylation/Boc-mediated dehydration of indigo with i-PrMgCl:LiCl (191).

Treating indigo with PhMgCl under these conditions gave a combined 92% yield of N-Boc phenyl adduct 211 and N-H phenyl adduct 214, and while this yield was somewhat diminished by using PhLi in place of PhMgCl (71%), it suggested that both organolithium and organomagnesium aryl nucleophiles were tolerated in the first instance (Scheme 78). It was later found that the dehydration reaction could be greatly accelerated by the addition of NEt₃, and while this did not lead to an increase in isolated yield, the reaction was typically deemed to be complete within 20 min by TLC analysis.

Scheme 78: Reaction of indigo with PhMgCl and PhLi under optimised conditions.

The phenyl adduct 214 was isolated as an intense, dark-purple powder in 13% yield from indigo, following fractionation on silica and subsequent flash chromatography. Analysis of the HRESI mass spectrum revealed a peak at m/z 323.1187, assigned to the molecular ion [C₂₂H₁₅N₂O]+, revealing the net substitution of the phenyl group for one oxygen atom, and analysis of the FTIR spectrum revealed a sharp absorbance band at 3370 cm⁻¹, assigned to the N-H stretch. Analysis of the ¹H NMR spectrum revealed a broad singlet resonance at δ 10.25 which exchanged with D₂O and was assigned to the free NH group, and analysis of the ¹³C NMR spectrum revealed a resonance at δ 196.1, assigned to the C₃′ ketone group. The considerable degree of overlap of the proton environments made disentanglement of the individual protons difficult, however cross-referencing the HMBC and HSQC spectra for 214 with those acquired for 209 allowed for identification of distinctive ¹³C resonances at δ 112.0 and δ 137.4, assigned to C7 and C6′, respectively.
The phenyl protons H2”/H6”, H3”/H5”, and H4” were assigned to resonances at δ 7.54, δ 7.70, and δ 7.41, thus allowing assignment of C2”/C6”, C3”/C5”, and C4” to 13C resonances at δ 128.1, δ 131.0, and δ 127.7.

Figure 87: HSQC spectrum for compound 214 with assignments as indicated.

Figure 88: HMBC spectrum for 214 with key assignments highlighted.
4.3 Substrate scope

4.3.1 Substrate scope – alkyl nucleophiles

Having determined the optimal conditions for this reaction, we sought to explore the use of a small selection of simple, commercially-available organometallics. The good yield of isopropyl adduct 210 suggested moderate steric bulk was not detrimental to the reaction, hence a handful of alkyl substituents – namely methyl, allyl, benzyl, and butyl – were selected to generate a selection of small-to-moderate steric impactors. Given the applicability of organolithium reagents to this reaction, we elected to utilise the methylolithium and n-butyllithium reagents we had on-hand, activated in situ by complexing with TMEDA, while the allylmagnesium bromide and benzylmagnesium chloride solutions were pre-activated by stirring with flame-dried LiCl.

Treating a well-dried suspension of indigo (0.5 mmol) in anhydrous THF with n-butyllithium (5.0 eq.) at -84 °C in the presence of TMEDA (1.1 eq. based on BuLi) gave an intense dark-red complex which was warmed to room temperature over one hour with vigorous stirring, and stirred at room temperature for a further hour. Aqueous workup afforded a deep golden residue, which was dissolved in CH$_2$Cl$_2$, to which DMAP (2.2 eq.), NEt$_3$ (2.0 eq.), and Boc$_2$O (3.0 eq.) were added sequentially in air, and the mixture stirred for one hour. Aqueous workup and flash chromatography afforded the n-butyl adduct 215 in 80% yield (Scheme 79).

Scheme 79: Synthesis of n-butyl adduct 215 from the addition of n-BuLi to indigo.

Analysis of the HRESI mass spectrum for 215 revealed a peak at m/z 403.2036, assigned to the molecular ion [C$_{25}$H$_{27}$N$_2$O$_3$]+, demonstrating the net substitution of the butyl moiety for one oxygen atom, and the addition of a Boc group. Analysis of the 1H NMR spectrum revealed the expected eight distinct aromatic resonances, which were assigned on the basis of COSY (Figure 89) and HMBC experiments (Figure 90). Further upfield, four distinct aliphatic multiplets were identified at δ 2.93 (dd), δ 1.70 (dq), δ 1.36 (dq), and δ 0.90 (t), which were assigned to H1”$^\prime$”, H2”$^\prime$”, H3”$^\prime$”, and H4”$^\prime$”, respectively, based on HMBC, COSY and H2BC analyses (Figure 91). Analysis of the 13C DEPTQ spectrum revealed a
trio of negatively-phased aliphatic resonances at δ 32.7, δ 24.1, and δ 22.6, in addition to a single positively-phased resonance at δ 13.8, which were assigned to C2", C1", C3" and C4" by analysis of the HSQC spectrum (Figure 92).

Figure 89: COSY spectrum for compound 215 with assignments as indicated.

Figure 90: HMBC spectrum for compound 215 with key correlations highlighted.
Figure 91: H2BC spectrum for compound 215, showing two-bond correlations in the aliphatic region, demonstrating the connectivity of the alkyl chain.

Figure 92: HSQC spectrum for compound 215 with expansion of the aromatic region (inset).
With two aliphatic examples in hand, we aimed toward the synthesis of the \(N\)-Boc methyl adduct \(216\) from the substitution of methyllithium to indigo. We quickly found however that the reduced steric effect of the methyl-substituted alcohol \(217\) precluded dehydration with Boc\(_2\)O, and did not lead to the desired product, instead leading to mixtures of \(N\)-acylated and \(O\)-acylated materials (Scheme 80). Therefore, a series of small-scale trial reactions were conducted to determine a suitable dehydrating agent for less sterically-encumbered adducts – the outcomes of which are presented in Table 4.

Scheme 80: The attempted dehydration of methyl adduct \(217\) to \(216\) using Boc\(_2\)O was unsuccessful, and the desired product was not obtained.

Table 4: Summary of small-scale attempts at dehydration (dehyd.) of methyl adduct \(217\). Reactions were performed on ca. 5 mg of material, and the outcome determined by TLC and/or ESI-MS analysis. Decomposition is denoted as dec.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Reagent</th>
<th>Temp.</th>
<th>Dehyd.?</th>
<th>Dec.?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MeCN</td>
<td>CF(_3)COOH</td>
<td>RT</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>2 MeCN</td>
<td>H(_2)SO(_4)</td>
<td>RT</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>3 CH(_2)Cl(_2)</td>
<td>--</td>
<td>Δ</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>4 CH(_2)Cl(_2)</td>
<td>BF(_3).OEt(_2)</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>5 CH(_2)Cl(_2)</td>
<td>SOCl(_2)</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>6 CH(_2)Cl(_2)</td>
<td>MsCl(^a)</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>7 CH(_2)Cl(_2)</td>
<td>Boc(_2)O(^b)</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>8 CH(_2)Cl(_2)</td>
<td>TiCl(_4)</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>9 CH(_2)Cl(_2)</td>
<td>PPh(_3).I(^c)</td>
<td>RT</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>10 Toluene</td>
<td>--</td>
<td>Δ</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>11 Toluene</td>
<td>H(_2)SO(_4)</td>
<td>RT</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>12 Toluene</td>
<td>P(_2)O(_5)</td>
<td>RT</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>13 Pyridine</td>
<td>POCl(_3)</td>
<td>Δ</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>14 H(_2)SO(_4)</td>
<td>--</td>
<td>RT</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>15 THF</td>
<td>PCl(_3)</td>
<td>Δ</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>

\(^a\)NEt\(_3\) added \(^b\)DMAP added \(^c\)Imidazole added
Of these trialled methods, the three best outcomes were noted in entries 1, 2, and 9, using either TFA or H$_2$SO$_4$ in MeCN, or with PPh$_3$.I$_2$ and imidazole in CH$_2$Cl$_2$. Of these, the outcomes for TFA on small-scale could not be replicated on 0.5 mmol scale, and though H$_2$SO$_4$ led to decomposition, it afforded the dehydrated adduct 218 in 33% yield over 2 steps. This method however was surpassed by the use of PPh$_3$.I$_2$/imidazole, which led exclusively to the dehydrated product 218 in 93% yield from 217, or 74% from indigo over two steps.

Scheme 81: Synthesis of dehydrated methyl adduct 218 from Appel dehydration of alcohol 217.

The methyl adduct 218 was isolated as feathery, dark purple crystals in 74% yield from indigo. Analysis of the UV-Vis spectrum (acetone) revealed a pair of broad absorptive bands centred at $\lambda(\varepsilon)$ 326 (8389) and 538 (4881) nM, and FTIR analysis revealed a sharp absorptive band at 3376 cm$^{-1}$, assigned to a N-H stretch. Analysis of the HRESI mass spectrum revealed a peak at m/z 261.1022, assigned to the molecular ion [C$_{17}$H$_{13}$N$_2$O]$^+$, confirming the net substitution of the methyl group for one oxygen atom. Analysis of the 1H NMR spectrum revealed a broad singlet at δ 9.98, assigned to the NH, and a 3H singlet at δ 2.84, assigned to the pseudo-benzylic methyl group. Analysis of the 13C NMR spectrum revealed quaternary resonances at δ 196.9 and δ 154.8, assigned to C3' and C2', respectively, and an upfield resonance at δ 11.6, assigned to the methyl group.

The addition of BnMgCl.LiCl to indigo afforded the benzylic adduct 219 in 91% yield, following Boc-mediated dehydration and flash chromatography (Scheme 82). Analysis of the HRESI mass spectrum revealed a peak at m/z 437.1880, assigned to the molecular ion [C$_{28}$H$_{25}$N$_2$O$_3$]$^+$, demonstrating the net substitution of the benzyl group for one oxygen atom, as well as the addition of the N-Boc substituent. Analysis of the 1H NMR spectrum revealed thirteen aromatic protons, and a 2H singlet at δ 4.32, assigned to the benzylic methylene group. The characteristic quaternary 13C resonances at δ 191.9, and δ 160.5, and the protic resonance at δ 136.8 were assigned to C3', C7a' and C6' of the 3-oxo-3H-indole moiety, and the resonances at δ 150.1, δ 85.1, and δ 28.1 were assigned to the C=O, C$_q$ and CH$_3$ carbons of the N-Boc substituent.
We next turned our attention to allyl adduct 220, though despite its comparable steric presence to the successful n-butyl addition, compound 220 proved evasive due to the low observed reactivity of the lithium-ate complex, and only unreacted starting materials were recovered as N-Boc and N,N-di-Boc indigo adducts (Scheme 83). The reason for this low reactivity is unknown, as the precursor allylmagnesium bromide solution was titrated immediately prior to its use, however given the water sensitivity and hygroscopic nature of lithium-ates, trace water or oxygen in the nitrogen line, the LiCl salt or the THF solvent may have prematurely quenched the reagent. The comparatively-lower reactivity of organomagnesium bromides (cf. organomagnesium chlorides) is known, however under these circumstances, this does not sufficiently explain its poor reactivity, and requires further exploration.

Scheme 83

Unsuccessful attempted allylation of indigo with allylmagnesium bromide to give 220. Compound 220 was not detected, and only unreacted starting materials were recovered.

4.3.2 Substrate scope – aryl nucleophiles

Having determined that aryl and alkyl Grignard reagents can be readily inserted into the indigo core, we sought to explore the accessible space from metal-halogen insertion, to generate substituted aryl Grignard reagents. We initially chose 4-iodoanisole as a model substrate for magnesium-halogen exchange using i-PrMgCl (190) as the metal donor, and adapting conditions reported previously for the in situ preparation of complex 221, where the metal-halogen insertion was performed using a 10% molar excess of 190 at room temperature for 1 h. Under these conditions, a 41% yield of the desired 4-
methoxyphenyl adduct 222 was isolated, in addition to the undesired isopropyl adduct 210. This insertion step was optimised by use of excess iodoanisole (1.25 eq.), the addition of LiCl (1.25 eq.), and extending the reaction time to 1.5 h to encourage the complete consumption of i-PrMgCl. Under these modified conditions, an improved 72% yield of 222 was obtained, in addition to the isopropylated 210, isolated in 11% yield (Scheme 84).

Scheme 84: Optimised conditions for the synthesis of p-methoxyphenyl adduct 222 from indigo.

The para-methoxyphenyl adduct 222 was isolated as a bright-orange powder in 72% yield from indigo. Analysis of the HRESI mass spectrum revealed a peak at m/z 453.1807, assigned to the molecular ion [C\textsubscript{28}H\textsubscript{25}N\textsubscript{2}O\textsubscript{4}]+, revealing the net substitution of one oxygen atom for the anisole moiety, and the addition of an N-Boc substituent. Analysis of the 1H NMR spectrum revealed a pair of 2H doublet resonances at \(\delta\) 7.59 and \(\delta\) 6.96, and a 3H singlet at \(\delta\) 3.83, assigned to H\textsubscript{2''}/H\textsubscript{6''}, H\textsubscript{3''}/H\textsubscript{5''}, and the pendant methoxy substituent of the newly-incorporated aryl ring, respectively. H\textsubscript{2''}/H\textsubscript{6''}, H\textsubscript{3''}/H\textsubscript{5''} and the methoxy protons all showed strong correlations in the HMBC spectrum to a quaternary \(13\)C resonance at \(\delta\) 159.5, assigned to C\textsubscript{4''} (Figure 93). H\textsubscript{3''}/H\textsubscript{5''} also correlated to a resonance at \(\delta\) 124.0, assigned to C\textsubscript{1''}, and H\textsubscript{2''}/H\textsubscript{6''} showed a correlation to a resonance at \(\delta\) 128.0, assigned to the indole C3. Further downfield, the resonance at \(\delta\) 191.9 was assigned to C\textsubscript{3'}, and showed HMBC correlation to the doublet resonance at \(\delta\) 7.55 \textit{via} three bonds, assigned to H\textsubscript{4'}. The chemical shifts of C\textsubscript{2''} and C\textsubscript{3''} were determined by HSQC analysis, and were assigned to the resonances at \(\delta\) 132.2 and \(\delta\) 113.7, respectively (Figure 94).
Figure 93: HMBC spectrum for compound 222 with key assignments highlighted.

Figure 94: HSQC spectrum for compound 222 with assignments as indicated.
The *meta*-methoxy 223 and *ortho*-methoxy 224 adducts were prepared *via* identical means, and were isolated in 72% yield and 94% yield, respectively (Scheme 85). The considerably-higher yield of the *ortho*-methoxy adduct 224 is here attributed to the favourable interaction of a lone pair from the methoxy group of 2-iodoanisole 225 and the *i*-PrMgCl.LiCl complex 191, with the formation of the Lewis acid-base pair 226 stabilising the interaction between the magnesium atom and the adjacent aryl iodide, increasing the probability of orbital overlap and eventual metalation of the C-I bond.

Scheme 85: Synthesis of the *meta-* and *ortho-*methoxy substituted adducts 223 and 224 from indigo under optimised conditions, and mechanism for the *ortho-*assisted metalation of 2-iodoanisole, with Li+ and Cl− ions omitted for clarity.

Monoclinic crystals of 224 were grown by evaporation of a saturated CH2Cl2/hexane solution, and its structure confirmed by x-ray crystallography (Figure 95).‡‡‡‡ Interestingly, relative to the unsubstituted phenyl 211, the magnitude of the dihedral angle of the two indole hemispheres was reduced from 60.3˚ (211) to 55.3˚ (224), possibly due

‡‡‡‡ X-ray crystallography performed by Dr. Anthony Willis (ANU).
to orbital interactions between C3' and the nearby oxygen of the methoxy group, which were separated by a distance of 3.01 Å in the crystalline matrix.

Figure 95: ORTEP depiction of compound 225. Note that the atom numbers as denoted by x-ray crystallography do not reflect systematic numbering of atom positions.

To determine whether di-substituted aryl Grignard reagents were tolerated, 1-iodo-2,4-dimethoxybenzene (227) was metalated with i-PrMgCl.LiCl (191) at 0 °C for 2 h, and the resulting Grignard reagent combined with indigo. Subsequent Boc-mediated dehydration afforded the desired 2,4-dimethoxyphenyl adduct 228 in 72% yield as a deep orange powder (Scheme 86). Analysis of the HRESI mass spectrum revealed a peak at m/z 483.1914, assigned to the molecular ion [C_{29}H_{27}N_{2}O_{5}]^{+}, demonstrating the net substitution of the dimethoxyphenyl group for one oxygen atom, and the incorporation of the N-Boc group. Analysis of the 1H NMR spectrum revealed a pair of 3H singlets at δ

\footnote{Calculated using Mercury v. 3.9, © Cambridge Crystallographic Data Centre.}
3.83 and δ 3.36, assigned to the C4ꞌꞌ-adjacent and C2ꞌꞌ-adjacent methoxy groups, respectively. The 1H doublet at δ 6.40 had a coupling constant of $^4J_{H3ꞌꞌ-H5ꞌꞌ} = 2.4$ Hz, indicative of meta-coupling to the doublet of doublets at δ 6.63, and these resonances were assigned to H3ꞌ and H5ꞌ of the aryl substituent, respectively. Analysis of the COSY spectrum revealed coupling of H5ꞌ to part of an overlapped 2H multiplet at δ 7.50-7.45, which HSQC experiments revealed was due to the incidental overlap of two aryl carbons at δ 132.5 and δ 136.5, assigned to C6ꞌ and C6', respectively. Interestingly, H3ꞌ overlapped with a minor resonance which appeared to show COSY correlations to an extraneous resonance at δ 7.29 (Figure 96), which correlated weakly in the HSQC spectrum to a 13C resonance at δ 128.9 (Figure 97). This was attributed to the hindered rotation about the C3-C1ꞌ biaryl axis due to the presence of three ortho-substituents, giving rise to major and minor rotamers in equilibrium.151,169 The extraneous resonances at 1H δ 7.29 and 13C δ 128.9 were therefore assigned to H6ꞌ (min) and C6ꞌ (min), respectively. This assignment was also supported by the presence of additional HSQC correlations of H4 and H5 to weak 13C resonances at δ 123.1 and δ 126.1, assigned to C4 (min) and C5 (min) respectively. This suggests that the orientation of the overhanging aryl group has an appreciable deshielding effect on the chemical shift of the adjacent C4 and C5 positions of the indole in 228, however this phenomenon was not observed for any other Grignard reagents examined.

Scheme 86: Synthesis of dimethoxyphenyl adduct 228, with the biaryl axis highlighted in red. Below are depicted the proposed major (where the C3ꞌ carbonyl and C2ꞌꞌ methoxy are syn) and minor (where the C3ꞌ carbonyl and C2ꞌꞌ methoxy are anti) rotameric conformations, and the 1H (black) and 13C (blue) chemical shifts for the affected positions.
Figure 96: COSY spectrum of compound 228 at low (top) and high (bottom) intensities, showing the appearance of additional peaks corresponding to the minor rotamer.
Figure 97: HSQC spectrum of compound 228 at low (top) and high (bottom) intensities, showing the appearance of additional peaks corresponding to the minor rotamer.
Next, the incorporation of halogenated substrates was investigated. Therefore, using *para*-fluoroiodobenzene (229) and *ortho*-chloroiodobenzene (230) as coupling partners, the corresponding fluorinated 231 and chlorinated 232 adducts were isolated in good yields (Scheme 87).

Scheme 87: Synthesis of halogenated desymmetrised diindoles 231 and 232 from their corresponding halogenated Grignard reagents.

Analysis of the HRESI mass spectrum for the fluorophenyl adduct 231 revealed a peak at \(m/z = 441.1608 \), assigned to the molecular ion \([C_{27}H_{22}N_2O_3F]^+\), demonstrating the net substitution of the fluorophenyl moiety for an oxygen atom, and the addition of the \(N\)-Boc group, and the \(^1\)H-decoupled \(^{19}\)F spectrum revealed a single resonance at \(\delta = 114.0 \), typical of the aryl C-F moiety. Characteristic \(^{19}\)F-\(^{13}\)C spin-coupling was also apparent in the \(^{13}\)C NMR spectrum, causing splitting of the C4\(^\prime\) (\(^1J_{C\text{-}F} = 248.2 \) Hz), C3\(^\prime\) (\(^2J_{C\text{-}F} = 21.3 \) Hz), C2\(^\prime\) (\(^3J_{C\text{-}F} = 8.1 \) Hz) and C1\(^\prime\) (\(^4J_{C\text{-}F} = 2.5 \) Hz) resonances, in decreasing magnitude as the C-F distance increased.

Analysis of the HRESI mass spectrum for the chlorophenyl adduct 232 revealed a 3:1 ratio of two peaks at \(m/z = 457.1313 \) and 459.1285, assigned to the isotopic molecular ions \([C_{27}H_{22}N_2O_3^{35}Cl]^+\) and \([C_{27}H_{22}N_2O_3^{37}Cl]^+\), confirming the insertion of the chlorophenyl moiety and the addition of the \(N\)-Boc group. The x-ray crystal structure for 232 additionally revealed a dihedral angle of 44.5\(^\circ\) and an intramolecular Cl···C3' distance of 3.54 Å (Figure 98).*****

***** Calculated using Mercury v. 3.9, © Cambridge Crystallographic Data Centre.
4.3.3 Substrate scope – heterocyclic nucleophiles

To assess the applicability of heterocyclic substrates to this transformation, we selected five simple heterocycles containing a variety of N, O, and S heteroatoms – pyridyl, N-methylimidazolyl, thiophenyl, benzofuranyl, and N-methylindolyl moieties were selected to determine whether these were tolerated by the reaction. The magnesium-iodine exchange reaction of 3-iodopyridine was therefore initially investigated as a direct 3-aza analogue of the phenyl system. Early difficulties were encountered where, despite the use of scrupulously-anhydrous conditions, distilled and dried solvent and meticulously-purified starting materials, the generated Grignard reagent was rendered inactive by the presence of water, resulting in the exclusive isolation of unreacted indigo. Systematic troubleshooting of each component in the closed system determined that despite the efficacy of the gas drying tube (assessed using self-indicating desiccant in the tube), the
in-house nitrogen gas line still contained sufficient water to prematurely quench the generated Grignard reagent. Gratifyingly, repeating the reaction under identical conditions – except for the addition of a second drying tube containing activated CaCl₂ to the nitrogen line – afforded exclusively the desired 3-pyridyl diindole 233 in 89% yield (Scheme 88).

Scheme 88: Synthesis of the 3-pyridyl-substituted diindole 233 from indigo.

Analysis of the HRESI mass spectrum for 233 revealed a peak at \(m/z \) 424.1656, assigned to the molecular ion \([C_{26}H_{22}N_3O_3]^+\), confirming the incorporation of the pyridyl moiety and the addition of a Boc group. Analysis of the \(^1\)H NMR spectrum revealed three deshielded resonances at \(\delta \) 8.90, \(\delta \) 8.60, and \(\delta \) 8.02, assigned to H2", H4", and H6" of the 3-pyridyl ring, in addition to a doublet at \(\delta \) 8.26, assigned to the Boc-adjacent H7. Analysis of the COSY spectrum revealed correlation of both H4" and H6" to a resonance at \(\delta \) 7.38, assigned to H5" (Figure 99). Coupling this information with HSQC experiments therefore revealed the chemical shift of the protic C2", C4", C5", and C6" carbon atoms, which were assigned to the resonances at \(\delta \) 151.3, \(\delta \) 148.9, \(\delta \) 123.0, and \(\delta \) 138.2, respectively (Figure 100). Analysis of the ROESY spectrum, revealed correlations between both H2" and H6" and a doublet at \(\delta \) 7.60, assigned to H4 of the nearby indole, confirming the regioselectivity of the metalation reaction to exclusively C3 of the iodopyridine (Figure 101).
Figure 99: COSY spectrum for compound 233, with key correlations about from H4''-H5''-H6'' on the pyridyl ring highlighted (blue).

Figure 100: HSQC spectrum for compound 233, with assignments as listed. Note that the C7'-H7 and C5''-H5'' correlations overlap at the 2D resolution of the experiment, however the pair are resolved in the 1D 13C NMR spectrum.
Figure 101: Weak through-space correlations in the ROESY spectrum from H2" and H6" to H4 confirm the regiochemical identity of the pyridine moiety. Key correlations are highlighted (black).

With the successful incorporation of a basic nitrogen heterocycle, we next turned our attention to the analogous N-methylimidazolyl system. Given that the desired 2-metalated imidazole is commonly generated in situ from directed metalation of N-methylimidazole with n-BuLi, a 0 °C solution of N-methylimidazole (2.5 mmol) in THF was treated with n-BuLi (2.2 mmol), and the mixture stirred at 0 °C for 1.5 h. The resulting pale-golden solution of was transferred to a vigorously-stirred suspension of indigo in THF at -84 °C, and the mixture allowed to warm to room temperature over one hour. After stirring at room temperature for a further hour, the reaction was worked up and the residue subjected to Boc-mediated dehydration, affording exclusively the desired 3-(N-methylimidazol-2-yl)-diindole in 94% yield (Scheme 89).
Scheme 89: Regiospecific metalation of N-methylimidazole to give lithioimidazole 234. Combining 234 with indigo afforded the desired diindole 235 in excellent yield.

Analysis of the HRESI mass spectrum for 235 revealed a peak at \(m/z \) 427.1264, assigned to the molecular ion \([\text{C}_{25}\text{H}_{23}\text{N}_4\text{O}_3]^+\), corresponding to the insertion of the imidazole moiety and the addition of a Boc group. Analysis of the \(^1\text{H}\) NMR spectrum revealed a 3H singlet at \(\delta \) 3.68, assigned to the N-methyl substituent, in addition to a pair of apparent singlet resonances at \(\delta \) 7.16 and \(\delta \) 7.04, assigned to the imidazole protons H4 ꞌꞌ and H5 ꞌꞌ, respectively. Closer inspection revealed an unusually-low \(^3\text{J}_{\text{H4-H5}}\) coupling constant of 0.9 Hz, however this has been observed previously in the \(^1\text{H}\) NMR spectra for various substituted N-methylimidazoles, and imidazole coupling constants are known to be pH-dependent.\(^{23h, 170}\) This weak \(^3\text{J}_{\text{H4-H5}}\) coupling was accompanied by an unusually-weak 3-bond correlation in the COSY spectrum (Figure 102), however the ortho-configuration of these two protons was confirmed by analysis of the HMBC spectrum, which showed strong 3-bond correlations from the N-methyl group protons, H4 ꞌ, and H5 ꞌ to the quaternary \(^{13}\text{C}\) resonance at \(\delta \) 140.0, assigned to the imidazole C2 ꞌ (Figure 103).
Figure 102: COSY spectrum for compound **235** at high intensity. Unusually-weak coupling was observed for the imidazole protons H4" and H5" (highlighted in blue).

Figure 103: HMBC spectrum for compound **235**, with expansion of the aromatic region (inset) and key correlations highlighted.
Next, the sulfur-containing heterocycle thiophene was investigated, and rapid conversion of 2-iodothiophene to lithium dichloro(thiophen-2-yl)magnesate (236) was observed upon treatment with \(i\)-PrMgCl.LiCl at 0 °C. The pale gold solution of the ate complex was combined with indigo and warmed from -84 °C to room temperature over one hour, then the intense yellow solution stirred for an additional hour prior to quenching. Boc-mediated dehydration of the resulting golden residue afforded cleanly the thiophene adduct 237 in 95% yield (Scheme 90).

![Scheme 90: Synthesis of thiophene adduct 237 from 2-thiophenyl Grignard reagent 236. Li⁺ and Cl⁻ ions omitted for clarity.](image)

Analysis of the HRESI mass spectrum of 237 revealed a peak at \(m/z \) 429.1267, assigned to the molecular ion \([C_{25}H_{21}N_2O_3S]^+\), corresponding to the net substitution of the thiophene moiety for an oxygen atom, and the addition of the N-Boc substituent. Analysis of the \(^1\)H NMR spectrum revealed a characteristic doublet-of-doublets at δ 7.14, which showed COSY correlations to two sets of doublet-of-doublets at δ 7.40 and δ 7.60 (Figure 104), which were assigned to H4", H5", and H3" of the thiophene moiety, respectively — this assignment was supported by through-space correlation of H5" to a doublet at δ 7.94 in the ROESY spectrum (Figure 105), assigned to H4 of the adjacent indole ring. Analysis of the HMBC spectrum revealed strong, three-bond coupling of H4" and H5" to a quaternary \(^{13}\)C resonance at δ 132.4 which also showed weak, two-bond coupling to H3", and was therefore assigned to C2" (Figure 106). H3" additionally was coupled through three bonds to a quaternary resonance at δ 121.0, assigned to the indole C3. The oxoindolenine fragment was confirmed by the lone carbonyl resonance at δ 191.4 assigned to C3' and the characteristic \(^{13}\)C resonances at δ 159.6, δ 136.6 and δ 160.3, assigned to C2', C6' and C7a', respectively.
Figure 104: COSY spectrum for 235, with relevant assignments. Key correlations of the thiophene moiety are highlighted (blue).

Figure 105: ROESY spectrum for compound 237 with relevant assignments and key correlations between H3" and H4 highlighted (black).
Crystals of 237 were grown by slow evaporation of a saturated hexane/CH2Cl2 solution, and the structure unambiguously confirmed by x-ray crystallography (Figure 107).††††† The thiophene moiety showed disordered packing in the solid state, where the two possible rotational isomers about the biaryl axis (i.e. 237a, where the sulfur atom is oriented toward the indole fragment, and 237b where the sulfur atom is oriented toward the indolenine fragment) were observed in a 4:1 ratio, respectively. The central axis of the molecule was observed to be twisted by an angle of 56.5˚,‡‡‡‡‡ and there was no apparent interaction between the thiophene moiety and the C3’ ketone group.

††††† X-ray crystallography performed by Dr. Anthony Willis (ANU).
‡‡‡‡‡ Calculated using Mercury v. 3.9, © Cambridge Crystallographic Data Centre.
Figure 107: ORTEP depiction of compound 237. Top: superposition of the two isomers (237a and 237b) resulting from disordered packing of the thiophene moiety. Bottom: The major isomer 237a, where the sulfur atom is oriented toward the 1H-indole moiety.
Directed metalation of benzofuran has been reported to exclusively afford 2-lithiobenzofuran (328),[157a] which was utilised as a means of probing the reaction’s tolerance for oxygen heterocycles. Therefore, a solution of benzofuran (2.5 mmol) in THF was cooled to -84 °C, then n-BuLi solution (2.2 mmol) added slowly, and the mixture allowed to warm to room temperature over one hour. The resulting lithiobenzofuran solution was added to indigo at -84 °C, and the deep red solution warmed to room temperature over one hour, then stirred vigorously for a further hour. Aqueous workup and Boc-mediated dehydration of the deep golden residue afforded a dark orange mixture, which was separated by flash chromatography to yield the benzofuran adduct 329 in 85% yield (Scheme 91).

Scheme 91: Regiospecific metalation of benzofuran to afford 2-lithiobenzofuran 238, used to synthesise the benzofuran-indigo adduct 239 via Boc-mediated dehydration. Below are pictured indicative colour changes at each point of the reaction. Steps 1), 2), and 3) are as denoted above the reaction arrow.
Finally, the insertion of a third indole moiety was investigated, to determine whether this reaction would allow access to substituted terindole scaffolds. Direct lithiation of \(N \)-methylnindole afforded 2-lithio-\(N \)-methylnindole (240), which upon combining with indigo gave a deep golden adduct which underwent Boc-mediated dehydration to an unstable product (presumably 241), which rapidly decomposed upon attempted purification by flash chromatography, producing various polymeric materials and no viable products. Therefore, starting from 5-iodoindole 242, \(N \)-methylation on gram-scale afforded the corresponding \(N \)-methylnindole 243 in quantitative yield. Magnesium-halogen exchange using \(i \)-PrMgCl,LiCl gave a solution of Grignard reagent 244, which was combined with indigo, then subjected to Boc-mediated dehydration, affording 245 in 78% crude yield after repeated purification (Scheme 92).

Scheme 92: Attempts toward the synthesis of terindoles from indigo. Top: direct lithiation of \(N \)-methylnindole to give 241, which decomposed rapidly upon attempted purification. Middle: preparation of indol-5-ylmagnesium chloride reagent 244. Bottom: Reaction of 244 with indigo to give 2,2’:3’,5’-terindole 245.
Terindole 245 was isolated as a crude mixture and degraded upon attempted further purification by flash chromatography, however its structure was able to be definitely assigned based on the isolated sample. Analysis of the HRESI mass spectrum of terindole 245 revealed a peak at 476.1968, assigned to the molecular ion \([\text{C}_{30}\text{H}_{26}\text{N}_{3}\text{O}_{3}]^+\), revealing the substitution of the oxygen atom for an \(N\)-methylindolyl moiety, and the incorporation of the \(N\)-Boc substituent. Analysis of the \(^1\)H NMR spectrum revealed the sample to be 78\% pure, consisting of a 4:1 ratio of the desired product and an unknown impurity which could not be resolved by chromatographic separation, and elevated-temperature NMR experiments (DMSO-\(d_6\), 60 °C) demonstrated that these additional peaks were not attributable to previously-encountered rotamers about the biaryl and/or carbamate axes. The sample and impurity resonances however were able to be disentangled by numerous 2D NMR experiments, allowing the structure of the major component to be confirmed. Analysis of the \(^1\)H NMR spectrum revealed a 3H singlet at \(\delta 3.79\), assigned to the \(N\)-methyl substituent of the indole moiety. Further downfield, the doublet at \(\delta 6.52\) showed correlations in the COSY spectrum to the doublet at \(\delta 7.06\), assigned to H3\(^\prime\prime\) and H2\(^\prime\prime\), respectively (Figure 108). Analysis of the HMBC spectrum revealed correlations between both H2\(^\prime\prime\) and H3\(^\prime\prime\) to a pair of quaternary \(^{13}\)C resonances at \(\delta 128.1\) and \(\delta 136.4\), assigned to C3a\(^\prime\prime\) and C7a\(^\prime\prime\), respectively (Figure 109). C7a\(^\prime\prime\) was also correlated to a doublet resonance at \(\delta 7.93\), which showed meta-coupling (\(\text{\(^4\)}J_{\text{H4\(^\prime\prime\)-H6\(^\prime\prime\)}} = 1.0\) Hz) to a resonance at \(\delta 7.44\), assigned to H4\(^\prime\prime\) and H6\(^\prime\prime\), respectively. The remaining H7\(^\prime\prime\) was assigned to part of a multiplet at \(\delta 7.34\), and showed strong three-bond coupling to a quaternary resonance at \(\delta 122.6\), assigned to C5\(^\prime\prime\), therefore confirming both the presence of the additional 1\(H\)-indole moiety and the regiochemistry of the C3-C5\(^\prime\prime\) biaryl linkage. Therefore, despite the presence of significant impurity in the sample, every individual \(^1\)H and \(^{13}\)C resonance could be confidently assigned.

4.3.4 Substrate scope – summary of outcomes

Under the trialled conditions, this newly-discovered two-stage addition/dehydration reaction of indigo with numerous alkyl, aryl, and heterocyclic organometallics afforded rapid access to a variety of densely-functionalised desymmetrised 2,2\(^\prime\)-diindoles, with good functional tolerance, and in good-to-excellent yields ranging 61–95\%. A summary of the preceding outcomes of this work is provided in Figure 110.
Figure 108: COSY spectrum for compound 245 with relevant assignments and key correlations of the N-methylindol-5-yl moiety highlighted.

Figure 109: HMBC spectrum of compound 245, with key proton (black) and carbon (blue) assignments as annotated on the molecule.
Figure 110: Summary of heterocyclic compounds accessed directly from indigo via this two-stage addition/dehydration methodology.
4.4 Mechanistic discussion

Given both the modularity and consistency of this transformation, it is likely that all reactions explored herein proceed via an identical mechanism, though the question remains as to why indigo only undergoes a single nucleophilic addition, despite the presence of both: a) two electrophilic carbonyl moieties, and b) a considerable excess (4.0–5.0 eq.) of powerful organometallic nucleophiles. A simple answer to this question is the considerable acidity of the indole NH groups depleting the excess reagent, however this would only account for the loss of 2.0 equivalents of the incoming Grignard, leaving sufficient nucleophile remaining that twofold addition would appear facile. One explanation is related to the self-indicating nature of the reaction, where the mixture turned an intense scarlet colour upon addition of the nucleophilic species at low temperature. It is therefore proposed that the indigo di-anion forms a stable six-membered chelate complex (246), where the hard Lewis acidic lithium or magnesium atoms are bonded to the indigo core via one nitrogen atom and one oxygen atom, thus sequestering the negative charges to one hemisphere of the diindole and deactivating one ketone group by converting it to a stable enolate. Nucleophilic attack of the residual Grignard reagent on the active carbonyl on the opposite hemisphere therefore would generate adduct 247, which is hydrolysed to alcohol 58a upon aqueous workup (Scheme 93). This proposed mechanism is consistent with our own observations, and also with the observed mono-selectivity from the original 1909 study.\[67\]
Scheme 93: Proposed mechanism for selective mono-Grignard addition to indigo, proceeding via chelate complexes 246 and 247, and photographic depiction of an observed, brightly-coloured complex (inset), showing its colour in solution at -84 °C.

In most cases, treatment of the resulting alcohol 58a with Boc₂O resulted in rapid dehydration, with the isolation of mixtures of N-H and N-Boc adducts 210 and 211 from the reaction of PhMgCl suggesting that dehydration either occurs prior or independently of N-acylation. Upon adding Boc₂O to the solution of the alcohol, DMAP and NEt₃, gas evolution and an immediate endotherm were observed, and NMR analysis revealed the presence of tert-butanol in the crude reaction mixture. This suggested that elimination of the alcohol necessitated the formation of CO₂ gas and t-BuOH as by-products, explained by the in-situ generation and decomposition of a tert-butyl carbonate ester moiety (248) by condensation of the alcohol with Boc anhydride. Conjugate 1,4-elimination would then give the non-symmetrical N-H diindole 194, which could undergo N-acylation to give the corresponding N-Boc diindole (Scheme 94). The high isolated yields and rapid reactions of aryl Grignard reagents, combined with the failed dehydration of the methyl adduct 217 suggests that Boc-mediated dehydration requires at least moderate steric buttressing between the substrate and the carbonate ester to proceed, and/or to prevent competing acylation of the pro-indolenine nitrogen atom Nꞌ. Conversely, the optimal dehydration using PPh₃I₂ was only possible for the methyl adduct (see Section 4.3.1), presumably due to the steric demands of the phosphonium species (249) generated in situ, which extrudes PPh₃O to give diindole 218.
Scheme 94: Proposed mechanism for the Boc-mediated dehydration of alkyl- and aryl-Grignard adducts, and the phosphine-mediated dehydration toward the methyl adduct 218.

4.5 Boc-deprotection of isolated scaffolds

With our sights set on evaluating the biological potential of these newly-accessed heterocyclic scaffolds, the derived N-Boc indoles required deprotection to their corresponding free N-H indoles. This could be accomplished by the action of TFA, either neat or in CH$_2$Cl$_2$ solution, typically affording the free indole cleanly, and in good yields (Scheme 95). The reaction progress was monitored by TLC analysis and by monitoring the colour change of the reaction mixture from orange to deep blue-green, and royal purple upon aqueous workup. In most cases, the reaction was deemed to be complete within 2 h, however several substrates required longer reaction times in order for complete consumption of the starting material. In addition, treatment of the N-Boc 3-methoxyphenyl (223), N-methylimidazol-2-yl (235), and benzofuran-2-yl (239) adducts (as well as the crude N-methylindol-5-yl adduct 245) led to rapid and extensive decomposition under these conditions, and the desired free indoles were not isolated. The exact reason for this is unknown as degradation was non-specific and led mostly to polymeric tars and anthranilic acid derivatives, offering little information as to why it had occurred. One common element of these substrates is their high electron density, which may have led to acid-catalysed intramolecular cyclisation onto the adjacent carbonyl or imine functionalities, however electron density alone does not account for the reaction’s discrimination between the successful 2-methoxy (224), 4-methoxy (222), and 2,4-dimethoxy (228), and the unsuccessful 3-methoxy (223) substrates. Degradation also
occurred rapidly upon attempted neutral deprotection (using TBAF·H$_2$O in THF), hence the absence of an acid catalyst did not hinder this reactivity. The exact cause for decomposition thus remains elusive, and requires further investigation.

Scheme 95: Isolated yields from N-Boc deprotection of synthesised substrates.
4.6 Conclusions

As was first reported more than a century ago, indigo reacts rapidly with a variety of Grignard reagents and organolithium species to yield tertiary alcohol adducts in excellent yields. Herein, we have re-investigated and utilised this robust reaction as a starting point for methodology development toward the generation of diverse, functionalised, and desymmetrised 2,2'-biindoles in high yields from this cheap and plentiful starting material. We determined that the formation of an intramolecular chelate complex is key for the specific insertion of a single equivalent of the desired nucleophile, and it is this predictability and reliability that lends it toward the target-oriented synthesis of functional materials. Where previously there were only three previously-reported examples of 3'-oxo-1H-3'\(\text{H}\)-2,2'-biindoles, we have developed new chemistry which has allowed for the synthesis of a total of twenty-seven novel molecules of this class, bearing either \(\text{N-H}\) or \(\text{N-Boc}\) substituents, and featuring an array of useful functional moieties for both incorporation into new chemical scaffolds, and for drug discovery purposes.
Chapter 5:
Biological activity testing of indigo derivatives

5.1 Biological activity of indigo derivatives

Despite the vast body of knowledge regarding the biological activity of the isomeric 2,3′-linked indirubin (36) and its derivatives as kinase inhibitors and apoptotic agents,[171] there has been very little investigation of the biological application of the corresponding 2,2′-linked indigo (31) and its derivatives. The 5,5′-dichloroindigo-N-glycosides akashines A-C (259–261) showed potent in vitro inhibition of numerous tumour cell lines with reported IC$_{50}$ values of 5.1–5.9 μM against human CCL-HT29 (colon carcinoma), MEXF-514L (melanoma), LXFA-526L (lung carcinoma), MCF-7 (breast cancer), and RXF-631L (kidney tumour) lines, among others.[172] The pseudo-dimeric natural product bisindigotin (202) was found to inhibit dioxin-mediated ethoxyresorufin-O-deethylase (EROD) activity for the Hep-G2 (immortalised human liver cancer) cell line (IC$_{50}$ = 0.8 μM), moderating toxicity versus untreated cells,[173] and showed dual activity as an inhibitor of both EROD and CYP1A1 (Cytochrome P450, 1-A1) induction in H4IIE (rat hepatoma) cells.[174] Previous studies into the cascade chemistry of indigo also revealed several potent inhibitors of the NCI-H187 (human lung cancer), and KB (human oral cancer) cell lines, as well as the malarial vector P. falciparum K1 (drug-susceptible) parasites. The N,N'-cyclised propargyl adduct 115 in particular showed IC$_{50}$ values of 6.24 μM, 4.36 μM and 0.85 μM, respectively, against these three targets (Figure 111). We therefore sought to examine the biological profile of all final synthesized species from the preceding chapters. The low-micromolar inhibitory activity against P. falciparum parasites was particularly promising, hence we sought primarily to investigate the antiplasmodial activity of these compounds to identify potential leads for future elaboration.
Figure 11: Previously-reported biological activity of indigo derivates. All concentrations listed represent IC\textsubscript{50} values. For akashines A-C (259–261) these represent inhibition of the CCL-HT29 cell line, while for bisindigotin 202, this represents inhibition of EROD in the Hep-G2 cell line. IC\textsubscript{50} values for the propargyl adduct 115 are as listed for the assigned cell lines.

5.2 Antiplasmodial activity of propargylic and strained-ring adducts

The fourteen final derived species from Chapters 2 and 3 were assessed against
Plasmodium falciparum 3D7 (chloroquine sensitive) and Dd2 (drug resistant) parasite strains, and preliminary cytotoxicity assessment was carried out using Human Embryonic Kidney (HEK293) cells, with reference standards of artesunate, dihydroartemisinin (DHA), chloroquine, puromycin and pyrimethamine, and 0.4% DMSO and 5 µM puromycin used as negative and positive in-plate controls, respectively. The outcomes of these assays are presented in Table 5.

\footnote{All biological assays were performed by collaborators at Griffith University (Prof. Vicky Avery and Dr. Leonardo Lucantoni).}
Table 5: Summary of outcomes from antiplasmodial and toxicity assays for compounds derived from cascade reactions of indigo, as synthesised in Chapters 2 and 3.

<table>
<thead>
<tr>
<th>Entry</th>
<th>#</th>
<th>Compound</th>
<th>3D7 (nM)<sup>a</sup></th>
<th>Dd2 (nM)<sup>a</sup></th>
<th>HEK293 (nM)<sup>a</sup></th>
<th>SI (HEK/3D7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>133</td>
<td></td>
<td>11000 ±8000</td>
<td>14000 ±6000</td>
<td>5.6% at 80 μM<sup>b</sup></td>
<td>>7</td>
</tr>
<tr>
<td>2</td>
<td>134</td>
<td></td>
<td>28.4% at 80 μM<sup>b</sup></td>
<td>IA</td>
<td>-31.4% at 80 μM<sup>b</sup></td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>rac-152</td>
<td></td>
<td>76.6 ±4.0</td>
<td>201.7 ±7.4</td>
<td>7726 ±467</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>S-152</td>
<td></td>
<td>105.6 ±37.4</td>
<td>195.5 ±0.2</td>
<td>10361 ±1028</td>
<td>98.1</td>
</tr>
<tr>
<td>5</td>
<td>R-152</td>
<td></td>
<td>88.6 ±16.3</td>
<td>164.5 ±32.2</td>
<td>10708 ±1090</td>
<td>120.9</td>
</tr>
<tr>
<td>6</td>
<td>153</td>
<td></td>
<td>17.4% at 80 μM<sup>b</sup></td>
<td>IA</td>
<td>-30.7% at 80 μM<sup>b</sup></td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>7</td>
<td>154</td>
<td>10000 ±3000</td>
<td>22000 ±6000</td>
<td>34.1% at 80 μM<sup>b</sup></td>
<td>>8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>155</td>
<td>98.7% at 160 μM<sup>b</sup></td>
<td>73.2% at 160 μM<sup>b</sup></td>
<td>25.5% at 160 μM<sup>b</sup></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>176</td>
<td>6000 ±2000</td>
<td>25000 ±5000</td>
<td>14.9% at 80 μM<sup>b</sup></td>
<td>>14</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>177</td>
<td>3100 ±600</td>
<td>4000 ±2000</td>
<td>65.9% at 80 μM<sup>b</sup></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>178</td>
<td>5000 ±2000</td>
<td>8000 ±6000</td>
<td>47.3% at 80 μM<sup>b</sup></td>
<td>>17</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>179</td>
<td>3700 ±700</td>
<td>6000 ±2000</td>
<td>12.5% at 80 μM<sup>b</sup></td>
<td>>21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compound</td>
<td>IC₅₀</td>
<td>IC₅₀</td>
<td>Percentage Inhibition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td>-----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>13</td>
<td>Chemical Structure</td>
<td>4000 ±80</td>
<td>8120 ±60</td>
<td>6.0% at 80 μM</td>
<td>>20</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Chemical Structure</td>
<td>98.6% at 80 μM</td>
<td>97.7% at 80 μM</td>
<td>65.4% at 80 μM</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Chemical Structure</td>
<td>9000 ±200</td>
<td>16000 ±4000</td>
<td>64.0% at 80 μM</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Chemical Structure</td>
<td>2800 ±700</td>
<td>5000 ±2000</td>
<td>15000 ±2000</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Artesunate</td>
<td>1.1 ±0.0</td>
<td>1.7 ±0.5</td>
<td>70.7% at 10 μM b</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Chloroquine</td>
<td>5.8 ±0.1</td>
<td>94.6 ±24.9</td>
<td>67.4% at 40 μM b</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Dihydroartemisinin</td>
<td>0.4 ±0.1</td>
<td>0.6 ±0.1</td>
<td>62.3% at 10 μM b</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Puromycin</td>
<td>141.9 ±12.7</td>
<td>147.4 ±23.3</td>
<td>1202 ± 2.8</td>
<td>8.5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Pyrimethamine</td>
<td>4.0 ±0.1</td>
<td>5.0% at 40 μM b</td>
<td>72.8% at 40 μM b</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

a Concentrations reflect calculated IC₅₀ values. *b* Percentage inhibition is given where an IC₅₀ value could not be calculated due to the dose-response curve not reaching a full inhibition plateau at the maximum concentration. IA = inactive.
Of the molecules submitted for testing, the $N,N\prime$-cyclic compounds 152, 176–178, and 185 were considerably more-active than both the $N,O\prime$-cyclic molecules 153–155 and 183–184, and the propargylic adducts 133–134, which showed weak inhibitory activity >10 μM. There was no significant difference in the activity of the isomeric hydroxymethylpyrazinodiindoles rac-152, S-152 and R-152, which showed IC$_{50}$ values of 77.6–105.6 nM for the 3D7 parasite strain – an eight-fold improvement from the previous benchmark 115. The structural homology of 152 and 115 (differing only by the net hydration of the exocyclic olefin) supports the hypothesis that the incorporation of new heteroatoms could lead to an improvement in the biological profile of the indigo derivatives (see Chapter 3). Notable for all trialled compounds is their low cell toxicity, with only compounds 152 and 185 showing appreciable HEK293 inhibition at their maximum concentrations. The calculated IC$_{50}$ values for 152 demonstrate it to be two orders-of-magnitude more-potent against the 3D7 line than HEK293 line, leading to high selectivity (SI 100-120) for the parasites over the human control. There was a noted decrease in activity against the resistant Dd2 parasites, with IC$_{50}$ ratios Dd2:3D7 of ca. 1.5–2, however this discrepancy falls within the accepted parameters of equipotency for this assay and does not indicate cross-species resistance.

5.3 Antiplasmodial activity of non-symmetrical 2,2ꞌ-diindoles

The non-symmetrical 2,2ꞌ-diindoles synthesised in Chapter 4 were also subjected to the same assays, to assess their antiplasmodial potency and toxicity. Where the final deprotected N-H indoles were unable to be synthesised, their precursor N-Boc-protected diindoles (i.e. the 3-methoxyphenyl adduct 223, imidazole adduct 235 and benzofuran adduct 239) were tested, and their relative activity benchmarked against a small selection of other Boc-protected diindoles (i.e. the isopropyl adduct 210, phenyl adduct 211, 2-methoxyphenyl adduct 224 and thiophene adduct 237) to determine the relative effect of the induced substituent.***** The outcomes of this testing are summarised in Table 6.

***** All biological assays were performed by collaborators at Griffith University (Prof. Vicky Avery and Dr. Leonardo Lucantoni).
Table 6: Summary of outcomes from antiplasmodial and toxicity assays for compounds derived from addition-dehydration reactions of indigo, as synthesised in Chapter 4.

<table>
<thead>
<tr>
<th>Entry</th>
<th>#</th>
<th>Compound</th>
<th>3D7 (nM)a</th>
<th>Dd2 (nM)a</th>
<th>HEK293 (nM)a</th>
<th>SI (HEK/3D7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>209</td>
<td></td>
<td>610.2 ±39.7</td>
<td>811.1 ±72.2</td>
<td>22394 ±1432</td>
<td>36.7</td>
</tr>
<tr>
<td>2</td>
<td>210</td>
<td></td>
<td>2207 ±1043</td>
<td>2832 ±1142</td>
<td>10356 ±994</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>211</td>
<td></td>
<td>7485 ±2512</td>
<td>9690 ±2331</td>
<td>66.1% at 80 μMb</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>214</td>
<td></td>
<td>6911 ±637</td>
<td>8236 ±1321</td>
<td>4.2% at 80 μMb</td>
<td>>12</td>
</tr>
<tr>
<td>5</td>
<td>218</td>
<td></td>
<td>51.8 ±4.2</td>
<td>84.7 ±11.1</td>
<td>22.9% at 80 μMb</td>
<td>>1544</td>
</tr>
<tr>
<td>6</td>
<td>223</td>
<td></td>
<td>3958 ±423</td>
<td>4694 ±1044</td>
<td>20.1% at 80 μMb</td>
<td>>20</td>
</tr>
<tr>
<td>7</td>
<td>224</td>
<td></td>
<td>7036 ±1221</td>
<td>7561 ±1695</td>
<td>55.8% at 80 μMb</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6380 ±1321</td>
<td>6160 ±1127</td>
<td>9.7% at 80 μM(^b)</td>
<td>>12</td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>---------------------------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------------</td>
<td>------</td>
</tr>
<tr>
<td>9</td>
<td>237</td>
<td></td>
<td>2724 ±674</td>
<td>2582 ±577</td>
<td>53.1% at 80 μM(^b)</td>
<td>--</td>
</tr>
<tr>
<td>10</td>
<td>239</td>
<td></td>
<td>2344 ±1122</td>
<td>2642 ±818</td>
<td>35.1% at 80 μM(^b)</td>
<td>>34</td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td></td>
<td>951 ±289</td>
<td>841 ±80</td>
<td>2.1% at 80 μM(^b)</td>
<td>>84</td>
</tr>
<tr>
<td>12</td>
<td>251</td>
<td></td>
<td>800 ±167</td>
<td>747 ±55.7</td>
<td>17.2% at 80 μM(^b)</td>
<td>>100</td>
</tr>
<tr>
<td>13</td>
<td>252</td>
<td></td>
<td>1449 ±264</td>
<td>1686 ±311</td>
<td>1.1% at 80 μM(^b)</td>
<td>>70</td>
</tr>
<tr>
<td>14</td>
<td>253</td>
<td></td>
<td>5003 ±1511</td>
<td>6543 ±1018</td>
<td>3.2% at 80 μM(^b)</td>
<td>>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>3617 ±173</td>
<td>4000 ±544</td>
<td>4.7% at 80 μM<sup>b</sup></td>
<td>>22</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>5770 ±1620</td>
<td>4948 ±339</td>
<td>7.9% at 80 μM<sup>b</sup></td>
<td>>14</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>765 ±128</td>
<td>733 ±111</td>
<td>-0.6% at 80 μM<sup>b</sup></td>
<td>>104</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>4145 ±1115</td>
<td>3923 ±255</td>
<td>3.6% at 80 μM<sup>b</sup></td>
<td>>19</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>5103 ±1373</td>
<td>4207 ±528</td>
<td>7.1% at 80 μM<sup>b</sup></td>
<td>>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Artesunate</td>
<td>6.0 ±2.5</td>
<td>6.4 ±2.2</td>
<td>35.7% at 10 μM<sup>b</sup></td>
<td>>1666</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Chloroquine</td>
<td>29.3 ±7.5</td>
<td>308.8 ±82.7</td>
<td>56.2% at 40 μM<sup>b</sup></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Puromycin</td>
<td>100.4 ±29.5</td>
<td>75.1 ±22.5</td>
<td>819.6 ±84.8</td>
<td>8.16</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Pyrimethamine</td>
<td>14.5 ±2.8</td>
<td>17.3% at 40 μM<sup>b</sup></td>
<td>56.2% at 40 μM<sup>b</sup></td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Pyronaridine</td>
<td>14.4 ±4.6</td>
<td>14.7 ±349</td>
<td>3572 ±248</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^aConcentrations reflect calculated IC₅₀ values. ^bPercentage inhibition is given where an IC₅₀ value could not be calculated due to the dose-response curve not reaching a full inhibition plateau at the maximum concentration. IA = inactive.
The free indoles 209, 214, 218, and 250–258 exhibit a broad array of IC\textsubscript{50} values against the 3D7 line, ranging 51.8 nM (218) to 6.91 μM (214). In general, compounds with smaller alkyl substituents were more-active than those bearing aromatic substituents, however notable substituent effects were observed for the substituted aryl adducts. Aryl adducts bearing para-substituents (e.g. the 4-fluorophenyl 256 – 0.765 μM; and 4-methoxyphenyl 252 – 1.44 μM) led to increased potency as compared with the parent phenyl compound. The exceptionally-low toxicity of all tested compounds (evidenced by low percentage inhibition of HEK293 at the maximum concentration 80 μM) is notable, and led to the outstanding selectivity of 218 (SI >1544).

5.4 Proposed mechanism of action

Previous study into the synthesis and mode-of-action of other 2-substituted-3\textsubscript{H}-indol-3-ones and indolone-N-oxides against \textit{P. falciparum} (FcB1 strain) suggested that these readily undergo single-electron reduction of the C=N functionality to give persistent carbon-centred radicals,[165a] which may activate a redox signalling pathway, leading to eventual haemolysis and death of the nascent parasites.[175] The substituents examined largely consist of substituted-phenyl (typically electron-donating, e.g. the 4-dimethylaminophenyl 262 and 263 or 4-isopropoxyphenyl 264 and 265, though the 4-nitrophenyl-substituted 266 showed similar potency) moieties at the 2-position, providing stabilisation to the indolyl C2 radical generated.[176] The nature of the stabilisation is likely mesomeric, as the replacement of the phenyl substituent with alkyl groups led to complete loss of activity (e.g. the \textit{n}-propyl adduct 267, which showed three orders-of-magnitude lower potency). Many of these molecules exhibit similar potency and specificity against \textit{P. falciparum} to the lead methyl compound 218, therefore it is hypothesised that these share a common mode-of-action, whereby the rapid reduction of the C=N group under hypoxic conditions (in the presence of cysteine- and methionine-rich reductases or glutathione, both of which are prevalent in red blood cells) leads to the stable radical 268.[176] The oxidising potential of 268 leads to hyperphosphorylation of tyrosine residues in the cell membrane and consequent membrane-cytoskeleton decoupling.[177] The high concentration of reactive oxygen species (e.g. H\textsubscript{2}O\textsubscript{2}) in infected haemocytes have also been hypothesised to participate in pseudo-catalytic recycling of the pro-radical, possibly contributing to its high potency.[165a]
Scheme 96: Comparison of the lead compound 218 with previously-investigated 2-substituted-3H-indol-3-ones with similar biological activity against *P. falciparum* (FcB1), and the proposed mechanism-of-action of the methyl adduct 218.\[165a, 175-177\]

It is demonstrated here that the 3-methyl-2-indolyl substituent shows similar activity, presumably due to the extended conjugation of the diindole system, and the stabilising effect of the methyl substituent.\[178\] This radical mode-of-action also explains the unexpected potency of the 4-fluorophenyl (256) and 4-methoxyphenyl (252) adducts relative to the corresponding phenyl adduct 214, with both the *para*-fluoro and methoxy groups acting as strong radical stabilisers.

In summary, of the thirty-five compounds subjected to biological testing, thirty-one showed micromolar activity against *P. falciparum* (3D7), and of these, seven showed sub-micromolar IC\(_{50}\) values, with the pyrazinodiindole 152 and the 3-methyl-2,2'-biindol-3-one 218 emerging as promising leads with exceptional activity and selectivity.
Chapter 6:
Conclusions and future directions

The pursuit of diversity in small-molecule libraries is of paramount importance to the discovery and development of new heterocyclic molecules for pharmaceutical, industrial, and material applications. We have utilised the unique, multi-faceted reactivity of the ancient dye indigo as the foundation for the development of new heterocyclic libraries and synthetic methodologies, employing both its ability to undergo cascade reactions, and its overlooked ability to undergo Grignard reactions to generate new, highly-potent and selective leads for drug discovery.

6.1 Reactions of indigo with propargylic electrophiles (Chapter 2)

This brief study into the reactivity of substituted arylpropargyl bromides was intended to supplement both previous and parallel studies within our group.\cite{116b, 127} Previous study of the reaction of 3-chloro-1-phenyl-1-propyne with indigo resulted in the isolation of compounds 122 (27%) and 123 (35%), however it was unclear whether these arose from the conjugated phenyl group or the weaker chloride leaving group. Using the bromide leaving group under optimised conditions, compounds 122 (37%) and 123 (12%) were isolated in addition to the new ring-expanded adduct 133 in 35% yield (Scheme 97). The disparate outcomes of the two reactions indicate the nature of the leaving group to play a pivotal role in pathway discrimination for these cascade reactions. The methoxy-substituted arylpropargyl bromide gave a 21% yield of the ring-expanded 134, though parallel studies have shown that the presence of electron-withdrawing substituents leads to rapid polymerisation, making these unsuitable substrates. Initial biological studies of 133 and 134 suggested these to be nontoxic, however their poor aqueous solubility contributed to their mediocre antiplasmodial activity \textit{in vitro}, suggesting that aryl substituents do not confer favourable characteristics.
Scheme 97: Cascade reactions of aryl-substituted propargyl bromides gave access to 122, 123 and 133-134. While there has been considerable progression in understanding of the cascade reactions of indigo with propargylic systems, there are several remaining avenues worthy of exploration. One involves a two-step protocol, whereby treating indigo with propargyl chloroformate (270) would give N,N'-di-proc indigo (271), which could undergo decarboxylation using Pd(0), as has been previously-explored with N,N'-di-alloc indigo (272). Under these conditions, 272 underwent transformation firstly to N,N'-di-allyl indigo (273), then to the azepinodiindole 274 in quantitative yield by N,O'-cyclisation. The corresponding transformation of 271 could afford selective access to N,N'-di-propargyl indigo (275) in situ, which may then undergo further cyclisation and/or derivatisation to more-complex chemical scaffolds.
6.2 Reactions of indigo with ring-strained electrophiles (Chapter 3)

Our study into the cascade reactions of indigo with ring-strained electrophiles revealed a pair of divergent mechanisms, whereby a heteroatom-dependent N,N'- or N,O-cyclisation gave rise to either substituted pyrazinodiindoles and/or spirocyclic epoxyoxazocinodiindoles in good yields in a one-pot setting (Scheme 99). The reaction of indigo with (S)-epichlorohydrin (144) was optimised to give the N,N'-cyclic 152 and N,O'-spirocyclic 153, and the allylic alcohol 155 in a combined 95% yield, or instead to give mixtures of 152, 153 and the cyclic carbonate 154 in similar yields. Replacing the halide pendant with a bromide or tosylate led to exclusive formation of 152, in 84% and 76% yield, respectively. Compound 152 showed potent and selective *P. falciparum* inhibition, with IC$_{50}$ values as low as 76 nM and SI values $>$100. This was an order-of-magnitude more-active than the non-hydroxylated analogue 115, suggesting the additional heteroatom to be beneficial toward its antiplasmodial activity.

The (chloromethyl)aziridine 148 was synthesised in enantiopure fashion in 64% yield over three steps from (S)-epichlorohydrin (144), or in 74% yield over two steps from...
racemic (bromomethyl)aziridine 147 via a mixed bromo-chloro species (171). Treatment of indigo with (R)-148 gave complex mixtures of the pyrazinodiindoles 176-178 in a combined 63% yield following flash chromatography and subsequent RP-HPLC separation. Using the racemic (bromomethyl)aziridine 147 led to rapid polymerisation, however the racemic 176 was isolated in 52% yield, alongside a statistical mixture of the diastereomers of N-aziridinyl adduct 177 in 38% yield. Treatment of indigo with phenylaziridine 174 afforded a 1.7 : 1 ratio of the terminal adduct 179 and the benzylic adduct 180 in a combined 98% yield, suggesting that cyclisation could not occur in the absence of a halide pendant.

Scheme 99: Major mechanistic pathways from the reactions of indigo with ring-strained electrophiles – Path A involves N,N'-cyclisation and Path B involves N,O'-cyclisation, or no cyclisation was observed.

The dimeric bioxirane 149 and biaziridine 150 were synthesised according to literature procedures, and treatment of indigo with bioxirane 149 led exclusively to the N,O'-spirocyclic adducts 183 and 184 in 62% and 19% yield, respectively, while the reaction of indigo with biaziridine 150 gave a 93% yield of the lone N,N'-cyclic diazepinodiindole 185. Given that there is an established protocol for the synthesis of mixed epoxy-aziridine species 276,[179] preferential oxirane ring-opening could lead to an intermediate epiminoalkoxide (277), which could then lead to the formation of aminomethyl-substituted N,O'-cyclised spiroketals such as 278. Derivatisation of 278 (e.g. via bidirectional N- or N'-alkylation) could allow for tuning of its fluorescent properties for bioconjugative applications (Scheme 100).
Scheme 100: The dimeric biaziridine exclusively afforded N,N'-cyclic compound 185 while bioxirane instead gave exclusively products 183 and 184 via N,O'-spiroketalisation. The proposed epoxyaziridine 276 could allow access to amino-substituted spiroketals (278) from the putative alkoide 277 by dearomatic cyclisation.

While attempting to synthesise the (chloromethyl)aziridine 148, a potentially-useful synthetic route toward intermolecular di-sulfonamidation of olefins was serendipitously discovered using chloramine-T under iodine-catalysed conditions. Under unoptimized conditions using allyl alcohol as a model substrate, a 1 : 1.5 ratio of aziridine 163 : diamide 166 was obtained, which could be improved to give a 75% isolated yield of the di-adduct 166. Under unoptimized conditions, this reaction was also applied to cyclohexene to give diamide 169 in 20% yield, presumably due to the low reactivity of the azabicyclo[1.1.0]heptane intermediate 168, which was also isolated in 78% yield. Therefore, while this represents an important net transformation, further optimisation is necessary to provide a robust methodology for the diamination of alkenes. Given the success of copper-catalysed asymmetric olefin aziridination using amino acid-derived box ligands,[180] similar catalyst systems could be utilised as a starting point toward generating chiral aziridine intermediates (279) in situ, which could be ring-opened to disulfonamides (280), and chiral diamines (281) upon N-deprotection (Scheme 101).

Scheme 101: Proposed methodology for diamination of alkenes, stemming from an observed diamidation of allyl alcohol upon attempted aziridination.

Additionally, the initial (chloromethyl)aziridine target \((R)-148\) or its enantiomer \((S)-148\) could themselves be used as a foundation for chiral amine synthesis, by chemoselective bidirectional ring-opening and subsequent halide-displacement. This could allow application toward analogues of the spiroindolone drug cipargamin \((282)\), which is currently under investigation for the treatment of malaria (Scheme 102).

Briefly, this could involve selective indole-3-functionalisation via an indolycuprate, followed by displacement of the chloride (e.g. by F\(^-\), amines, alkoxides, thiolates, etc.), reductive deprotection of the N-tosyl group with Mg\(^0\), and condensation with 5-chloroisatin to give the desired cipargamin analogues. The initial ring-opening reaction could also be adapted toward the synthesis of various other tryptamine-containing natural products, thus making \(148\) a valuable chiral building block.
Reactions of indigo with organometallic nucleophiles (Chapter 4)

Throughout the course of this work, we have developed a new methodology for the desymmetrisation of indigo by Grignard addition and subsequent dehydration to a variety of non-symmetrical \([1H,3'H] \)-2,2'-diindole-3'-ones in excellent yields over two steps. Twenty-seven derivatives of this class were synthesised, where previously there had only been three reported derivatives – one natural product and two synthetic intermediates. The reaction proved tolerant to alkyl (methyl \(218 \), isopropyl \(210 \), butyl \(215 \), and benzyl \(219 \)), phenyl \(211 \) and substituted phenyl (4-methoxy \(222 \), 3-methoxy \(223 \), 2-methoxy \(224 \), 2,4-dimethoxy \(228 \), 2-chloro \(232 \), and 4-fluoro \(231 \)) and heteroaryl (3-pyridyl \(233 \), \(N \)-methylimidazol-2-yl \(235 \), 2-thiophenyl \(237 \), and 2-benzofuranyl \(239 \)) substrates, with all compounds isolated in 72-95% yield from indigo (Scheme 103). The \(N \)-methylindol-5-yl adduct \(245 \) was also synthesised in 78% crude yield (61% by \(^1\)H NMR), however it was isolated alongside an irresolute impurity which could not be removed.
Scheme 103: The sixteen isolated scaffolds from reactions of Grignard reagents with indigo.

Of the fifteen isolated \(N \)-Boc indoles synthesised, eleven were able to be deprotected to their corresponding free indoles (209, 214, and 250–258), while the methyl adduct 218 was isolated as the free indole. Evaluation of the biological activity of these twelve free indoles revealed that 218 exhibited potent and highly-selective antiplasmodial activity, with \(IC_{50} \) values against \(P. falciparum \) of 52 nM, and SI values >1500 \textit{in vitro}. The structural homology and similar biological profile of 218 to other 2-aryl-3-oxoindolenines suggest a similar mechanism of action, where \(P. falciparum \) propagation is inhibited by a
hypoxia-induced single-electron reduction, leading to stable radical intermediates which trigger hyperphosphorylation and eventual haemolysis of infected blood cells prior to parasite maturation.[165a] This mechanism of action was supported by SAR trends, where the strongly-stabilising benzyl 251, 4-fluorophenyl 256 and 4-methoxyphenyl 252 moieties presumably led to increased radical stabilisation,[178] evidenced by their lower IC\textsubscript{50} values of 0.80 μM, 0.77 μM and 1.44 μM, respectively, compared with the parent phenyl 214 (IC\textsubscript{50} 6.91 μM) (Scheme 104).

![Scheme 104](image)

Scheme 104: The twelve isolated free indoles from this study, with comparison of their IC\textsubscript{50} values against \textit{P. falciparum} (3D7) parasites \textit{in vitro}.

Given that 2-aryl-3-oxoindolenine-\textit{N}-oxides have previously showed increased activity against \textit{P. falciparum} relative to their parent heterocycle,[165a, 175-177] an obvious direction for future development would be to examine the biological properties of the \textit{N}-oxides of the diindoles synthesised as part of this study. Chemoselective oxidation of nitrogen heterocycles (e.g. pyridines to pyridine-\textit{N}-oxides) is well-known using numerous reagents (e.g. \textit{m}-CPBA, H\textsubscript{2}O\textsubscript{2}-urea complex),[183] and the corresponding transformation
has been previously adapted to simple 2,3,3-trisubstituted-3H-indoles by reduction to the corresponding indoline, and back-oxidation with m-CPBA to yield the N-oxide species.[184] As the indigo core has previously been demonstrated to be susceptible to oxidative cleavage, it is unknown whether the conditions required for N-oxide formation (i.e. to 283) would also trigger C2-C2′-cleavage to substituted isatins and/or anthranilic acid derivatives.[116b] Further derivatives with vinyl (284), fluoromethyl (285), and difluoromethyl (286) substituents could also be explored to improve the stability of the active radical species, while additional substituents about the indigo core could also improve its membrane permeability, which in previous studies of 5-methoxy-3-oxoindolenines (e.g. 287) was observed to increase antiplasmodial activity relative to their non-substituted counterparts (288). The 5′-methoxy and 5,5′-dimethoxy species 289 and 290 would therefore be attractive scaffolds for further derivatisation (Scheme 105).

Scheme 105: Proposed derivatives for further biological evaluation and optimisation: a) N-oxide formation, b) new radical-stabilising adducts such as the vinyl 284, and fluorinated adducts 285 and 286, and c) methoxylated adducts 289 and 290.
This methodology could also be applied as a starting point for the synthesis of complex polycyclic structures. The natural product indimicin A (197) features a non-symmetrical 2,2'-diindole core, with a fused N-methylpyrrole substituent, and has not been synthesised previously.1185 The addition-dehydration of N-methylpyrrol-3-ylmagnesium chloride 291 to 5,5'-dichloroindigo (292) could give access to the desymmetrised N-Boc adduct 293, which could then undergo N-methylation and selective reduction of the iminium ion to give the racemic N-methylindoline 294. Nucleophilic addition to the carbonyl on the less-hindered face with methyllithium could then afford the tertiary alcohol 295, which upon treatment with TfOH could undergo both Boc deprotection and dehydration of the alcohol group, leading to cationic intermediate 296, and subsequent Friedel-Crafts alkylation of the nearby pyrrole at the syn-face to afford the desired diastereomer of indimicin A (Scheme 106). Using alternatively-substituted pyroles in the first step could also give access to indimicins B, C, and D (198–200) following this pathway.

Scheme 106: Proposed synthesis of indimicin A (197) using this developed methodology, following the addition of a pyrrole substituent to dichloroindigo 292 in the initial step to give the desymmetrised adduct 293.
6.4 Conclusion

Throughout the course of this investigation, we have a) examined the cascade reactions of indigo with propargylic electrophiles to produce various fused-ring and ring-expanded adducts, b) investigated cascade reactions with ring-strained electrophiles to generate a variety of N,O'-spirocyclic and N,N'-cyclic molecules, and c) developed new methodology for the construction of non-symmetrical 2,2'-diindoles by reacting indigo with various organometallic nucleophiles. Where previously it was thought that indigo was relatively inert, we have established a variety of methods for its rapid derivatisation into highly-functionalised and biologically-active materials. Indigo’s unique reactivity is a result of the functional density of its core, and our proposed reaction mechanisms demonstrate that the conjugation of the indigo moiety allows its reactivity to change between individual steps in the cascade process, rapidly building molecular complexity. This unusual and rapidly-oscillating reactivity however remains unpredictable, and we still do not possess a complete understanding of the reactivity of indigo. These investigations have revealed numerous key pieces of information, however there is much that requires further exploration, and we have only begun to scratch the surface of indigo’s unique chemistry.
Chapter 7: Experimental Data

7.1. General experimental information
Reagents and solvents were purchased reagent grade and used without further purification unless otherwise stated. All reactions were performed in standard oven-dried glassware under CaCl₂-dried nitrogen gas unless otherwise stated. Anhydrous DMF (99.9%) was purchased from Sigma Aldrich and used without further purification. Indigo dye was purchased from Sigma Aldrich, or from AK Scientific and used without further purification. THF was dried by distillation from Na/benzophenone and stored over 3 Å molecular sieves prior to use. All solutions of Grignard reagents or organolithium reagents were titrated prior to use, using either 2-butanol or menthol in THF with 1,10-phenanthroline as indicator. Melting point temperatures are expressed in degrees Celsius (˚C) and are uncorrected. ¹H and ¹³C NMR spectra (CDCl₃/DMSO) were recorded either at 500 MHz and 125 MHz, or 400 MHz and 101 MHz, respectively, with chemical shifts (δ) reported as parts per million relative to TMS (δ = 0.00 ppm), CDCl₃ (δ = 7.26; 77.0 ppm) or DMSO-d₆ (δ = 2.50 ppm; 39.51 ppm). ¹⁹F NMR spectra (CDCl₃) were recorded at 470 MHz or 377 MHz, with chemical shifts (δ) reported as parts per million relative to CFCl₃ (δ = 0.00 ppm). Coupling constants (J) are reported in Hertz (Hz). Multiplicities are reported as singlets (s), doublets (d), triplets (t), doublet of doublets (dd), quartets (q), hextets (h), heptets (hept), or multiplets (m). Electrospray (ESI single quadrupole) mass spectra have their ion mass to charge values (m/z) stated with their relative abundances as a percentage in parentheses. Peaks assigned to the molecular ion are denoted as [M+H]+ or [M+Na]+. HR-ESI mass spectra were recorded using a XEVO QToF instrument, with LeuEnk as internal standard. Infrared (IR) spectra were recorded neat. UV-visible absorption spectra were recorded as solutions in CH₂Cl₂ or acetone at room temperature. Optical rotations were recorded in CHCl₃ or CH₂Cl₂ at room temperature. Thin layer chromatography (TLC) was performed using silica gel F254 aluminium sheets. Column chromatography was performed using silica gel 60 (0.063-0.200 mm). Eluents are reported in volume to volume (v:v) ratios. Solvent extracts and chromatographic fractions were concentrated by rotary evaporation in vacuo. Petroleum spirit had a bp range of 40-60 ºC.
7.2 Reactions of indigo with propargylic electrophiles

7.2.1 Synthesis of starting materials

bis-(triphenylphosphine)palladium (II) chloride [Pd(PPh$_3^3$)$_2$Cl$_2$]

A suspension of palladium(II) chloride (1.02 g, 5.75 mmol) and triphenylphosphine (3.26 g, 12.4 mmol) in benzonitrile (30 mL) was heated at 180 °C with vigorous stirring for 20 min under dry N$_2$, then allowed to cool to RT overnight. The resulting bright-yellow crystals were collected by vacuum filtration, washed with ether (3×50 mL) and dried in vacuo to give bis-(triphenylphosphine)palladium(II) chloride (3.85 g, 95%) as fine, bright yellow needles.

3-(4-methoxyphenyl)prop-2-yn-1-ol (131a)

A 250 mL round-bottomed flask equipped for magnetic stirring was charged with 4-iodoanisole (5.03 g, 21.5 mmol), Pd(PPh$_3^3$)$_2$Cl$_2$ (300 mg, 0.43 mmol, 2 mol%), and CuI (410 mg, 2.15 mmol, 10 mol%), then evacuated and backfilled thrice with dry nitrogen. The solids were suspended in toluene (40 mL) and MeCN (40 mL), and the mixture cooled to 0 °C, then NEt$_3$ (14.5 g, 143 mmol) and propargyl alcohol (6.00 g, 107 mmol) were added slowly. The ice bath was removed, and the resulting thick emulsion stirred vigorously for 2 d under a nitrogen balloon, then the solvent removed in vacuo. The dark-brown, tarry residue was taken up in EtOAc (200 mL), and filtered over a plug of silica (eluting with EtOAc, 200 mL), and the combined fractions washed sequentially with 1 M HCl (4×50 mL), and sat. NaHCO$_3$ (4×50 mL), dried (MgSO$_4$), and the solvent removed to afford the desired arylpropargyl alcohol 131a (3.48 g, 99%) as pale amber crystals, mp 74–76 °C, lit. 77–78 °C.$^{[186]}$ R_f (20% EtOAc/pet spirit) 0.37. 1H NMR (CDCl$_3$, 500 MHz) δ 7.37 (d, J = 8.5 Hz, 2H, H2', H6'), 6.84 (d, J = 8.5 Hz, 2H, H3', H5'), 4.47 (s, 2H, H1), 3.81 (s, 3H, OCH$_3$), 1.68 (bs, 1H, OH). 13C NMR (126 MHz) δ 159.8 (C4'), 133.2 (C2', C6'), 114.7 (C1'), 114.0 (C3', C5'), 85.9 (C3), 85.6 (C2), 55.3 (-OCH$_3$), 51.7 (C1). HRESI-MS calcd. for C$_{10}$H$_{11}$O$_2$+ 163.0754, found 163.0760.

3-phenylprop-2-yn-1-ol (131b)

Prepared as 131a, except using iodobenzene (4.38 g, 21.5 mmol), and a lower catalyst loading of Pd(PPh$_3^3$)$_2$Cl$_2$ (147 mg, 0.209 mmol, 1 mol%). Following aqueous workup, the residue was subjected to flash chromatography (45 g silica, 20% EtOAc/hexane), affording the desired arylpropargyl alcohol (2.83 g, 100%) as a pale amber oil. R_f (60% CH$_2$Cl$_2$/pet spirit) 0.50.
\[^1H\text{ NMR (CDCl}_3, 400 \text{ MHz}) \delta 7.39 (d, J = 8.0 \text{ Hz}, 2H, H2', H6'), 7.30 - 7.20 (m, 3H, H3', H4', H5'), 4.43 (s, 2H, H1), 1.71 (bs, 1H, OH). \]
\[^13C\text{ NMR (101 MHz)} \delta 131.5 (C2', C6'), 128.3 (C4'), 128.2 (C3', C5'), 122.5 (C1'), 87.3 (C3), 85.4 (C2), 51.2 (C1). \]
\[\text{HRESI-MS calcd. for C}_9\text{H}_9\text{O}^+ 133.0648, \text{ found 133.0643.} \]

3-(4-nitrophenyl)prop-2-yn-1-ol (131c)

Prepared as 131a, except using 4-iodonitrobenzene (5.33 g, 21.4 mmol). Following aqueous workup, the residue was passed through a plug of silica using EtOAc as eluent, and the desired arylpropargyl alcohol was isolated (3.60 g, 95%) as tan crystals, mp. 109–110 °C, lit. 113–114 °C. \(R_f \) (60% CH\(_2\)Cl\(_2\)/pet spirit) 0.12. \(^1H\text{-NMR (CDCl}_3, 500 \text{ MHz}) \delta 8.18 (d, J = 8.5 \text{ Hz}, 2H, H3', H5'), 7.57 (d, J = 8.5 \text{ Hz}, 2H, H2', H6'), 4.53 (s, 2H, H1), 1.69 (bs, 1H, OH). \]
\[^13C\text{ NMR (CDCl}_3, 101 \text{ MHz)} \delta 147.3 (C4'), 132.4 (C2', C6'), 129.4 (C1'), 123.6 (C3', C5'), 92.5 (C3), 83.8 (C2), 51.5 (C1). \]
\[\text{HRESI-MS calcd. for C}_9\text{H}_8\text{O}_3^+ 178.0499, \text{ found 178.0494.} \]

3-(3-methoxyphenyl)prop-2-yn-1-ol (131d)

Prepared as 131a, except using 3-iodoanisole (0.47 g, 2.0 mmol). Following aqueous workup, the desired arylpropargyl alcohol was isolated (0.31 g, 96%) as a brown oil. \(R_f \) (10% EtOAc/pet spirit) 0.21. \(^1H\text{ NMR (CDCl}_3, 400 \text{ MHz)} \delta 7.21 (dd, J = 8.4 \text{ Hz}, 7.6 \text{ Hz}, 1H, H5'). 7.04 (d, J = 7.6 \text{ Hz}, 1H, H6'), 7.01 - 6.97 (m, 1H, H2'), 6.88 (dd, J = 8.4 \text{ Hz}, 2.0 Hz, 1H, H4'), 4.51 (s, 2H, H1), 3.82 (s, 3H, OCH\(_3\)), 1.55 (bs, 1H, OH). \]
\[^13C\text{ NMR (CDCl}_3, 101 \text{ MHz)} \delta 158.7 (C3'), 128.9 (C5'), 123.8 (C1'), 123.1 (C2'), 116.1 (C6'), 114.5 (C4'), 86.8 (C3), 84.9 (C2), 54.8 (-OCH\(_3\)), 50.9 (C1). \]
\[\text{HRESI-MS calcd. for C}_{10}\text{H}_{11}\text{O}_2^+ 163.0754, \text{ found 163.0763.} \]

3-bromo-1-(4-methoxyphenyl)-1-propyne (132a)

A solution of triphenylphosphine (1.91 g, 7.3 mmol) in CH\(_2\)Cl\(_2\) (20 mL) was cooled to 0 °C, then bromine (1.17 g, 7.3 mmol) added slowly. The resulting yellow suspension was stirred vigorously for 30 min at 0 °C, then a solution of 131a (0.962 g, 5.93 mmol) in CH\(_2\)Cl\(_2\) (20 mL) added dropwise over 15 min. The mixture was stirred for 1 h, then diluted with hexanes (70 mL) and filtered through silica to remove precipitated PPh\(_3\)O. The collected filtrate was concentrated \textit{in vacuo}, and the residue taken up in a minimum of Et\(_2\)O and
passed through a plug of silica, eluting with pet spirit.†††††† Removal of the solvent gave the corresponding arylpropargyl bromide 132a (1.32 g, 99%) as a yellow oil. \(R_t \) (10% EtOAc/pet spirit) 0.79. \(^1\)H NMR (CDCl\(_3\), 500 MHz) \(\delta \) 7.38 (d, \(J = 8.5 \) Hz, 2H, H2', H6'), 6.84 (d, \(J = 8.5 \) Hz, 2H, H3', H5'), 4.17 (s, 2H, H1), 3.81 (s, 3H, -OCH\(_3\)). \(^{13}\)C NMR (125 MHz) \(\delta \) 160.1 (C4'), 133.6 (C2', C6'), 114.3 (C1'), 114.1 (C3', C5'), 87.0 (C3), 83.0 (C2), 55.5 (-OCH\(_3\)). EI-MS (+) 226\(^+\) (8\%, 81\(\text{BrM}^+\)), 224\(^+\) (8\%, 79\(\text{BrM}^+\)), 145\(^+\) (100%, [M – Br\(^*\)]

3-bromo-1-phenyl-1-propyne (132b)

Prepared as 132a, except using 131b (0.661 g, 5.00 mmol), triphenylphosphine (1.46 g, 5.56 mmol) and bromine (0.889 g, 5.56 mmol), and the mixture stirred at 0 °C for 1 h. The solvent was removed in vacuo and hexane (10 mL) added, and the precipitated solids washed with further hexane (2×5 mL). The combined filtrates were concentrated in vacuo, and subjected to flash chromatography (25 g silica, 60% CH\(_2\)Cl\(_2\)/pet spirit), to afford the desired arylpropargyl bromide (0.968 g, 99%) as a pale-yellow oil. \(R_f \) (10% EtOAc/pet spirit) 0.70. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 7.51 – 7.42 (m, 2H, H3', H5'), 7.40 – 7.29 (m, 3H, H2', H4', H6'), 4.18 (s, 2H, H1). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 131.8 (C1'), 128.8 (C3', C5'), 128.3 (C2', C6'), 122.1 (C4'), 86.7 (C3), 84.2 (C2), 15.3 (C1). EI-MS (+) 196\(^+\) (8\%, 81\(\text{BrM}^+\)), 194\(^+\) (8\%, 79\(\text{BrM}^+\)), 115\(^+\) (100%, [M – Br\(^*\)]

3-bromo-1-(4-nitrophenyl)-1-propyne (132c)

Prepared as 132a, except using 131c (0.885 g, 5.00 mmol), triphenylphosphine (1.46 g, 5.56 mmol) and bromine (0.870 g, 5.56 mmol), and the mixture stirred at 0 °C for 1 h. The solvent was removed in vacuo and hexane (10 mL) added, and the precipitated solids washed with further hexane (2×5 mL). The combined filtrates were concentrated in vacuo, and subjected to flash chromatography (25 g silica, 60% CH\(_2\)Cl\(_2\)/pet spirit), to afford the desired arylpropargyl bromide (1.13 g, 94%) as a bright yellow powder. \(R_f \) (30% CH\(_2\)Cl\(_2\)/pet spirit) 0.62. \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta \) 8.19 (d, \(J = 8.5 \) Hz, 2H, H3', H5'), 7.59 (d, \(J = 8.5 \) Hz, 2H, H2', H6'), 4.17 (s, 2H, H1). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)): \(\delta \) 147.4 (C4'), 132.6 (C3', C5'), 128.9 (C1'), 123.6 (C2', C6'), 89.3 (C3), 84.3 (C2), 14.0 (C1). EI-MS (+) 241\(^+\) (8\%, 81\(\text{BrM}^+\)), 239\(^+\) (8\%, 79\(\text{BrM}^+\)), 160\(^+\) (100%, [M – Br\(^*\)]

†††††† Alternatively, the crude mixture could be stirred overnight with anhydrous ZnCl\(_2\) (2.0 eq.) in EtOAc, and the ZnCl\(_2\)/PPh\(_3\)O complex removed by filtration. The isolated yield for this procedure was 72%.
7.2.3. **General Procedure A** for alkylation of indigo

A suspension of indigo (262 mg, 1.00 mmol) in anhydrous DMF (40 mL) was sonicated at 60 °C for one hour. The resulting hot suspension was transferred by cannula under positive pressure of nitrogen into a 100 mL round-bottomed flask containing a magnetic stir bar, pre-dried and ground Cs₂CO₃ (1.206 g, 3.700 mmol), and fitted with a rubber septum. The resulting dark-green to amber solution was stirred for one hour in an oil bath, pre-heated to strictly 85-87 °C under dry nitrogen. The nitrogen flow was cut, and the electrophile (5.0 mmol) injected through the septum either neat, or as a solution in DMF (2 mL), and the mixture stirred at 85-87 °C for the required time. The resulting intensely-coloured solution was quenched over crushed ice (ca. 100 g), and the flask rinsed with EtOAc (ca. 10 mL) to remove adhered products. Upon warming to RT, the emulsion was saturated with solid NaCl, and extracted with EtOAc (4×60 mL) or CHCl₃ (4×60 mL) until the aqueous phase became clear. The combined organic fractions were condensed to ca. 150 mL, then extracted with brine (4×40 mL), dried (MgSO₄), and filtered through a 2 cm plug of celite, and the solvent removed in vacuo.

7.2.4. Reaction of indigo with 3-bromo-1-phenyl-1-butyne (131b)

7-hydroxy-8-phenylazepino[1,2-a:3,4-b']diindol-14(13H)-one (122)

Prepared following **General Procedure A** (see Section 7.2.3), using arylpropargyl bromide 131b (0.985 g, 5.05 mmol), and 4 Å molecular sieves (ca. 0.5 g) and a 30 min reaction time. The crude residue was fractionated on silica gel (80 g), eluting sequentially with 1) 60% CH₂Cl₂/hexane (Fraction 1), 2) CH₂Cl₂ (Fraction 2), 3) 10% EtOAc/CH₂Cl₂ (Fraction 3), and the column stripped using EtOAc (Fraction 4). Removal of the solvent from Fraction 1 afforded the known azepinodiindolone 122 (139 mg, 37%) as a bright yellow powder, mp 149-151 °C. Spectral and physical characteristics were identical to those previously reported.**[^116b]** Rₜ (10% EtOAc/hexane) 0.47. **[^1]** H NMR (CDCl₃) δ 8.76 (d, J = 7.8 Hz, 1H, H9), 8.22 (d, J = 7.6 Hz, 1H, H12), 8.03 (dd, J = 7.9, 1.4 Hz, 1H, H1), 7.85-7.82 (m, 1H, H3), 7.73 – 7.66 (m, 2H, H2, H11), 7.60 (d, J = 8.0 Hz, 1H, H4), 7.53 – 7.46 (3H, m, H3', H5', H10), 7.39 – 7.35 (3H, m, H2', H4', H6'), 6.91 (1H, s, H6). **[^2]** C NMR (CDCl₃) δ 184.6 (C14), 159.3 (C7), 152.2 (C12a), 144.5 (C8b), 143.0 (C14a), 137.8 (C8a), 135.7 (C8), 135.1 (C13a), 133.5 (C4), 133.3 (C3), 130.9 (C2), 129.7 (C1), 129.0 (C2', C6'), 128.8 (C1'), 128.5 (C4'), 127.4 (C3', C5'), 127.1 (C10), 127.0 (C13b), 123.2 (C9),
121.8 (13b), 118.0 (C12). IR (neat) 3282 (br, m), 1656 (s), 1601 (s), 1585 (s), 1394 (m), 1119 (s), 734 (s) cm\(^{-1}\). HRESI-MS calcd. for C\(_{25}\)H\(_{17}\)N\(_2\)O\(_2\)+ 377.1291, found 377.1286.

7a-phenyl-13-(3-phenylprop-2-yn-1-yl)benzo[b]indolo[1,2-h][1,7]naphthyridine-8,14(7aH,13H)-dione (133)

Fraction 2 was condensed and subjected to flash chromatography (80 g silica, 10% EtOAc/hexane). Removal of the solvent from the major band afforded the benzoindolonaphthyridine-dione 133 (171 mg, 35%) as deep red crystals, dec. 161 °C. X-ray quality crystals were grown by slow evaporation of a saturated solution in CH\(_2\)Cl\(_2\). \(R_f\) (10% EtOAc/hexane) 0.17. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 8.01 (dd, \(J = 7.8, 1.7\) Hz, 1H, H9), 7.77 (ddd, \(J = 7.7, 1.3, 0.7\) Hz, 1H, H1), 7.53 (ddd, \(J = 8.4, 7.2, 1.3\) Hz, 1H, H3), 7.51 – 7.41 (m, 3H, H11, Ph\(_1\) or Ph\(_2\)H3/H5), 7.35 – 7.27 (m, 4H, Ph\(_1\) or Ph\(_2\)H3/H5, Ph\(_1\) or Ph\(_2\)H2/H6), 7.25 – 7.15 (m, 3H, H4, Ph\(_1\) or Ph\(_2\)H3/H5), 7.12 (d, \(J = 7.5\) Hz, 1H, H4), 7.10 – 7.06 (m, 1H, H12), 7.04 – 6.99 (m, 3H, H2, Ph\(_1\) H4, Ph\(_2\) H4), 6.96 (ddd, \(J = 7.9, 7.2, 0.9\) Hz, 1H, H10), 6.83 (d, \(J = 7.9\) Hz, 1H, H6), 5.51 (d, \(J = 7.9\) Hz, 1H, H7), 5.18 (d, \(J = 18.4\) Hz, 1H, H1'b), 4.91 (d, \(J = 18.5\) Hz, 1H, H1'a). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 191.6 (C8), 178.9 (C14), 147.4 (C4a), 144.0 (C12a), 142.6 (Ph\(_1\) C1), 135.8 (C13a), 135.6 (C11), 135.5 (C3), 131.8 (Ph\(_2\) C1), 131.7 (Ph\(_1\) or Ph\(_2\) C3/C5), 129.1 (Ph\(_1\) or Ph\(_2\) C3/C5), 128.7 (Ph\(_1\) or Ph\(_2\) C2/C6), 128.4 (C9), 127.8 (Ph\(_1\) or Ph\(_2\) C2/C6), 127.3 (Ph\(_1\) or Ph\(_2\) C4), 124.8 (C1), 122.7 (C14a), 122.5 (C13b), 121.2 (C8a), 121.0 (C2), 120.9 (C10), 118.8 (C6), 115.9 (C12), 109.1 (C4), 105.1 (C7), 86.1 (C3'), 83.0 (C2'), 57.2 (C7a), 44.9 (C1'). IR (neat) 1690 (m), 1595 (m), 1571 (m), 1465 (s), 1332 (s), 1148 (m), 1001 (m), 743 (s) cm\(^{-1}\). HRESI-MS calcd. for C\(_{34}\)H\(_{23}\)N\(_2\)O\(_2\)+ 491.1754, found 491.1762.

(Z)-8-((E)-benzylidene)-6-(phenylethynyl)-8,9-dihydro-6H-[1,3,6]oxadiazocino[3,4-a:6,5-a']diindole-15,16-dione (123)

Fraction 3 and Fraction 4 were combined and subjected to flash chromatography (80 g silica, 10% EtOAc/CH\(_2\)Cl\(_2\)), and removal of the solvent from the major dark blue fraction gave the proposed dihydrooxadiazocinodiindole 123 (61 mg, 12%) as an intense dark-blue powder, mp 295-297 °C. Spectral and physical characteristics were identical to those previously

Assignments for compound 123 are based on the given structure as previously-reported, however further 2D NMR studies have suggested this structure to be incorrect.
reported.\textregistered H R\textsubscript{f} (10% EtOAc/CH\textsubscript{2}Cl\textsubscript{2}) 0.51. 1H NMR (CDCl\textsubscript{3}) δ 7.81 (d, \textit{J} = 7.5 Hz, 1H, H14), 7.75 (d, \textit{J} = 7.6 Hz, 1H, H1), 7.46 (d, \textit{J} = 7.3 Hz, 1H, H11), 7.45 − 7.33 (m, 4H, H3, H12, H13, Ph2H), 7.17 − 6.98 (m, 10H, H2, 4×Ph3H, 5×Ph1H), 6.86 (d, \textit{J} = 8.1 Hz, 1H, H4), 6.72 (s, 1H, H1"), 5.67 (s, 1H, H6), 4.75 (ABq, \textit{J} = 36.9, 16.0 Hz, 2H, H9). 13C NMR (CDCl\textsubscript{3}) δ 180.9 (C15), 180.2 (C16), 149.4 (C4a), 148.2 (C10a), 135.4 (C13), 134.5 (C1"), 134.1 (C15b), 132.0 (C11), 129.4 (C12), 129.3 (3×Ar"C), 129.0 (C14a), 128.9 (C3"), 128.7 (Ar'C), 128.5 (Ar"C), 128.0 (C16a), 125.9 (3C, 2×Ar'C, 1×Ar"C), 125.6 (C14), 124.4 (C1), 123.4 (C14a), 122.9 (15a), 121.7 (Ar'C), 121.5 (Ar'C), 117.5 (C9), 114.6 (C2), 109.6 (C4), 89.0 (C2"), 83.0 (C1"), 61.2 (C8), 56.8 (C6). IR (neat) 3076 (m), 1735 (m), 1689 (m), 1459 (m), 1243 (m), 1162 (m), 1102 (s), 761 (s) cm−1. HRESI-MS calcd. for C\textsubscript{34}H\textsubscript{23}N\textsubscript{2}O\textsubscript{3}+, 507.1714, found 507.1720.

7.2.5. Reaction of indigo with 3-bromo-1-(4-methoxyphenyl)-1-butyne (131a)

7a-(4-methoxyphenyl)-13-(3-(4-methoxyphenyl)-prop-2-yn-1-yl)benzo[b]indolo[1,2-
\textit{h}][1,7]naphthyridine-8,14(7a\textit{H},13\textit{H})-dione (134)

Prepared following General Procedure A (see Section 7.2.3), using arylpropargyl bromide 131a (1.13 g, 5.02 mmol), and 4 Å molecular sieves (ca. 0.5 g) and a 30 min reaction time. The crude residue was fractionated on silica gel (20% EtOAc/pet spirit), and the major red fraction condensed and subjected to flash chromatography (80 g silica, gradient elution with 10-25% EtOAc/pet spirit). Removal of the solvent from the major deep-red fraction afforded the \textit{bis}-methoxyphenylbenzoiindolomaphthyridine 134 (114 mg, 21%) as small, bright pink crystals, dec. 140 °C. X-ray quality crystals were grown by slow evaporation of a solution in EtOAc/pet spirit. \textit{Rf} (20% EtOAc/pet spirit) 0.33. 1H NMR (500 MHz, CDCl\textsubscript{3}) δ 8.00 (dd, \textit{J} = 7.8, 1.6 Hz, 1H, H9), 7.76 (d, \textit{J} = 7.7 Hz, 1H, H1), 7.53 (dd, \textit{J} = 8.4, 7.3, 1.3 Hz, 1H, H3), 7.47 (ddd, \textit{J} = 7.2, 6.8, 1.7 Hz, 1H, H11), 7.19 − 7.16 (m, 2H, Ar+ H2/H6), 7.12 (d, \textit{J} = 8.2 Hz, 1H, H4), 7.08 (d, \textit{J} = 8.4 Hz, 1H, H12), 7.02 (app t, \textit{J} = 7.2 Hz, 1H, H2), 6.98 − 6.93 (m, 3H, H10, Ar2 H2/H6), 6.82 (d, \textit{J} = 7.9 Hz, 1H, H6), 6.72 − 6.67 (m, 4H, Ar1 H3/H5, Ar2 H3/H5), 5.49 (d, \textit{J} = 7.9 Hz, 1H, H7), 5.14 (d, \textit{J} = 18.4 Hz, 1H, H1a), 4.87 (d, \textit{J} = 18.4 Hz, 1H, H1b), 3.76 (s, 3H, Ar2 OMe), 3.51 (s, 3H, Ar1 OMe). 13C NMR (126 MHz, CDCl\textsubscript{3}) δ 191.6 (C8), 178.7 (C14), 159.5 (Ar1C4), 158.9 (Ar2C4), 147.2 (C4a), 143.9 (C12a), 136.0 (C13a), 135.4 (C11), 135.2 (C3), 134.6 (Ar1 or Ar2 C1), 133.6 (Ar1 or Ar2 C1), 133.0 (Ar2 C2/C6), 128.4 (Ar1
C2/C6), 128.3 (C9), 124.6 (C1), 122.6 (C14a), 121.0 (C8a), 120.8 (C2), 120.6 (C10), 118.4 (C6), 115.8 (C12), 114.6 (C13b), 114.2 (Ar1 or Ar2 C3/C5), 113.6 (Ar1 or Ar2 C3/C5), 108.9 (C4), 105.0 (C7), 85.7 (C3'), 81.6 (C2'), 56.4 (C7a), 55.3 (Ar1-OMe), 54.9 (Ar2-OMe), 44.8 (C1').

IR (neat) 1688 (m), 1597 (m), 1572 (m), 1469 (s), 1336 (s), 1152 (m), 1002 (m), 743 (s) cm\(^{-1}\). HRESI-MS calcd. for C\(_{36}\)H\(_{27}\)N\(_2\)O\(_4\)\(^+\) 551.1965, found 551.1959.

7.3 Reactions of indigo with ring-strained electrophiles

7.3.1. Synthesis of starting materials

2,3-dibromopropan-1-ammonium bromide (162)\(^{[139a]}\)

To a solution of allylamine (4.28 g, 75.0 mmol) in water (50 mL) was added 48% HBr\(_{(aq)}\) (9.6 mL, 82.5 mmol) and bromine (18.0 g, 113 mmol) at 0 °C, and the mixture stirred at room temperature for 4 h. The mixture was warmed in a 70 °C water bath, at which point the remaining bromine was distilled off,\(^{§§§§§\}\) then the solution was cooled, and the water removed in vacuo. The off-white residue was recrystallised from hot i-PrOH (ca. 50 mL) and the collected crystals dried in vacuo to afford 2,3-dibromopropan-1-ammonium bromide 162 (17.9 g, 80%) as shiny, white needles, mp 168–170 °C, lit. 170–172.5 °C.\(^{[188]}\)

(±)-N-tosyl-2-bromomethylaziridine (147)\(^{[139a]}\)

Tosyl chloride (3.36 g, 17.6 mmol) was added to a solution of hydrobromide salt 162 (5.00 g, 16.8 mmol) in water (20 mL), then NaOH (3.43 g, 85.8 mmol) in water (20 mL) was added with vigorous stirring. The mixture was stirred for 1 h, then extracted with CH\(_2\)Cl\(_2\) (4×50 mL) and the combined organic layers washed with brine (2×50 mL), dried (MgSO\(_4\)) and concentrated to afford the desired bromomethylaziridine 147 (4.83 g, 99%) as a clear, refractive oil. \(R_f\) (20% EtOAc/pet spirit) 0.42. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.82 (d, \(J = 8.0\) Hz, 2H, H2', H6'), 7.33 (d, \(J = 8.0\) Hz, 2H, H3', H5'), 3.26 (d, \(J = 6.5\) Hz, 2H, CH\(_2\)Br), 3.05 (dt, \(J = 6.5\) Hz, 4.0 Hz, 1H, H2), 2.78 (d, \(J = 6.5\) Hz, 1H, H1b) 2.44 (s, 3H, TsCH\(_3\)), 2.22 (d, \(J = 4.0\) Hz, 1H, H1a). \(^{13}\)C NMR (125 MHz) \(\delta\) 144.9 (Ar C1'), 134.4 (Ar C4'), 129.7 (Ar C2', C6'), 128.6 (Ar C3', C5'), 39.8 (C1), 34.3 (C2), 30.6 (CH\(_2\)Br), 21.6 (TsCH\(_3\)). ESI-MS (+) 292 (100%, \([\text{81}^1\text{Br}]\text{M+H}^+\)), 290 (100%, \([\text{79}^1\text{Br}]\text{M+H}^+\)).

\(^{§§§§§}\)Care should be taken to avoid exposure to bromine vapour during this step. Excess bromine was distilled into a Schlenk tube containing Na\(_2\)S\(_2\)O\(_3\) solution, and all glassware washed with dilute NaOH after use.
(±)-N-tosyl-2-hydroxymethylaziridine (163)\[^{189}\]

To a vigorously-stirred suspension of chloramine-T trihydrate (8.46 g, 30.0 mmol) and iodine (0.777 g, 3.06 mmol, 10 mol%) in dry MeCN (90 mL) was added allyl alcohol (2.56 g, 44.1 mmol), and the mixture stirred at room temperature for 3 d. The mixture was filtered, then the solvent removed \textit{in vacuo}, and the residue taken up in EtOAc (100 mL) and washed with sat. Na₂S₂O₃ solution (20 mL) and brine (3×50 mL), and the solvent removed. Flash chromatography (80 g silica, 40% EtOAc/pet spirit) afforded the desired hydroxymethylaziridine 163 (2.43 g, 36%) as a clear, viscous oil. \(R_f\) (40% EtOAc/pet spirit) 0.25. \(^1H\) NMR (500 MHz, CDCl₃) \(\delta\) 7.82 (d, \(J = 8.0\) Hz, 2H, H₂, H₆), 7.35 (d, \(J = 8.0\) Hz, 2H, H₃, H₅), 3.81 (dd, \(J = 12.5\) Hz, 3.0 Hz, 1H, H₃a) 3.54 (dd, \(J = 12.0\) Hz, 5.5 Hz, 1H, H₃b), 3.08 – 2.96 (m, 1H, H₂), 2.61 (d, \(J = 7.0\) Hz, 1H, H₁b) 2.45 (s, 3H, TsCH₃), 2.30 (d, \(J = 4.5\) Hz, 1H, H₁a), 2.18 (bs, 1H, OH). \(^{13}C\) NMR (125 MHz) \(\delta\) 145.0 (Ar C₁), 134.5 (Ar C₄), 130.0 (Ar C₂, C₆), 128.2 (Ar C₃, C₅), 61.1 (C₃), 40.7 (C₁), 31.2 (C₂), 21.8 (TsCH₃). ESI-MS (+) 250 (100%, M+Na⁺), 228 (26%, M+H⁺).

\(N,N'\)-(3-hydroxypropane-1,2-diy)bis(4-methylbenzenesulfonamide) (166)\[**\]

Further elution afforded a second major fraction, and removal of the solvent afforded the bis-sulfonamide 166 (3.32 g, 56%) as a bone-coloured amorphous solid. \(R_f\) (40% EtOAc/pet spirit) 0.13. \(^1H\) NMR (500 MHz, CDCl₃) \(\delta\) 7.73 (d, \(J = 8.0\) Hz, 2H, Ts² H₂, H₆), 7.29 – 7.20 (m, 4H, Ts¹/Ts² H₃, H₅), 5.88 (d, \(J = 7.5\) Hz, 1H, C₂-NH), 5.77 (t, \(J = 5.0\) Hz, 1H, C₁-NH) 3.63 – 3.56 (m, 1H, H₃a) 3.54 – 3.46 (m, 1H, H₃b), 3.35 – 3.26 (m, 1H, H₂), 3.22 (bs, 1H, OH), 3.04 – 2.90 (m, 2H, H₁a/b) 2.39 (s, 6H, 2×TsCH₃). \(^{13}C\) NMR (125 MHz) \(\delta\) 143.70 (Ts¹ C¹), 143.66 (Ts² C¹), 137.1 (Ts¹ C₄), 136.3 (Ts² C₄), 129.86 (Ts¹ C₂, C₆), 129.83 (Ts² C₂, C₆), 127.1 (Ts¹ C₃, C₅), 127.0 (Ts² C₃, C₅), 61.7 (C₃), 54.1 (C₂), 43.6 (C₁), 21.56 (Ts₁ CH₃), 21.53 (Ts₂ CH₃). ESI-MS (+) 421 (100%, M+Na⁺), 399 (26%, M+H⁺).

\textit{meso}-N-tosyl-7-azabicyclo[4.1.0]heptane (168)

Prepared as per 163 using cyclohexene 167 (1.70 g, 20.7 mmol), chloramine-T (4.25 g, 15.1 mmol) and iodine (385 mg, 1.51 mmol, 10 mol%) in MeCN (45 mL), and the mixture stirred for 2 d. The crude residue was subjected to flash chromatography (45 g silica, 40% EtOAc/pet spirit), and

\[**\] Repeating the reaction on a 7 mmol scale but increasing the amount of chloramine-T to 2.1 eq. gave a 75% isolated yield of 166.
removal of the solvent from the major fraction afforded the azabicyclo[4.1.0]heptane 168 (2.94 g, 78%) as white crystals, mp 54–56 °C. \(R_f \) (40% EtOAc/pet spirit) 0.82. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.84 (d, \(J = 8.0 \) Hz, 2H, H2', H6'), 7.35 (d, \(J = 8.0 \) Hz, 2H, H3', H5'), 3.00 (app s, 2H, H1, H6), 2.47 (s, 3H, TsCH\(_3\)), 1.85 – 1.78 (m, 4H, H2a, H5a, H3a, H4a), 1.48 – 1.38 (m, 2H, H2b, H5b), 1.32 – 1.20 (m, 2H, H3b, H4b). \(^{13}\)C NMR (125 MHz) \(\delta \) 144.0 (Ar C1'), 135.9 (Ar C4'), 129.6 (Ar C2', C6'), 127.6 (Ar C3', C5'), 39.8 (C1/C6), 22.8 (C2/C5), 21.6 (TsCH\(_3\)), 19.4 (C3/C4). ESI-MS (+) 274 (100%, M+Na\(^{+}\)), 252 (26%, M+H\(^{+}\)).

N,N'-(trans-cyclohexane-1,2-diyl)bis(4-methylbenzenesulfonamide) (169)

Further elution afforded a second fraction, and removal of the solvent afforded the bis-sulfonamide 169 (0.624 g, 20%) as a white amorphous solid, mp 178–179 °C. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.76 (d, \(J = 8.3 \) Hz, 4H, 2×Ts H2', H6'), 7.31 (d, \(J = 8.3 \) Hz, 4H, 2×Ts H3', H5'), 4.98 (br s, 2H, 2×NHTs), 2.78 – 2.73 (m, 2H, H1, H2), 1.83 – 1.79 (m, 2H, H3a, H6a), 1.54 – 1.52 (m, 2H, H4a, H5a), 1.12 – 1.06 (m, 4H, H3b, H4b, H5b, H6b). \(^{13}\)C NMR (125 MHz) \(\delta \) 143.3 (2×TsC1'), 139.6 (2×TsC4'), 129.7 (2×TsC2', C6'), 127.3 (2×TsC3', C5'), 66.3 (C1 or C2), 54.9 (C1 or C2), 35.3 (C3 or C6), 31.0 (C3 or C6), 26.5 (C4 or C5), 24.0 (C4 or C5), 21.9 (Ts\(^1\)CH\(_3\)), 21.7 (Ts\(^2\)CH\(_3\)). ESI-MS (+) 445 (100%, M+Na\(^{+}\)), 423 (26%, M+H\(^{+}\)).

N-(1-chloro-3-hydroxypropan-2-yl)-4-methylbenzenesulfonamide (170)

To a 0 °C solution of hydroxymethylaziridine 163 (0.407 g, 1.79 mmol) in CH\(_2\)Cl\(_2\) (5 mL) was added NEt\(_3\) (0.435 g, 4.30 mmol) and MsCl (0.444 g, 3.88 mmol), and the mixture stirred at 0 °C for 1 h, then allowed to warm to room temperature over 1 h. The mixture was quenched with sat. NH\(_4\)Cl solution (5 mL), then transferred to a separatory funnel and the organic layer washed with sat. NH\(_4\)Cl (20 mL) and sat. NaHCO\(_3\) (20 mL), dried (MgSO\(_4\)), and the solvent removed. The resulting crude O-mesylate (0.579 g) was dried in vacuo, then dissolved in THF (10 mL), and TBAC.2H\(_2\)O (0.104 g, 0.331 mmol) and LiCl (0.353 g, 8.33 mmol) added, and the mixture stirred overnight at 50 °C under nitrogen. The mixture was taken up in ether (30 mL) and washed with water (20 mL) and brine (20 mL), dried (MgSO\(_4\)) and the solvent removed to afford the chloro-substituted hydroxyl adduct 170 (0.436 g, 99%) as off-white crystals. \(R_f \) (20% EtOAc/pet spirit) 0.62. \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.73 (d, \(J = 8.3 \) Hz, 2H, TsH3', H5'), 7.25 (d, \(J = 8.0 \) Hz, 2H, TsH2', H6'), 6.04 (t, \(J = 6.2 \) Hz, 1H, NH), 3.78 – 3.44 (m, 5H, H1a/b, H2, H3a/b), 3.18 (bs, 1H, OH), 2.35 (s, 3H, Ts CH\(_3\)). \(^{13}\)C
NMR (125 MHz, CDCl$_3$) δ 144.1 (TsC1'), 137.6 (TsC4'), 130.1 (TsC2', C6'), 127.2 (TsC3', C5'), 59.1 (C3), 55.1 (C2), 44.1 (C1), 21.8 (TsCH$_3$). ESI-MS (+) 286 (100%, [35Cl]M+Na$^+$), 288 (33%, [37Cl]M+Na$^+$).

N-(1-bromo-3-chloropropan-2-yl)-4-methylbenzenesulfonamide (171)

To a solution of bromomethylaziridine 147 (3.15 g, 10.9 mmol) in EtOH (50 mL) was added 36% HCl$_{(aq)}$ (15 mL, 150 mmol), and the mixture heated at reflux overnight. The mixture was cooled to room temperature, then diluted with water (50 mL) and EtOAc (50 mL), and the aqueous phase extracted with EtOAc (3×30 mL), then the combined organic fractions washed with sat. NaHCO$_3$ solution (3×40 mL), dried (MgSO$_4$) and the solvent removed to afford the mixed bromo-chloro species 171 (2.90 g, 82%) as an off-white amorphous solid, mp 82–85 °C. R_t (20% EtOAc/pet spirit) 0.50. 1H NMR (500 MHz, CDCl$_3$) δ 7.76 (d, J = 8.3 Hz, 2H, TsH$_3$ꞌ, H$_5$ꞌ), 7.32 (d, J = 8.0 Hz, 2H, TsH$_2$ꞌ, H$_6$ꞌ), 5.03 (d, J = 8.0 Hz, 1H, NH), 3.79 – 3.70 (m, 3H, H$_2$, H$_3$a/b), 3.52 – 3.46 (m, 2H, CH$_2$Cl), 2.43 (s, 3H, ArCH$_3$). 13C NMR (125 MHz, CDCl$_3$) δ 144.4 (TsC1'), 137.4 (TsC4'), 130.2 (TsC2', C6'), 127.3 (TsC3', C5'), 54.5 (C2), 43.9 (C3), 32.9 (C1), 21.8 (TsCH$_3$). ESI-MS (+) 348 (60%, [35Cl/79Br]M+Na$^+$), 350 (100%, [37Cl/79Br]M+Na$^+$ or [35Cl/81Br]M+Na$^+$), 352 (20%, [37Cl/81Br]M+Na$^+$).

(S)-N-(3-chloro-2-hydroxypropyl)-4-methylbenzenesulfonamide (172)

To a well-stirred suspension of chloramine-T trihydrate (3.59 g, 12.8 mmol) in dry acetonitrile (20 mL) in a 50 mL round-bottomed flask fitted with a rubber septum was injected (S)-epichlorohydrin 144 (2.36 g, 25.5 mmol). The mixture was warmed to 50 °C in an oil bath, and stirred vigorously for 24 h. Sat. Na$_2$S$_2$O$_3$ solution (5 mL) was added and the acetonitrile removed in vacuo, then the wet residue was diluted with EtOAc (40 mL) and extracted with water (40 mL). The aqueous phase was extracted with further EtOAc (3×20 mL) and the combined organic fractions washed sequentially with sat. Na$_2$S$_2$O$_3$ solution (2×10 mL), water (2×10 mL) and brine (2×40 mL). The organic fraction was dried (MgSO$_4$) and the solvent removed to give a clear syrup, which solidified upon standing to give a pale ivory solid. The resulting chlorohydrin 172 (3.25 g, 97%) was used directly for subsequent steps. R_t (9:1 CH$_2$Cl$_2$/EtOAc) 0.25. 1H NMR (400 MHz, CDCl$_3$) δ 7.75 (d, J = 8.3 Hz, 2H, TsH$_3$', H$_5$'), 7.33 (d, J = 8.0 Hz, 2H, TsH$_2$', H$_6$'), 4.79 (t, J = 6.2 Hz, 1H, NH), 3.94 (dq, J = 10.7, 5.2 Hz, 1H, H$_2$), 3.63 – 3.47 (m, 2H, CH$_2$Cl), 3.22 – 3.14 (m, 1H, H$_1$a), 3.07 – 2.99 (m, 1H, H$_1$b), 2.58 (d, J = 5.2 Hz, 1H, OH), 2.44 (s, 3H, ArCH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 143.9 (TsC1'), 136.4 (TsC4'), 130.1 (TsC2', C6'), 127.2 (TsC3', C5'), 70.0 (C2), 46.8 (C3), 213.
45.9 (C1), 21.6 (TsCH₃). ESI-MS (+) 286 (100%, [¹³Cl]M+Na⁺), 288 (33%, [³⁷Cl]M+Na⁺). [α]D²¹ = -19.7 ° (c 0.64, CH₂Cl₂).

(S)-1-chloro-3-((4-methylphenyl)sulfonamido)propan-2-yl methanesulfonate (173)

To a solution of 172 (1.331 g, 5.05 mmol) and NEt₃ (1.1 mL, 7.9 mmol) in dry CH₂Cl₂ (30 mL) was added slowly dropwise methanesulfonyl chloride (0.58 mL, 7.5 mmol) at 0 °C, and the resulting pale golden solution allowed to warm to room temperature overnight with stirring. The mixture was partitioned with 1 M HCl solution (10 mL) and the resulting organic phase washed with 1 M HCl (2×20 mL), then sat. NaHCO₃ solution (1×20 mL), and the resulting solution dried (MgSO₄) and the solvent removed to give chloromesylate 173 (1.566 g, 91%) as a clear yellow oil. NMR showed the mesylate to be >90% pure, and was used directly for the next step. Rf (9:1 CH₂Cl₂/EtOAc) 0.62. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.3 Hz, 2H, TsH₃', H₅'), 7.34 (d, J = 8.1 Hz, 2H, TsH₂', H₆'), 4.93 (d, J = 6.5 Hz, 1H, NH), 4.89 – 4.80 (m, 1H, H2), 3.77 (d, J = 5.4 Hz, 2H, H1a, H1b), 3.68 (s, 3H, SO₂CH₃), 3.37 – 3.29 (m, 2H, H3a, H3b), 2.44 (s, 3H, TsCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 144.2 (TsC1'), 135.7 (TsC4'), 130.2 (TsC2', C6'), 127.1 (TsC3', C5'), 78.9 (C2), 52.6 (MsCH₃), 44.5 (C3), 43.1 (C1), 21.6 (TsCH₃). ESI-MS (+) 364 (100%, [¹³Cl]M+Na⁺), 366 (33%, [³⁷Cl]M+Na⁺). [α]D²¹ = +14.1° (c 0.22, CH₂Cl₂).

(R)-N-tosyl-2-chloromethylaziridine (148)†††††††

To a 0 °C solution of 173 (621 mg, 1.82 mmol) in dry CH₂Cl₂ (160 mL) was added pre-dried and ground cesium carbonate (976 mg, 3.00 mmol), and the mixture stirred vigorously for 2 h at 0 °C, then allowed to warm to room temperature overnight. The mixture was partitioned with water (100 mL), and the resulting organic layer separated and washed with brine (2×50 mL), dried (MgSO₄), and the solvent removed to give a clear, bluish oil. Flash chromatography (20 g silica, 20% EtOAc/pet spirit) gave the desired aziridine 148 (325 mg, 73%) as a colourless oil which slowly crystallised on standing, mp 42–44 °C. Rf (20% EtOAc/pet spirit) 0.40. ¹H-NMR (CDCl₃, 500 MHz) δ 7.82 (d, J = 8.0 Hz, 2H, TsH₂', H₆'), 7.33 (d, J = 8.0 Hz, 2H, TsH₃', H₅'), 3.39-3.50 (m, 2H, CH₂Cl), 3.04 (quint, J = 5.0 Hz, 1H, H2), 2.74 (d, J = 7.0 Hz, 1H, H1b) 2.43 (s, 3H, TsCH₃), 2.24 (d, J = 4.5 Hz, 1H, H1a). ¹³C NMR (125 MHz) δ 145.2 (TsC1'), 134.6 (TsC₄'), 130.0 (TsC₂', C₆'), 128.4 (TsC₃', C₅'), 43.7 (CH₂Cl), 39.9 (C3), 21.6 (TsCH₃).

††††††† rac-148 was also synthesised from the mixed bromo-chloro species 171 under identical conditions to those for the chloro-mesylate 173. The isolated yield for this reaction was 90% on 8.88 mmol scale.
33.1 (C2), 21.9 (TsCH3). ESI-MS (+) 268 (100%, [35Cl]M+Na+), 270 (33%, [37Cl]M+Na+). [α]D = +61.5˚ (c 0.71, CH2Cl2).

(±)-N-tosyl-2-phenylaziridine (174)[189]

To a solution of chloramine-T trihydrate (8.46 g, 30 mmol) and iodine (381 mg, 1.50 mmol, 5 mol%) in dry MeCN (90 mL) was added styrene (3.6 mL, 31.6 mmol) with stirring under nitrogen at RT. The flask was wrapped in aluminium foil, and stirred vigorously under static nitrogen for 2 days. The resulting orange mixture was filtered through a pad of celite (eluted with MeCN, 3×20 mL), and the filtrate extracted with pet. spirit (3×50 mL) to remove unreacted styrene. The solvent was removed in vacuo, then the residue dissolved in ethyl acetate (100 mL) and washed with sat. Na2S2O3 solution (2×40 mL) and brine (50 mL), dried (MgSO4) and the solvent removed. The resulting crystalline solid was triturated with hexane (50 mL) and collected by vacuum filtration to give phenylaziridine 174 (7.66 g, 93%) as off-white crystals, mp 93–95 ºC. Rf (10% EtOAc/pet spirit) 0.32. 1H NMR (500 MHz, CDCl3) δ 7.86 (d, J = 8.3 Hz, 2H, TsH2, H6), 7.32 (d, J = 8.0 Hz, 2H, TsH3, H5), 7.30 – 7.12 (m, 5H, PhH2, H3, H4, H5, H6), 3.77 (dd, J = 7.2, 4.5 Hz, 1H, H2), 2.97 (d, J = 7.2 Hz, 1H, H3a), 2.42 (s, 3H, TsCH3), 2.38 (d, J = 4.5 Hz, 1H, H3b). 13C NMR (125 MHz, CDCl3) δ 144.8 (TsC1, H6), 135.14 (TsC4 or PhC1), 135.07 (TsC4 or PhC1), 129.9 (TsC2, C6), 128.7 (PhC3, C5), 128.4 (PhC4), 128.0 (TsC3, C5), 126.7 (PhC2, C6), 41.1 (C2), 36.0 (C3), 21.8 (Ts CH3). ESI-MS (+) 274 (32%, M+H+), 296 (100%, M+Na+).

(2S,3S)-2,3-di hydroxybutane-1,4-diyli dimethanesulfonate[141]

To a solution of the acetonide-protected dimesylate 131 (6.24 g, 21.5 mmol)[‡‡‡‡‡‡‡] in 95% EtOH (70 mL) was added methanesulfonic acid (0.1 mL), and the mixture heated at reflux for 4 h, then allowed to cool to room temperature overnight. The solution was chilled to 0 ºC, and the crystalline product collected by vacuum filtration and dried in vacuo to yield the desired diol (2.56 g, 48%) as fluffy white crystals, mp 100–102 ºC, lit 101–102 ºC.[141] This was used directly for the next step without further purification.

(2S,2'S)-2,2'-bioxirane (149)[141]

A 100 mL twin-necked round-bottomed flask equipped with a pressure-equalised addition funnel and a nitrogen gas adaptor was charged with a

‡‡‡‡‡‡‡Prepared over 3 steps from L-tartaric acid by Mr. Jamie Smyth.
solution of the deprotected dimesylatediol (3.71 g, 13.3 mmol) in ether (30 mL), and a solution of KOH (aq) (1.91 g in 6 mL, 34.1 mmol) added over 15 min via the dropping funnel, and the mixture stirred vigorously for 1 h. The upper ether layer was collected, and the aqueous layer extracted with ether (3×10 mL), and the combined organic layers washed with brine (2×10 mL), dried (MgSO₄) and the solvent removed to give the desired bioxirane 149 (1.07 g, 93%) as a colourless oil. ¹H NMR (400 MHz, CDCl₃) δ 2.68 (m, 4H, H₃a/b, H₃ꞌa/b), 2.56 (m, 2H, H₂, H₂ꞌ). ¹³C NMR (101 MHz, CDCl₃) δ 51.0 (C₂, C₂ꞌ), 44.4 (C₃, C₃ꞌ). [α]D²⁵ +24.9 ° (c 0.62, CHCl₃), lit. +25.7 °. [141]

(2R,2'R)-2,2'-biaziridine (150) [140c]

To a solution of the disulfonamido-diol N,N'-(2S,3S)-2,3-di hydroxybutane-1,4-diyl) bis(4-methylbenzenesulfonamide) (15.2 g, 35.5 mmol) in pyridine (65 mL) was added dropwise MsCl (11.8 g, 103 mmol) at 0 °C, and the mixture allowed to warm to room temperature overnight under nitrogen. The mixture was diluted with 1 M HCl (300 mL) and EtOAc (500 mL), and the aqueous phase repeatedly extracted with EtOAc (3×250 mL). The combined organic fractions were washed with 1 M HCl (2×500 mL), water (8×500 mL), then NaHCO₃ (2×100 mL), and the solution dried (MgSO₄) and the solvent removed to afford an intermediate dimesylate (19.2 g, 92% crude yield) as a dark tan powder which was used directly.

The crude dimesylate was suspended in benzene (200 mL), and 10% KOH solution (100 mL) added slowly. The mixture was stirred vigorously at room temperature overnight, then diluted with EtOAc (400 mL) and water (100 mL), and the aqueous phase extracted with EtOAc (4×50 mL). The combined organic layers were washed with water (100 mL) and NaHCO₃ (4×50 mL), then dried (MgSO₄) and the solvent removed. Flash chromatography (150 g silica, 30% EtOAc/pet spirit) afforded a highly-crystalline major fraction, which was condensed and recrystallised from CHCl₃/pet spirit to afford the desired biaziridine 150 (9.18 g, 67% over two steps) as fluffy, white crystals, mp 120–121 °C, lit. 128–129.5 °C. [190] R f (20% EtOAc/pet spirit) 0.26. ¹H NMR (CDCl₃, 400 MHz) δ 7.75 (d, J = 8.4 Hz, 4H, 2×TsH₂ꞌꞌ, H₆ꞌꞌ), 7.32 (d, J = 8.4 Hz, 4H, 2×TsH₃ꞌꞌ, H₅ꞌꞌ), 2.90-2.96 (m, 2H, H₂, H₂ꞌ), 2.54 (d, J = 6.9 Hz, 2H, H₃a, H₃ꞌa), 2.45 (s, 6H, 2×TsCH₃), 2.08 (d, J = 3.9 Hz, 2H, H₃b, H₃ꞌb). ¹³C NMR (CDCl₃, 101 MHz) δ 144.8 (2×TsCl₁), 134.2 (2×TsC₄), 129.7 (2×TsC₂, C₆), 127.9 (2×TsC₃, C₅), 36.6 (C₂), 31.7 (C₃), 21.6 (TsCH₃). ESI-MS (+) 415 (27%, M+Na⁺), 393 (100%, M+H⁺). [α]D²⁰ = +97.0 ° (c

§§§§§§§ Prepped over 7 steps from L-tartaric acid by Mr. Jamie Smyth.

216
7.3.2. Reaction of indigo with (S)-epichlorohydrin (144)

(S)-6-(hydroxymethyl)-6,7-dihydropyrazino[1,2-a:4,3-a']diindole-13,14-dione (152)

Prepared following General Procedure A (see Section 7.2.3), using (S)-epichlorohydrin (462 mg, 5.0 mmol), and a 30 min reaction time. The resulting crude residue was dissolved in a minimum of hot CHCl₃, and gradual dilution with a tenfold volume of hot pet. spirit precipitated an intense blue powder, which was collected on a Hirsch funnel and combined with Fraction 5 (see below). The combined solids were dried in vacuo to furnish the dihydropyrazinodiindole 152 (141 mg, 44%) as a dark blue powder, mp >350 °C. \(R_t \) (9:1 CH₂Cl₂/EtOAc) 0.14. UV-Vis (CH₂Cl₂) \(\lambda_{\text{max}}/\text{nm} \) (\(\epsilon \), M⁻¹cm⁻¹) 241 (12773), 303 (6339), 579 (2819). \(^1\text{H}-\text{NMR} \) (DMSO-\(d_6 \), 500 MHz) 7.56-7.64 (m, 4H, H1, H3, H10, H12), 7.35 (d, \(J = 8.0 \) Hz, 2H, H4, H9), 6.99-7.06 (m, 2H, H2, H11), 5.28 (s, 1H, CH₂OH), 4.66 (s, 1H, H6), 4.44 (d, \(J = 12.0 \) Hz, 1H, H7a), 3.71 (dd, \(J = 3.5, 12.0 \) Hz, 1H, H7b), 3.47-3.57 (m, 2H, CH₂OH). \(^{13}\text{C}-\text{NMR} \) (126 MHz) δ 179.9 (C13 or C14), 179.7 (C13 or C14), 150.2 (C4a or C8a), 149.4 (C4a or C8a), 135.3 (C3 or C10), 135.0 (C3 or C10), 123.9 (C13b), 123.5 (C1 or C12), 123.1 (C13a), 122.0 (C12a or C14a), 121.5 (C12a or C14a), 120.8 (C1 or C12), 120.6 (C2 or C11), 120.4 (C2 or C11), 110.9 (C4 or C9), 110.5 (C4 or C9), 59.9 (CH₂OH), 51.2 (C6), 51.1 (C7). IR (neat) 3432 (br, m), 2937 (w), 2876 (w), 1689 (s), 1607 (s), 1561 (s), 1470 (m), 1465 (m), 1369 (w), 1298 (s), 1180 (s), 1158 (m), 1144 (s), 743 (s). HRESI-MS calcd. for C₁₉H₁₄N₂O₄Na⁺ 341.0902, found 341.0888. \([\alpha]_D^{29} = -6.4^\circ \) (c 0.10, CHCl₃).

(7S,9aR)-7,8-dihydro-6H-7,9a-epoxy[1,5]oxazocino[5,4-a:3,2-b']diindol-15(14H)-one (153)

The mother liquor from compound 152 was concentrated, and subjected to flash chromatography (gradient elution, 5-50% EtOAc:CH₂Cl₂) to afford five major fractions. Fraction 1 was subjected to PTLC (10% EtOAc/CH₂Cl₂), and the selected band scraped off and soaked in EtOAc. The silica was removed by filtration and the luminescent, yellow solution was combined with Fraction 2 and the solvent removed to furnish the title compound 153 as small, bright orange crystals (101 mg, 32%), mp 189–191 °C (dec). X-ray quality crystals were grown by slow evaporation of a saturated solution in EtOAc at -20 °C. \(R_t \) (9:1 CH₂Cl₂/EtOAc) 0.57. UV-Vis (CH₂Cl₂) \(\lambda_{\text{max}}/\text{nm} \) (\(\epsilon \), M⁻¹cm⁻¹) 236 (8964), 287 (5169), 364 (2651), 483 (3573). \(^1\text{H}-\text{NMR} \) (500 MHz,
CDCl$_3$ δ 7.81 (d, J = 7.7 Hz, 1H, H1), 7.49 (m, 2H, H3, H10), 7.35 (app t, J = 7.7 Hz, 1H, H12), 7.08 (d, J = 8.3 Hz, 1H, H4), 7.02 (app t, J = 7.5 Hz, 2H, H2, H11), 5.16–5.08 (m, 1H, H7), 4.37 (t, J = 7.2 Hz, 1H, H8b), 4.26 (dd, J = 7.0 Hz, 3.0 Hz, 1H, H8a) 4.20 (dd, J = 14.0, 3.0 Hz, 1H, H6a), 3.74 (d, J = 14.0 Hz, 1H, H6b).

13C NMR (126 MHz, CDCl$_3$) δ 184.1 (C15), 152.6 (C4a), 145.5 (C13a), 145.1 (C14a), 133.9 (C3), 132.4 (C12), 125.4 (C10), 124.5 (C9b), 124.1 (C1), 123.1 (C15a), 122.2 (C2), 120.1 (C11), 118.5 (C14b), 111.6 (C9a), 111.2 (C13), 110.9 (C4), 74.2 (C7), 65.6 (C8), 51.9 (C6). IR (neat) 3310 (br, w) 2966 (w), 2953 (w), 2893 (w), 1689 (s), 1614 (s), 1576 (s), 1098 (m), 995 (s), 747 (s). HRESI-MS calcd. for C$_{19}$H$_{14}$N$_2$O$_3$Na$^+$ 341.0902, found 341.0900. [α]$_D$= -6.5˚ (c 0.17, CHCl$_3$).

7R,9aR-14-((E)-3-hydroxyprop-1-en-1-yl)-7,8-dihydro-6H-7,9a-epoxy[1,5]oxazocino[5,4-a:3,2-b']diindol-15(14H)-one (155)

Fraction 3 was subjected to PTLC (developed twice; 20% EtOAc:CH$_2$Cl$_2$, then EtOAc) and the selected band scraped off and soaked in EtOAc. The silica was removed, and the solution combined with Fraction 4 to give the title compound 154 as red-orange crystals (75.2 mg, 21%), mp 152–154 °C (dec.). X-ray quality crystals were grown by slow evaporation of a saturated solution in 9:1 CH$_2$Cl$_2$/hexane. R$_f$ 0.21 (20% EtOAc/CH$_2$Cl$_2$). UV-Vis (CH$_2$Cl$_2$) λ_{max}/nm (ϵ, M$^{-1}$cm$^{-1}$) 243 (18482), 274 (20838), 355 (1472), 500 (1174). 1H NMR (500 MHz, CDCl$_3$) δ 7.78 (d, J = 7.6 Hz, 1H, H1), 7.55–7.48 (m, 2H, H3, H10), 7.45 (t, J = 7.7 Hz, 1H, H12), 7.36 – 7.30 (m, 1H, H13), 7.17 (t, J = 7.4 Hz, 1H, H11), 7.06 (d, J = 8.3 Hz, 1H, H4), 7.02 (t, J = 7.4 Hz, 1H, H2), 6.87 (d, J = 14.2 Hz, 1H, H1'), 6.07 (dt, J = 6.5, 14.0 Hz, 1H, H2'), 5.05 – 5.01 (m, 1H, H7), 4.44–4.21 (m, 6H, H6b, H8a, H8b, H3'a, H3'b, OH), 3.74 (d, J = 14.3 Hz, 1H, H6a). 13C NMR (125 MHz, CDCl$_3$) δ 181.5 (C15), 152.7 (C4a), 149.7 (C14a), 145.9 (C13a), 134.2 (C3), 131.9 (C12), 130.8 (C1'), 125.5 (C9b), 125.2 (C15a), 124.9 (C10), 124.5 (C14b), 124.3 (C1), 123.6 (C11), 120.0 (C2), 119.1 (C2'), 111.7 (C13), 111.1 (C9a), 109.9 (C4), 73.4 (C7), 67.6 (C8), 61.9 (C3'), 52.2 (C6). IR (neat) 3349 (br, m), 1726 (m), 1466 (s), 1265 (s), 702 (s). HRESI-MS calcd. for C$_{22}$H$_{19}$N$_2$O$_4$Na$^+$ 375.1345, found 375.1357. [α]$_D$= -6.7˚ (c 0.11, CHCl$_3$).
14-((2-oxo-1,3-dioxolan-4-yl)methyl)-7,8-dihydro-6H-7,9a-epoxy[1,5]oxazocino[5,4-a:3,2-b']diindol-15(14H)-one (154)

Prepared following General Procedure A, using (±)-epichlorohydrin (5.0 mmol, 462 mg), and a 2 h reaction time. Following the above separation protocol, the racemic products (±)-152 (134.4 mg, 43%), (±)-153 (19.8 mg, 6%), and (±)-155 (27.9 mg, 7%) were isolated. Fraction 4 was condensed, and recrystallisation from a minimum volume of EtOAc afforded cyclic carbonate 154 (27 mg, 6%) as luminescent orange crystals, mp 146–149 °C (dec.). X-ray quality crystals were grown from slow evaporation of a saturated solution in 9:1 EtOAc/pet spirit at 4 °C. \(R_t \) (10% EtOAc/CH\(_2\)Cl\(_2\)) 0.45. UV-Vis (CH\(_2\)Cl\(_2\)) \(\lambda_{max} \) (nm) (\(\epsilon \), M\(^{-1}\)cm\(^{-1}\)) 238 (17364), 344 (5999), 499 (2531). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 7.68 (d, \(J = 7.1 \) Hz, 1H, H1), 7.52 – 7.41 (m, 3H, H3, H10, H12), 7.33 (d, \(J = 8.1 \) Hz, 1H, H13), 7.13 (td, \(J = 7.4, 0.8 \) Hz, 1H, H11), 7.04 – 6.94 (m, 2H, H2, H4), 5.53 – 5.43 (m, 1H, H2'), 5.20 (d, \(J = 9.2 \) Hz, 1H, H3'a), 5.00 – 4.94 (m, 1H, H7), 4.33 – 4.22 (m, 4H, H6a, H8a, H8b, H3'b), 4.22 – 4.08 (m, 2H, H6a, H1'b), 3.68 (d, \(J = 14.3 \) Hz, 1H, H6b). \(^13\)C NMR (101 MHz, CDCl\(_3\)) \(\delta \) 182.2 (C15), 155.2 (O=C=O), 152.9 (C4a), 148.0 (C14a), 146.6 (C13a), 134.3 (C3), 132.7 (C12), 128.3 (C15a), 124.8 (C9b), 124.6 (C10), 124.2 (C1), 123.4 (C11), 120.7 (C14b), 119.9 (C2), 112.0 (C9a), 111.1 (C13), 110.2 (C4), 81.3 (C2'), 73.4 (C7), 69.0 (C3'), 67.9 (C8), 55.5 (C1'), 52.4 (C6). IR (neat) 3431 (w), 1799 (m), 1734 (s), 1611 (s), 1500 (s), 774 (m). HRESI-MS calcd. for C\(_{23}\)H\(_{18}\)N\(_2\)O\(_6\)Na\(^+\) 441.1063, found 441.1082; calcd. for C\(_{23}\)H\(_{19}\)N\(_2\)O\(_6\)Na\(^+\) 419.1243, found 419.1257.

(7R,9aR)-((S)-2-oxo-1,3-dioxolan-4-yl)methyl)-7,8-dihydro-6H-7,9a-epoxy[1,5]oxazocino[5,4-a:3,2-b']diindol-15(14H)-one (154)

Prepared following General Procedure A, using (S)-epichlorohydrin (462 mg, 5.0 mmol) and a 30 min reaction time. Following the above separation protocol, products 152 (133 mg, 41%), and 153 (97 mg, 30%) were isolated. Fraction 4 was subjected to PTLC (20% EtOAc/CH\(_2\)Cl\(_2\)). Recrystallisation from a minimum volume of EtOAc afforded cyclic carbonate 154 (87 mg, 20%) as luminescent orange crystals. \([\alpha]_D^{29} = -6.1^\circ\) (c 0.09, CHCl\(_3\)).
Prepared following General Procedure A, using (±)-epibromohydrin 145 (685 mg, 5.0 mmol), and a 10 min reaction time. The crude residue was dissolved in a minimum of hot CHCl₃, and gradual dilution with a tenfold volume of hot pet spirit precipitated an intense blue powder, which was collected on a Hirsch funnel. The mother liquor was condensed, and a second recrystallization of the residue afforded a second crop of product. The combined solids were dried in vacuo to furnish the title compound rac-152 as a dark blue powder (266.9 mg, 84%). Spectral characteristics (excepting optical rotation) were identical to those reported for (S)-152.

Prepared following General Procedure A, using of (R)-glycidyl tosylate 146 (1.141 g, 5.0 mmol), and a 10 min reaction time. The crude residue was dissolved in a minimum of hot CHCl₃, and gradual dilution with a tenfold volume of hot pet spirit precipitated an intense blue powder, which was collected on a Hirsch funnel. The mother liquor was condensed, and a second recrystallization of the residue afforded a further crop of product. The combined solids were dried in vacuo to furnish the title compound (R)-152 as a dark blue powder (242.3 mg, 76%). Spectral characteristics (excepting optical rotation) were identical to those obtained from its enantiomer. [α]D²⁹ = +3.7° (c 0.33, CH₂Cl₂).

7.3.3. Reaction of indigo with (R)-N-tosyl-2-chloromethylaziridine (148)

A suspension of indigo (131 mg, 0.500 mmol) in anhydrous DMF (20 mL) was sonicated at 60 °C for one hour. The resulting hot suspension was transferred by cannula under positive pressure of nitrogen into a 50 mL round-bottomed flask containing a magnetic stir bar, pre-dried and ground Cs₂CO₃ (603 mg, 1.85 mmol), and fitted with a rubber septum. The resulting dark-green to amber solution was stirred for one hour in an oil bath, pre-heated to strictly 85-87 °C under dry nitrogen. The nitrogen flow was cut, and a solution of (R)-N-tosyl-2-chloromethylaziridine 148 (627 mg, 2.56 mmol) in DMF (2 mL) was injected through the septum, and the mixture stirred at 85–87
˚C for 30 min. The resulting intensely-coloured solution was quenched over crushed ice (ca. 50 g), and the flask rinsed with EtOAc (ca. 10 mL) to remove adhered products. Upon warming to RT, the emulsion was extracted with EtOAc (5×40 mL) until the aqueous phase became clear. The combined organic fractions were washed with brine (4×40 mL), dried (MgSO₄), and filtered through a 2 cm plug of celite, and the solvent removed in vacuo. The crude residue was fractionated on silica (60 g) using CHCl₃ as eluent to afford two major fractions. Removal of the solvent from Fraction 2 afforded the N,N-cyclised mono-adduct 176 (108.2 mg, 46%) as a glassy, intense-blue solid, mp 165–167 ˚C (dec.).

Fraction 1 was concentrated to dryness then dissolved in acetonitrile (20.0 mL), of which 10.0 mL was subjected to preparative RP-HPLC over 5×2.0 mL injections, using a Prominence Preparatory Liquid Chromatograph (Shimadzu) with PDA detector, and a Shim-Pack GIS C18 5 μm column (Shimadzu) with 150×20 mm I.D. Gradient elution from 80% to 0% Solvent A (0.1% TFA in H₂O) in 60 minutes with Solvent B (0.1% TFA in MeCN) at a flow rate of 10.0 mL/min afforded three major fractions at tₚ 35 min, 37 min, and 47.7 min, and their purity was confirmed by analytical RP-HPLC, using a Prominence LC-2030C 3D system (Shimadzu) with PDA detector, and a Shim-Pack GIS C18 5 μm column (Shimadzu) with 4.6×150 mm I.D. Gradient elution from 80% to 0% Solvent A (0.1% TFA in H₂O) in 30 minutes with Solvent B (0.1% TFA in MeCN) at a flow rate of 1.0 mL/min showed the three fractions (tᵣ 16.5, 17.2, and 21.4 min, respectively) to be free of neighbouring impurities.
N-(((R)-13,14-dioxo-6,7,13,14-tetrahydropyrazino[1,2-a:4,3-a’]diindol-6-yl)methyl)-4-methyl-N-(((S)-1-tosylaziridin-2-yl)methyl)benzenesulfonamide (177)

Removal of the solvent from the fraction collected at \(t_R \) 35 min afforded the \(di \)-substituted \(N,N' \)-cyclised indigo derivative 177 (27.4 mg, 8%) as an intense blue-purple solid, mp 121–123 °C (dec.). \(R_f \) (9:1 CHCl₃/MeCN) 0.49. UV-Vis (CH₂Cl₂) \(\lambda_{\text{max}}/\text{nm} \) (\(\varepsilon \), M⁻¹·cm⁻¹) 281 (37018), 360 (2022), 578 (7659). \(^1\)H NMR (400 MHz, CDCl₃) \(\delta \) 7.81 – 7.71 (m, 2H, H₁, H₁₂), 7.60 (d, \(J = 8.1 \) Hz, 2H, Ts₁ or Ts₂ H₃/H₅), 7.57 – 7.48 (m, 4H, H₃, H₁₀, Ts₁ or Ts₂ H₃/H₅), 7.29 (d, \(J = 8.1 \) Hz, 2H, Ts₁ or Ts₂ H₂/H₆), 7.21 (d, \(J = 8.0 \) Hz, 2H, Ts₁ or Ts₂ H₂/H₆), 7.16 (s, 2H, H₂, H₁₁), 7.02 (s, 2H, 2×ArH, H₄, H₉), 4.63 (s, 1H, H₆), 4.47 (d, \(J = 10.8 \) Hz, 1H, H₇a), 3.64 (d, \(J = 15.8 \) Hz, 1H, H₅’a), 3.05 – 2.95 (m, 1H, H₃”, H₃’ or H₃”, H₃’), 2.95 – 2.86 (m, 2H, H₅”’, H₂”), 2.57 (d, \(J = 6.9 \) Hz, 1H, H₁’a), 2.39 (s, 3H, Ts₁ or Ts₂ CH₃), 2.38 (s, 3H, Ts₁ or Ts₂ CH₃), 2.21 (d, \(J = 4.1 \) Hz, 1H, H₁”b). \(^{13}\)C NMR (126 MHz, DMSO) \(\delta \) 180.4 (C₁₃ or C₁₄), 180.1 (C₁₃ or C₁₄), 150.9 (C₄a or C₈a), 149.0 (C₄a or C₈a), 145.4 (Ts₁ or Ts₂ C₄), 144.5 (Ts₁ or Ts₂ C₄), 136.0 (Ts₁ or Ts₂ C₁), 135.8 (Ts₁ or Ts₂ C₁), 135.7 (C₃ or C₁₀), 133.9 (C₃ or C₁₀), 130.6 (Ts₁ or Ts₂ C₂/C₆), 130.3 (Ts₁ or Ts₂ C₂/C₆), 130.1 (C₁₃b), 128.0 (Ts₁ or Ts₂ C₃/C₅), 127.7 (Ts₁ or Ts₂ C₃/C₅), 127.0 (C₁₃a), 124.7 (C₁ or C₁₂), 124.4 (C₁ or C₁₂), 124.2 (C₁₂a or C₁₄a), 124.1 (C₁₂a or C₁₄a), 121.4 (C₂ or C₁₁), 121.3 (C₂ or C₁₁), 111.6 (C₄ or C₉), 110.9 (C₄ or C₉), 60.6 (C₃’, 54.4 (C₆), 49.5 (C₅’), 48.9 (C₇), 47.3 (C₂’), 40.8 (C₁’), 21.5 (Ts₁ or Ts₂ CH₃), 21.4 (Ts₁ or Ts₂ CH₃). IR (neat) 2987 (w), 1738 (w), 1697 (m), 1609 (s), 1132 (s), 754 (s). HRESI-MS calcd. for C₃₆H₃₂N₄O₆S₂Na⁺ 703.1655, found 703.1661. \([\alpha]_D^{25} = -12.6° \) (c 0.11, CHCl₃).

N-(((R)-3-chloro-2-((4-methylphenyl)sulfonamido)propyl)-N-(((R)-13,14-dioxo-6,7,13,14-tetrahydropyrazino[1,2-a:4,3-a’]diindol-6-yl)methyl)-4-methylbenzenesulfonamide (178)

Removal of the solvent from the fraction collected at \(t_R \) 37 min afforded the \(di \)-substituted \(N,N' \)-cyclised indigo derivative 178 (33.3 mg, 9%) as an intense blue-purple solid, mp 132–134 °C (dec.). \(R_f \) (9:1 CHCl₃/MeCN) 0.49. UV-Vis (CH₂Cl₂) \(\lambda_{\text{max}}/\text{nm} \) (\(\varepsilon \), M⁻¹·cm⁻¹) 574 (8850). \(^1\)H NMR (500 MHz, CDCl₃) \(\delta \) 7.82 (d, \(J = 7.9 \) Hz, 2H, Ts₁ or Ts₂ H₃/H₅), 7.78 – 7.71 (m, 2H, H₁, H₁₂), 7.58 – 7.52 (m, 3H, Ts₁ or Ts₂ H₃/H₅, H₃ or H₁₀), 7.49 (t, \(J = 7.7 \) Hz, 1H, H₃ or H₁₀), 7.36 (d, \(J = 7.9 \) Hz, 2H, Ts₁ or
Ts² H2/H6), 7.27 (d, 2H, Ts¹ or Ts² H2/H6), 7.12 (d, J = 8.1 Hz, 1H, H4 or H9), 7.09 – 6.94 (m, 3H, H4 or H9, H2, H11), 5.69 (s, 1H, NH), 4.60 (app d, J = 10.3 Hz, 1H, H6), 4.39 (d, J = 12.1 Hz, 1H), 4.07 – 3.94 (m, 1H, H2', 3.86 (d, J = 11.6 Hz, 1H, H1'a), 3.57 – 3.37 (m, 4H, H7a, H7b, H3'a, H5'a), 3.19 (dd, J = 15.1, 6.8 Hz, 1H, H9), 2.65 (d, J = 14.3 Hz, 1H, H5'b), 2.42 (s, 3H, Ts¹ or Ts² CH₃), 2.38 (s, 3H, Ts¹ or Ts² CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 181.2 (C13 or C14), 180.5 (C13 or C14), 150.7 (C4a or C8a), 148.4 (C4a or C8a), 145.2 (Ts¹ or Ts² C4), 144.3 (Ts¹ or Ts² C4), 137.3 (Ts¹ or Ts² C1), 135.8 (C3 or C10), 135.7 (C3 or C10), 133.2 (Ts¹ or Ts² C1), 130.4 (Ts¹ or Ts² C2/C6), 130.2 (Ts¹ or Ts² C2/C6), 127.7 (Ts¹ or Ts² C3/C5), 127.4 (Ts¹ or Ts² C3/C5), 125.7 (C1 or C12), 125.2 (C13a), 125.1 (C1 or C12), 123.1 (C12 or C14a), 123.0 (C13b), 122.9 (C12a or C14a), 121.8 (C2 or C11), 121.6 (C2 or C11), 110.7 (C4 or C9), 108.9 (C4 or C9), 53.9 (C2'), 53.1 (C3'), 51.0 (C5'), 49.5 (C6), 45.4 (C1'), 40.2 (C7), 21.8 (Ts¹ or Ts² CH₃), 21.7 (Ts¹ or Ts² CH₃). IR (neat) 3013 (w), 1743 (w), 1608 (m), 1304 (m), 756 (s). HRESI-MS calcd. for C₃₆H₃₃N₄O₆S₂Na 739.1428, found 739.1448. [α]D²⁵ = -11.4˚ (c 0.12, CHCl₃)

(±)-N-((13,14-dioxo-6,7,13,14-tetrahydropyrazino[1,2-a:4,3-a']diindol-6-yl)methyl)-4-methylbenzenesulfonamide (rac-176)

Prepared following General Procedure A, using (±)-N-tosyl-2-bromomethylaziridine (1.00 g, 3.45 mmol), and a 5 min reaction time. The crude residue was fractionated on silica (80 g) using 5% MeCN:CHCl₃ as eluent. Removal of the solvent from Fraction B afforded the N,N-cyclised mono-adduct rac-176 (247.2 mg, 52%) as a glassy, intense-blue solid. Spectral and physical characteristics (excepting optical rotation) were identical to those reported above for (R)-176.

Fraction A was condensed and assessed by analytical RP-HPLC (80%-0% H₂O/MeCN; 1.0 mL/min), which showed the presence of small amounts of 177, though this was not quantified.

******** Longer reaction times typically led to extensive polymerisation
7.3.4. Reaction of indigo with N-tosyl-2-phenylaziridine (174)

(E)-N-(2-(3,3'-dioxo-[2,2'-biindolinylidene]-1-yl)-1-phenylethyl)-4-methylbenzenesulfonamide (179)

Prepared following General Procedure A, using phenylaziridine 174 (1.363 g, 4.99 mmol) and a 5 min reaction time. The crude residue was fractionated on silica (60 g) by sequential elution with 1) 10% pet spirit/CH$_2$Cl$_2$ (Fraction 1), 2) CH$_2$Cl$_2$ (Fraction 2), and the column stripped with 10% EtOAc/CH$_2$Cl$_2$ (Fraction 3). The solvent was removed from Fraction 1 to give a dark blue residue, which was re-dissolved in a minimum of hot CHCl$_3$, and precipitated with a tenfold volume of pet. spirit. The resulting solid was collected on a Hirsch funnel, and dried in vacuo to give the terminally ring-opened aziridine adduct 179 (333.4 mg, 62%) as a dark teal powder, mp 211–213 °C. R_f (10% pet spirit/CH$_2$Cl$_2$) 0.43. UV-Vis (CH$_2$Cl$_2$) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 294 (24346), 341 (9142), 645 (13774). 1H NMR (500 MHz, CDCl$_3$) δ 10.65 (s, 1H, NH), 7.72 (d, $J = 7.6$ Hz, 1H, H4), 7.64 (d, $J = 7.5$ Hz, 1H, H4'), 7.61 – 7.55 (m, 3H, H6, H3''', H5'''), 7.50 (t, $J = 7.4$ Hz, 1H, H6'), 7.40 (t, $J = 7.5$ Hz, 2H, H3'', H5'''), 7.32 (t, $J = 7.3$ Hz, 1H, H4''), 7.23 (d, $J = 8.0$ Hz, 2H, H2'', H6''), 7.06 (t, $J = 7.4$ Hz, 1H,), 7.04 – 6.94 (m, 3H, H7, H5', H7'), 6.72 (d, $J = 7.9$ Hz, 2H, H2'''', H6''''), 5.23 – 5.11 (m, 1H, H2'a), 4.96 – 4.85 (m, 1H, H1''), 3.97 – 3.87 (m, 1H, H2''b), 2.22 (s, 3H, TsCH$_3$). 13C NMR (126 MHz, CDCl$_3$) δ 189.0 (C3'), 188.8 (C3), 151.8 (C7'a), 151.3 (C7a), 142.7 (TsC4'''), 139.6 (C1'' or TsCl'''), 138.1 (C1'' or TsCl'''), 137.0 (C6'), 136.2 (C6), 129.2 (TsC2''', C6'''), 129.1 (TsC3'', C5'''), 128.3 (C4'''), 126.8 (C3'', C5''), 126.1 (C2'', C6'''), 125.5 (C4), 124.9 (C3a or C3a'), 124.1 (C4'), 123.7 (C2 or C2'), 121.4 (C5), 120.9 (C3a or C3a'), 120.8 (C5'), 120.0 (C2 or C2'), 112.0 (C7), 110.2 (C7'), 55.6 (C1'''), 51.9 (C2''), 21.6 (TsCH$_3$). IR (neat) 3288 (w), 1630 (m), 1607 (s), 1026 (s). HRESI-MS calcd. for C$_{31}$H$_{26}$N$_3$O$_4$S$^+$ 536.1644, found 536.1664.
(E)-N-(2-(3,3'-dioxo-[2,2'-biindolinyldiene]-1-yl)-2-phenylethyl)-4-methylbenzenesulfonamide (180)

Fraction 2 was combined with Fraction 3 and condensed to give a dark blue-green residue, which was dissolved in a minimum of hot CHCl₃, then diluted with a tenfold volume of hot pet spirit. The solution was chilled, and the resulting precipitate collected by vacuum filtration and dried in vacuo to give the title compound 180 (191.9 mg, 36%) as a dark blue powder, mp 194–196 °C. X-ray quality crystals were grown by gradual diffusion of pet spirit into a saturated solution in 1:1 CHCl₃/MeOH in a sealed vapour chamber at room temperature. Rf (10% pet spirit/CH₂Cl₂) 0.31. UV-Vis (CH₂Cl₂) λ max/nm (ε, M⁻¹cm⁻¹) 292 (23907), 340 (7457), 637 (9167).

1H NMR (500 MHz, CDCl₃) δ 10.74 (s, 1H, N1ꞌ-H), 7.65 (d, J = 7.7 Hz, 1H, H4ꞌ), 7.62 (d, J = 7.7 Hz, 1H, H4), 7.54 – 7.46 (m, 3H, H6ꞌ, TsH3ꞌꞌꞌ, H5ꞌꞌꞌ), 7.29 – 7.16 (m, 6H, 5×Ph-Hꞌꞌꞌ), 7.02 (d, J = 8.0 Hz, 1H, H7), 7.00 – 6.94 (m, 3H, H5ꞌ, TsH2ꞌꞌꞌꞌ, H6ꞌꞌꞌꞌ), 6.91 (t, J = 7.3 Hz, 1H, H5), 6.63 – 6.50 (m, 2H, H7, H2ꞌ), 5.93 – 5.84 (m, 1H, C1ꞌꞌ-NH), 4.19 – 4.04 (m, 2H, H1ꞌꞌ), 2.26 (s, 3H, TsCH₃).

13C NMR (126 MHz, CDCl₃) δ 189.3 (C3), 188.2 (C3ꞌ), 151.8 (C7a), 150.0 (C7aꞌ), 143.1 (TsC4ꞌꞌꞌ), 136.9 (TsC1ꞌꞌꞌ), 136.7 (C6), 135.5 (C1ꞌꞌ), 135.2 (C6), 129.4 (TsC2ꞌꞌ, C6ꞌꞌ), 128.8 (C3ꞌꞌ, C5ꞌꞌ), 127.8 (C4ꞌ), 126.53 (C2ꞌ, C6ꞌ), 126.51 (TsC3ꞌ, C5ꞌ), 125.8 (C2 or C2ꞌ), 125.2 (C4), 125.1 (C2 or C2ꞌ), 124.2 (C4ꞌ), 122.2 (C3a), 121.2 (C5), 120.9 (C5ꞌ), 120.1 (C3aꞌ), 114.1 (C7), 112.1 (C7ꞌ), 60.0 (C2ꞌ), 43.4 (C1ꞌ), 21.6 (TsCH₃). IR (neat) 3254 (w), 1628 (m), 1605 (s), 1069 (s). HRESI-MS calcd. for C₃₁H₂₅N₃O₄SNa⁺ 558.1463, found 558.1481.

7.3.5. Reaction of indigo with (2S,2'S)-2,2'-bioxirane (149)

(7S,8R,9aS)-8-(hydroxymethyl)-7,8-dihydro-6H-7,9a-epoxy[1,5]oxazocino[5,4-a:3,2-b']diindol-15(14H)-one (183) Prepared following General Procedure A, using (2S,2'S)-2,2'-bioxirane (281 mg, 3.3 mmol), and a 30 min reaction time. The crude residue was separated into five fractions on a plug of silica (70 g), eluting sequentially with 1) CH₂Cl₂ (250 mL each) 2) 20% EtOAc/CH₂Cl₂ 3) 40% EtOAc/CH₂Cl₂ 4) 60% EtOAc/CH₂Cl₂ 5) 80% EtOAc/CH₂Cl₂. Fractions 2 and 3 were combined, and subjected to flash chromatography on 25 g silica, and elution with 20% EtOAc/CH₂Cl₂ afforded the mono-substituted spirocycle 183 (216 mg, 62%) as a luminescent orange powder, mp 155–156 °C (dec.). X-ray quality crystals were grown
from slow evaporation of a hexane/ethyl acetate solution. \(R_t (20\% \text{ EtOAc/CH}_2\text{Cl}_2) 0.33. \)

UV-Vis (CH\(_2\)Cl\(_2\)) \(\lambda_{max}/\text{nm} (\varepsilon, \text{ M}^{-1}\text{cm}^{1}) \) 244 (12573), 365 (2296), 485 (2882). \(^1\text{H} \text{NMR} (500 \text{ MHz, CDCl}_3) \delta 7.81 (d, J = 7.0 \text{ Hz}, 1\text{H}, \text{H1}), 7.54 – 7.48 (m, 2\text{H}, \text{H3}, \text{H10}), 7.35 (td, J = 7.7, 1.3 \text{ Hz}, 1\text{H}, \text{H12}), 7.11 (d, J = 8.3 \text{ Hz}, 1\text{H}, \text{H4}), 7.06 – 6.99 (m, 2\text{H}, \text{H2}, \text{H11}), 6.92 (dt, J = 7.8, 0.8 \text{ Hz}, 1\text{H}, \text{H13}), 5.04 – 4.97 (m, 1\text{H}, \text{H7}), 4.79 – 4.71 (m, 1\text{H}, \text{H8}), 4.38 (dd, J = 14.1, 2.8 \text{ Hz}, 1\text{H}, \text{H6b}), 4.17 (dd, J = 11.3, 7.3 \text{ Hz}, 1\text{H}, \text{H1'a}), 3.96 (dd, J = 11.2, 5.7 \text{ Hz}, 1\text{H}, \text{H1'b}), 3.70 (dd, J = 14.0, 2.4 \text{ Hz}, 1\text{H}, \text{H6a}), 1.26 (s, 1\text{H}, \text{OH}).

\(^{13}\text{C} \text{NMR} (101 \text{ MHz, CDCl}_3) \delta 184.1 (\text{C15}), 151.8 (\text{C4a}), 145.2 (\text{C13a}), 144.5 (\text{C14a}), 134.0 (\text{C3}), 132.4 (\text{C12}), 125.3 (\text{C10}), 124.2 (\text{C15a}), 124.0 (\text{C1}), 123.5 (\text{C9b}), 122.3 (\text{C11}), 120.1 (\text{C2}), 117.8 (\text{C14b}), 111.7 (\text{C9a}), 111.2 (\text{C13}), 110.7 (\text{C4}), 77.7 (\text{C8}), 75.6 (\text{C7}), 60.4 (\text{C1'}), 48.3 (\text{C6}). \text{IR} (\text{neat}) 3420 (w), 2922 (w), 1715 (m), 1612 (s), 1317 (m), 735 (s).

\(^{1}\text{HRESI-MS} \text{calcd. for C}_{20}\text{H}_{17}\text{N}_{2}\text{O}_{4}^{+} 349.1188, \text{found 349.1192}. \ [\alpha]_{D}^{25} = -7.2^{\circ} (c 0.21, \text{CH}_2\text{Cl}_2). \)

Further elution of \text{Fractions} 2 \text{and} 3 \text{with} 40\% \text{EtOAc:CH}_2\text{Cl}_2 \text{gave a residue which was combined with} \text{Fractions} 4 \text{and} 5 \text{and concentrated, and flash chromatography of this residue (20\% \text{EtOAc/CH}_2\text{Cl}_2; 20 \text{g silica}) gave the \text{di-alkylated spirocycle} 184 (82 mg, 19\%) as a pale green, amorphous solid. \(R_t (40\% \text{ EtOAc/CH}_2\text{Cl}_2) 0.63. \) UV-Vis (CH\(_2\)Cl\(_2\)) \(\lambda_{max}/\text{nm} (\varepsilon, \text{ M}^{-1}\text{cm}^{1}) \) 323 (3820), 350 (4772), 425 (1723). \(^1\text{H} \text{NMR} (400 \text{ MHz, DMSO}) \delta 7.65 – 7.46 (m, 4\text{H}, \text{H1, H3, H10, H13}), 7.26 – 7.19 (m, 1\text{H}, \text{H12}), 7.12 – 7.00 (m, 2\text{H}, \text{H4, H11}), 6.82 (t, J = 7.3 \text{ Hz}, 1\text{H}, \text{H2}), 5.83 (d, J = 4.8 \text{ Hz}, 1\text{H}, \text{C1'-OH}), 5.22 (d, J = 5.7 \text{ Hz}, 1\text{H}, \text{C2''-OH}), 4.61 (t, J = 6.0 \text{ Hz}, 1\text{H}, \text{H7}), 4.54 (d, J = 12.6 \text{ Hz}, 1\text{H}, \text{H6a}), 4.21 (dt, J = 11.6, 5.8 \text{ Hz}, 1\text{H}, \text{H6b}), 4.11 – 3.96 (m, 2\text{H}, \text{H8}, \text{H1'a}), 3.83 (dd, J = 9.2, 6.4 \text{ Hz}, 1\text{H}, \text{H1'b}), 3.73 (dd, J = 9.2, 5.0 \text{ Hz}, 1\text{H}, \text{H1''b}), 3.24 (dt, J = 11.6, 5.9 \text{ Hz}, 1\text{H}, \text{H2''}), 2.78 (dd, J = 12.3, 10.3 \text{ Hz}, 1\text{H}, \text{H1'b}), 2.73 – 2.68 (m, 1\text{H}, \text{H3'''}), 2.61 – 2.54 (m, 1\text{H}, \text{H4''a}), 2.33 (dd, J = 5.2, 2.7 \text{ Hz}, 1\text{H}, \text{H4''b}). \(^{13}\text{C} \text{NMR} (101 \text{ MHz, DMSO}) \delta 193.5 (\text{C15}), 158.4 (\text{C4a}), 139.2 (\text{C3}), 133.9 (\text{C13a}), 130.6 (\text{C14a}), 125.7 (\text{C14b}), 125.5 (\text{C1}), 122.6 (\text{C12}), 120.2 (\text{C9b}), 120.1 (\text{C11}), 118.8 (\text{C2}), 118.6 (\text{C10}), 118.1 (\text{C15a}), 110.7 (\text{C13}), 110.3 (\text{C9a}) 109.4 (\text{C4}), 75.9 (\text{C1''}), 70.8 (\text{C7}), 70.5 (\text{C2''}), 62.8 (\text{C8}), 53.7 (\text{C3'''}, 44.1 (\text{C4'''}, 43.2 (\text{C1''}), 37.4 (\text{C6}). \text{IR} (\text{neat}) 3566 (w), 2922 (w), 1737 (m), 1608.
(m), 1155 (s), 748 (s). HRESI-MS (+) calcd. for C_{24}H_{23}N_{2}O_{6}^{+} 435.1556, found 435.1575. [α]_{D}^{25} = -8.5° (c 0.32, CH_{2}Cl_{2}).

7.3.6. Reaction of indigo with (2\text{R},2ꞌ\text{R})-N,Nꞌ-ditosyl-2,2ꞌ-biaziridine (150)

4-methyl-N-(((6\text{R},7\text{R})-7-((4-methylphenyl)sulphonamido)-14,15-dioxo-7,8,14,15-tetrahydro-6\text{H}-[1,4]diazepino[1,2-a:4,3-a′]diindol-6-yl)methyl)benzenesulphonamide (185)

Prepared following General Procedure A using (2\text{R},2ꞌ\text{R})-N,Nꞌ-ditosyl-2,2ꞌ-biaziridine 150 (512 mg, 1.30 mmol) in DMF (3 mL) over a 20 min reaction time. The crude residue was dissolved in a minimum of hot CHCl_{3}, and gradual dilution with a tenfold volume of hot pet. spirit precipitated an intense dark blue powder. The suspension was cooled to 0 °C overnight, and the fine dark blue precipitate was collected on a Hirsch funnel and dried in vacuo to give the 1,3-di-ring-opened biaziridine adduct 185 (610 mg, 93%) as an intense dark blue-black powder, mp 135–136 °C (dec.). R_{f} (10% EtOAc/CH_{2}Cl_{2}) 0.29. UV-Vis (CH_{2}Cl_{2}) \lambda_{max}/nm (ε, M⁻¹cm⁻¹) 573 (6647). \(^{1}\)H NMR (400 MHz, CDCl_{3}) δ 7.62 (d, \text{J} = 8.1 Hz, 2H, Ts\text{1} or Ts\text{2} H3/H5), 7.56 (t, \text{J} = 7.6 Hz, 1H, H3 or H11), 7.52 – 7.45 (m, 3H, H1, H3 or H11, H13), 7.38 – 7.31 (m, 3H, H4 or H10, Ts\text{1} or Ts\text{2} H3/H5), 7.22 – 7.13 (m, 3H, H4 or H10, Ts\text{1} or Ts\text{2} H2/H6), 7.02 (t, \text{J} = 7.4 Hz, 1H, H2 or H12), 6.99 – 6.90 (m, 3H, H2 or H12, Ts\text{1} or Ts\text{2} H2/H6), 6.69 (d, \text{J} = 5.9 Hz, 1H, C7-NH), 5.71 (br s, 1H, C1ꞌ-NH), 4.96 (app t, \text{J} = 4.7 Hz, 1H, H6), 4.64 (d, \text{J} = 12.9 Hz, 1H, H8a), 3.69 – 3.54 (m, 2H, Ts\text{1} or Ts\text{2} CH_{3}), 2.36 (s, 3H, Ts\text{1} or Ts\text{2} CH_{3}), 2.24 (s, 3H, Ts\text{1} or Ts\text{2} CH_{3}). \(^{13}\)C NMR (101 MHz, CDCl_{3}) δ 180.9 (C14 or C15), 180.8 (C14 or C15), 149.9 (C4a or C9a), 149.3 (C4a or C9a), 144.1 (Ts\text{1} or Ts\text{2} C4), 143.8 (Ts\text{1} or Ts\text{2} C4), 136.0 (Ts\text{1} or Ts\text{2} C1), 135.9 (C3 or C11), 135.8 (C3 or C11), 135.4 (Ts\text{1} or Ts\text{2} C1), 129.9 (Ts\text{1} or Ts\text{2} C2/C6), 129.6 (Ts\text{1} or Ts\text{2} C2/C6), 127.1 (Ts\text{1} or Ts\text{2} C3/C5), 127.0 (Ts\text{1} or Ts\text{2} C3/C5), 125.0 (C1 or C13), 124.9 (C1 or C13), 124.3 (C14a), 124.0 (C14b), 123.0 (C13a or C15a), 122.2 (C13a or C15a), 121.7 (C2 or C12), 121.4 (C2 or C12), 110.3 (C4 or C10), 110.1 (C4 or C10), 54.3 (C7), 52.5 (C6), 42.4 (C1ꞌ), 39.4 (C8), 21.7 (Ts\text{1} or Ts\text{2} CH_{3}), 21.6 (Ts\text{1} or Ts\text{2} CH_{3}). IR (neat) 3253 (w), 1741 (w), 1697 (w), 1609 (m), 1304 (m), 745 (s). HRESI-MS calcd. for C_{34}H_{30}N_{4}O_{6}S_{2}Na^{+} 677.1499, found 677.1513. [α]_{D}^{29} = -15.0° (c 0.04, CHCl_{3}).
7.4 Reactions of indigo with organometallic nucleophiles

7.4.1. General Procedure B for Grignard Addition

A solution of the Grignard reagent (2.50 mmol) in THF (5 mL) was added to a flame-dried round-bottomed flask, equipped with a magnetic stir bar and pre-dried LiCl (106 mg, 2.50 mmol), and the mixture stirred vigorously at room temperature for 30 min. The resulting complex was added slowly dropwise to a cooled (0 °C) suspension of indigo (131 mg, 0.500 mmol) in THF (15 mL) with vigorous stirring, and the resulting mixture allowed to warm to room temperature over 1 h, then stirred at room temperature overnight. To the mixture was added sat. aq. NaHCO₃ (3 mL) and transferred to a separatory funnel containing further NaHCO₃ solution (40 mL). The aqueous phase was extracted with EtOAc (4×40 mL), and the combined organic phases washed with further NaHCO₃ solution (40 mL) and brine (40 mL), dried (MgSO₄), and the solvent removed. The residue was used directly for subsequent dehydration reactions.

7.4.2. General Procedure C for Grignard Addition

A solution of isopropylmagnesium chloride (titrated at 0.40–1.10 M, 2.00 mmol) in THF was added to a flame-dried round-bottomed flask, equipped with a magnetic stir bar and finely-powdered, pre-dried LiCl (106 mg, 2.50 mmol), and the mixture stirred vigorously at room temperature for 30 min. The solution was cooled to 0 °C, and a solution of the desired aryl iodide (2.50 mmol) in THF (3 mL) added dropwise, and the mixture stirred for the indicated time. The resulting aryl Grignard reagent was added slowly dropwise to a cooled (-84 °C – EtOAc/N₂) suspension of indigo (131 mg, 0.500 mmol) in THF (15 mL) with vigorous stirring, and the resulting mixture allowed to warm to room temperature over 1 h and stirred at room temperature for a further hour. The reaction was quenched by addition of sat. aq. NaHCO₃ (3 mL) and the mixture transferred to a separatory funnel containing further NaHCO₃ solution (40 mL). The aqueous phase was extracted with EtOAc (4×40 mL), and the combined organic phases washed with further NaHCO₃ solution (40 mL) and brine (40 mL), dried (MgSO₄), and the solvent removed. The residue was used directly for subsequent dehydration reactions.

7.4.3. General Procedure D for Grignard Addition

A flame-dried round-bottomed flask, equipped with a magnetic stir bar was charged with a solution of the desired aryl iodide (2.50 mmol) in THF (1 mL), and cooled to 0 °C. Isopropylmagnesium chloride lithium chloride complex (titrated at 0.51 M, 2.00 mmol) in THF was added slowly dropwise, and the mixture stirred for the indicated time. The
resulting aryl Grignard reagent was added slowly dropwise to a cooled (-84 °C – EtOAc/N₂) suspension of indigo (131 mg, 0.500 mmol) in THF (15 mL) with vigorous stirring, and the resulting mixture allowed to warm to room temperature over 1 h and stirred at room temperature for a further hour. The reaction was quenched by addition of sat. aq. NaHCO₃ (3 mL) and transferred to a separatory funnel containing further NaHCO₃ solution (40 mL). The aqueous phase was extracted with EtOAc (4×40 mL), and the combined organic phases washed with further NaHCO₃ solution (40 mL) and brine (40 mL), and dried (MgSO₄), and the solvent removed. The residue was used directly for subsequent dehydration reactions.

7.4.4. General Procedure E for Organolithium Addition
A flame-dried round-bottomed flask, equipped with a magnetic stir bar was charged with a solution of the desired heterocycle (2.50 mmol) in THF (1 mL), and cooled to -84 °C (EtOAc/N₂). A solution of n-BuLi in hexane (titrated at 1.95 M, 2.00 mmol) was added slowly dropwise, and the mixture allowed to warm to room temperature over the indicated time. The resulting organolithium reagent was added slowly dropwise to a cooled (-84 °C) suspension of indigo (131 mg, 0.500 mmol) in THF (15 mL) with vigorous stirring, and the resulting deep red mixture allowed to warm to room temperature over 1 h, and stirred at room temperature for a further hour. The reaction was quenched by addition of sat. aq. NaHCO₃ (3 mL), and the mixture transferred to a separatory funnel containing further NaHCO₃ solution (40 mL). The aqueous phase was extracted with EtOAc (4×40 mL), and the combined organic phases washed with further NaHCO₃ solution (40 mL) and brine (40 mL), dried (MgSO₄), and the solvent removed. The residue was used directly for subsequent dehydration reactions.

7.4.5. General Procedure F for Boc-mediated Dehydration:
The crude tertiary alcohol residue (ca. 0.5 mmol) was suspended in CH₂Cl₂ (100 mL), then DMAP (131 mg, 1.1 mmol), NEt₃ (0.2 mL) and di-tert-butyl dicarbonate (327 mg, 1.5 mmol) were added sequentially in air, and the mixture stirred vigorously at room temperature for 1 h. The resulting intense orange solution was diluted with 0.2 N HCl (50 mL), and the lower organic layer collected and washed with a further 0.2 N HCl (50 mL), sat. NaHCO₃ (40 mL) and brine (40 mL), dried (Na₂SO₄) and the solvent removed.
7.4.6. Isolated scaffolds

tert-butyl 3-isopropyl-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (210)

Prepared via General Procedure B, using isopropylmagnesium chloride (0.598 M, 3.3 mL, 1.97 mmol) and LiCl (106 mg, 2.50 mmol). Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a red residue, which was fractionated on silica (75 g, using 60% CH₂Cl₂/pet spirit as eluent) and recrystallised from hexane to afford the N-Boc indole 210 (153 mg, 80%) as shiny, bright-orange crystals, mp 62–64 °C. Rf (10% EtOAc/pet spirit) 0.56. UV-Vis (acetone) λ\text{max}/nm (ε, M⁻¹cm⁻¹) 333 (5448), 434 (1702), 509 (1275). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 8.4 Hz, 1H, H7), 7.83 (d, J = 8.0 Hz, 1H, H4), 7.60 (d, J = 7.4 Hz, 1H, H4'), 7.56 (app t, J = 7.5 Hz, 1H, H6'), 7.49 (d, J = 7.5 Hz, 1H, H7'), 7.40 (app t, J = 7.6 Hz, 1H, H6), 7.31 – 7.21 (m, 2H, H5, H5'), 3.58 (hept, J = 7.1 Hz, 1H, H2''), 1.49 (s, 9H, 3×Boc CH₃), 1.46 (d, J = 7.1 Hz, 6H, H1''', H3'''). ¹³C NMR (101 MHz, CDCl₃) δ 192.1 (C₃''), 160.8 (H₇a''), 160.7 (C₂''), 151.0 (Boc C=O), 137.6 (C7a), 136.8 (C6'), 134.0 (C3), 128.52 (C3a or C3a'), 128.50 (C3a or C3a'), 128.4 (C5'), 126.1 (C6), 125.0 (C4'), 124.2 (C2), 122.7 (C5), 122.5 (C7'), 121.8 (C4), 115.9 (C7), 84.9 (Boc Cq), 28.1 (Boc CH₃), 26.1 (C₂'''), 22.8 (C1'', C3''). IR (neat) 2962 (w), 2929 (w), 2630 (w), 2339 (w), 1734 (s), 1575 (m), 1452 (s), 1369 (s), 1344 (s), 1321 (s), 1234 (s), 1145 (s), 761 (s), 744 (s) cm⁻¹. HRESI-MS calcd. for C₂₄H₂₅N₂O₃⁺ 389.1860, found 389.1860.

3-phenyl-1H,3'H-[2,2'-biindol]-3'-one (214)

Prepared via General Procedure B using phenylmagnesium chloride (0.805 M, 2.50 mL, 2.01 mmol) and LiCl (106 mg, 2.50 mmol). Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a dark brown residue, which was fractionated on silica (40 g, using 60% CH₂Cl₂/pet spirit as eluent). Removal of the solvent from the first fraction afforded the free indole 214 (22 mg, 13%) as an intense black-purple powder, mp 190–192 °C. Rf (60% CH₂Cl₂/pet spirit) 0.58. UV-Vis (acetone) λ\text{max}/nm (ε, M⁻¹cm⁻¹) 326 (2627), 538 (1491). ¹H NMR (500 MHz, CDCl₃) δ 10.25 (s, 1H, NH), 7.70 (d, J = 7.6 Hz, 2H, H3'', H5''), 7.67 (d, J = 8.1 Hz, 1H, H4), 7.54 – 7.45 (m, 5H, H4', H7, H2'', H6'', H6'), 7.42 (t, J = 7.4 Hz, 1H, H4''), 7.35 (t, J = 7.6 Hz, 1H, H6), 7.23 (d, J = 7.6 Hz, 1H, H7''), 7.19 –
7.11 (m, 2H, H5, H5ꞌ). 13C NMR (126 MHz, CDCl3) δ 196.1 (C3ꞌ), 162.1 (C7aꞌ), 154.3 (C2ꞌ), 138.2 (C7a), 137.5 (C6'), 133.9 (C1'), 131.0 (C3', C5'), 128.1 (C2'', C6''), 127.7 (C4''), 127.5 (C5'), 126.7 (C3a), 126.4 (C6), 125.2 (C4'), 124.5 (C3), 122.4 (C3a'), 122.2 (C3a'), 121.7 (C4), 121.3 (C5), 114.2 (C2), 112.0 (C7). IR (neat) 3370 (br w), 2922 (s), 2850 (m), 1734 (m), 1558 (s), 1168 (m), 747 (m) cm⁻¹. HRESI-MS calcd. for C22H15N2O3+ 323.1184, found 323.1187.

tert-butyl 3'-oxo-3-phenyl-1H,3'H-[2,2'-biindole]-1-carboxylate (211)

Further elution afforded a red-orange fraction, which was subjected to flash chromatography (20 g silica, 10% EtOAc/pet spirit), and removal of the solvent gave the N-Boc indole 211 (174 mg, 79%) as shiny, bright orange crystals, mp 132–133 °C (dec.). X-ray quality crystals were grown by slow evaporation from hexane. Rf (60% CH2Cl2/pet spirit) 0.56. UV-Vis (acetone) λmax/nm (ε, M⁻¹cm⁻¹) 323 (7900), 329 (2917), 499 (1440). 1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8.4 Hz, 1H, H7), 7.66 – 7.60 (m, 3H, H2ꞌꞌ, H6ꞌꞌ, H4), 7.53 (d, J = 7.1 Hz, 1H, H4'), 7.51 – 7.33 (m, 6H, H3'', H4'', H5, H6, H6', H7'), 7.28 (app t, J = 7.2 Hz, 1H, H5), 7.23 (app t, J = 7.4 Hz, 1H, H5'), 1.52 (s, 9H, 3×Boc CH3). 13C NMR (101 MHz, CDCl3) δ 191.8 (C3ꞌ), 160.4 (C7a'), 160.3 (C2'), 150.1 (Boc C=O), 136.8 (C7a), 136.7 (C6'), 131.8 (C3), 130.9 (C3'', C5''), 129.6 (C3a), 128.5 (C5'), 128.3 (C2'', C6''), 128.1 (C1''), 128.0 (C7'), 126.7 (C6), 125.2 (C2), 125.0 (C4'), 123.5 (C5), 122.7 (C3a'), 122.6 (C4''), 121.2 (C4), 115.7 (C7), 85.3 (Boc Cq), 28.1 (Boc CH3). IR (neat) 2978 (w), 2920 (w), 2360 (m), 1734 (s), 1576 (m), 1319 (s) 1149 (s), 746 (s), 699 (s) cm⁻¹. HRESI-MS calcd. for C27H23N2O3+ 423.1702, found 423.1702.

tert-butyl 3'-oxo-3-phenyl-1H,3'H-[2,2'-biindole]-1-carboxylate (215)

Prepared via General Procedure E, using n-BuLi (1.95 M, 1.4 mL, 2.73 mmol) and TMEDA (333 mg, 2.86 mmol). Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a red-brown residue, which was fractionated on silica (75 g, using 10% EtOAc/hexane as eluent), and flash chromatography (30 g silica, 60% CH2Cl2/hexane) afforded the N-Boc indole 215 (162 mg, 80%) as a deep orange amorphous solid, mp 42–43 °C. Rf (10% EtOAc/hexane)
0.49. UV-Vis (acetone) λ_{max}/nm (ϵ, M$^{-1}$cm$^{-1}$) 331 (3679), 438 (2134), 500 (1810). 1H NMR (400 MHz, CDCl$_3$) δ 8.17 (d, $J = 8.4$ Hz, 1H, H7), 7.65 (d, $J = 7.7$ Hz, 1H, H4), 7.62 – 7.53 (m, 2H, H4', H6'), 7.48 (d, $J = 7.6$ Hz, 1H, H7'), 7.42 (ddd, $J = 8.4$, 7.1, 1.3 Hz, 1H, H6), 7.34 – 7.26 (m, 2H, H5, H5'), 2.94 (d, $J = 7.6$ Hz, 2H, H1''), 1.74 – 1.64 (m, 2H, H2''), 1.51 (s, 9H, 3×Boc CH$_3$), 1.36 (h, $J = 7.4$ Hz, 2H, H3''), 0.90 (t, $J = 7.3$ Hz, 3H, H4''). 13C NMR (101 MHz, CDCl$_3$) δ 191.9 (C3'), 160.7 (C7a'), 160.2 (C2'), 150.0 (Boc C=O), 137.2 (C7a), 136.6 (C6), 129.8 (C3a), 129.3 (C3), 128.2 (C5'), 126.4 (C6), 125.4 (C2), 124.8 (C4'), 122.9 (C5), 122.5 (C3a'), 122.2 (C7'), 120.3 (C4), 115.6 (C7), 84.7 (Boc Cq), 32.7 (C2''), 28.0 (Boc CH$_3$), 24.1 (C1''), 22.6 (C3''), 13.9 (C4''). IR (neat) 2957 (w), 2930 (w), 1734 (s), 1558 (m), 1319 (m) 1149 (s), 1105 (m), 761 (m), 745 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{25}$H$_{27}$N$_{2}$O$_3$+ 403.2022, found 403.2036.

3-methyl-1H,3'H-[2,2'-biindol]-3'-one (218)

To a cooled (-84 °C) suspension of indigo (131 mg, 0.500 mmol) and TMEDA (320 mg, 2.75 mmol) in THF (20 mL) was added dropwise MeLi (2.74 M in DME, 0.90 mL, 2.47 mmol), and the mixture allowed to warm to RT over 1 h. The resulting intense-red solution was stirred at RT for a further hour, then sat. NaHCO$_3$ solution (3 mL) added, and the mixture transferred to a separatory funnel containing additional NaHCO$_3$ solution (40 mL). The aqueous phase was extracted with EtOAc (4×40 mL), and the combined organic phases washed with NaHCO$_3$ solution (40 mL) and brine (40 mL), dried (MgSO$_4$), and the solvent removed. The resulting golden residue was dissolved in CH$_2$Cl$_2$ (100 mL), then PPh$_3$ (159 mg, 0.606 mmol), imidazole (99 mg, 1.46 mmol), and I$_2$ (162 mg, 0.638 mmol) added sequentially. The deep brown mixture was stirred overnight, then diluted with water (50 mL) and transferred to a separatory funnel. The aqueous phase was extracted with CH$_2$Cl$_2$ (3×30 mL), and the combined organic phases washed with NaHCO$_3$ solution (40 mL) and brine (40 mL), dried (MgSO$_4$), and the solvent removed. The residue was subjected to flash chromatography (60 g silica, 60% CH$_2$Cl$_2$/pet spirit) and removal of the solvent from the intense deep-purple fraction afforded the desired indole 218 (97 mg, 74%) as feathery, dark purple crystals, mp 252–253 °C (dec.). R_f (60% CH$_2$Cl$_2$/pet spirit) 0.71. UV-Vis (acetone) λ_{max}/nm (ϵ, M$^{-1}$cm$^{-1}$) 326 (8389), 538 (4881). 1H NMR (500 MHz, CDCl$_3$) δ 9.98 (s, 1H, NH), 7.68 (dd, $J = 8.1$, 1.0 Hz, 1H, H4), 7.58 – 7.50 (m, 2H, C4', C7'), 7.43 – 7.36 (m, 2H, H7, H6'), 7.32 (ddd, $J = 8.2$, 6.9, 1.1 Hz, 1H, H6), 7.22 – 7.16 (m, 1H, H5'), 7.16 –
tert-butyl 3-benzyl-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (219)

Prepared via **General Procedure B** using benzylmagnesium chloride (1.89 M, 1.10 mL, 2.08 mmol), and LiCl (106 mg, 2.50 mmol). Subsequent Boc-mediated dehydration (**General Procedure F**) of the crude product afforded a deep orange residue, which was separated by flash chromatography (100 g silica, 10% EtOAc/hexane) to give the N-Boc indole 219 (204 mg, 91%) as a deep orange powder, mp 85–86 °C. *R*_f (10% EtOAc/hexane) 0.27. UV-Vis (acetone) *λ*_{max}/nm (ε, M⁻¹cm⁻¹) 331 (3957), 409 (2129), 462 (1605), 499 (1561). ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 8.4 Hz, 1H, H7), 7.58 (dd, *J* = 7.2, 0.6 Hz, 1H, H4'), 7.53 (td, *J* = 7.6, 1.2 Hz, 1H, H6'), 7.47 – 7.43 (m, 2H, H4, H7'), 7.38 (ddd, *J* = 8.4, 7.2, 1.2 Hz, 1H, H6), 7.31 (d, *J* = 7.6 Hz, 2H, H2'', H6''), 7.28 – 7.24 (m, 1H, H4''), 7.22 (dd, *J* = 10.9, 4.1 Hz, 2H, H3'', H5''), 7.19 – 7.16 (m, 1H, H5), 7.13 (t, *J* = 7.4 Hz, 1H, H4''), 4.32 (s, 2H, Ar-CH₂Ph), 1.53 (s, 9H, 3xBoc CH₃). ¹³C NMR (126 MHz, CDCl₃) δ 191.9 (C3'), 160.5 (C7a'), 160.0 (C2'), 150.1 (Boc C=O), 139.7 (C1''), 137.3 (C7a), 136.8 (C6'), 129.6 (C3a), 128.7 (C2'', C6''), 128.5 (C3'', C5''), 128.4 (C5'), 126.7 (C3), 126.6 (C6), 126.4 (C2), 126.3 (C4''), 125.0 (C4'), 123.2 (C5), 122.5 (C7a'), 122.4 (C7'), 121.0 (C4), 115.6 (C7), 85.1 (Boc Cq), 30.6 (Ar-CH₂Ph), 28.1 (Boc CH₃). IR (neat) 2979 (w), 1734 (s), 1558 (m), 1452 (m), 1319 (m) 1145 (s), 1105 (m), 762 (m), 745 (m), 698 (m) cm⁻¹. HRESI-MS calcd. for C₂₈H₂₅N₂O₃ 437.1865, found 437.1880.
tert-butyl 3-(4-methoxyphenyl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (222)

Prepared *via General Procedure C*. The substituted Grignard reagent (4-methoxyphenylmagnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride (1.08 M, 1.80 mL, 1.94 mmol), LiCl (106 mg, 2.50 mmol) and 4-iodoanisole (589 mg, 2.50 mmol), and the resulting mixture stirred at room temperature for 1.5 h prior to combining with indigo. Subsequent Boc-mediated dehydration (*General Procedure F*) of the crude product afforded a deep red-orange mixture, which was separated by flash chromatography (80 g silica, 10% EtOAc/pet spirit) to afford the title compound **222** (168 mg, 72%) as a bright orange powder, mp 79–80 °C (dec.). R_t (10% EtOAc/pet spirit) 0.25. UV-Vis (acetone) λ_{max}/nm (c, M$^{-1}$cm$^{-1}$) 347 (2250), 412 (1222), 469 (1104), 504 (979). 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (d, $J = 8.4$ Hz, 1H, H7), 7.65 (d, $J = 7.7$ Hz, 1H, H4), 7.60 (d, $J = 8.7$ Hz, 2H, H2", H6"), 7.55 (d, $J = 7.1$ Hz, 1H, H4"), 7.51 (td, $J = 7.6$, 1.3 Hz, 1H, H6"), 7.46 (ddd, $J = 8.4$, 7.2, 1.2 Hz, 1H, H6), 7.40 (d, $J = 7.5$ Hz, 1H, H7"), 7.30 (ddd, $J = 8.1$, 7.2, 1.0 Hz, 1H, H5), 7.26 – 7.21 (m, 1H, H5"), 6.97 (d, $J = 8.7$ Hz, 2H, H3", H5") 3.83 (s, 3H, -OCH$_3$), 1.52 (s, 9H, 3×Boc CH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 191.9 (C3"), 160.6 (C7a"), 160.3 (C2"), 159.5 (C4"), 150.1 (Boc C=O), 136.9 (C7a), 136.7 (C6"), 132.2 (C2", C6"), 129.8 (C3a), 128.5 (C5") 128.0 (C3), 126.6 (C6), 125.0 (C4"), 124.9 (C2), 124.0 (C1"), 123.5 (C5), 122.7 (C3a"), 122.6 (C7"), 121.3 (C4), 115.7 (C7), 113.7 (C3", C5"), 85.2 (Boc Cq), 55.4 (-OCH$_3$), 28.1 (Boc CH$_3$). IR (neat) 2956 (w), 2923 (m), 2853 (w), 1734 (s), 1506 (m), 1250 (s) 1151 (s), 763 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{28}$H$_{25}$N$_2$O$_4$+ 453.1809, found 453.1807.

tert-butyl 3-(3-methoxyphenyl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (223)

Prepared *via General Procedure C*. The substituted Grignard reagent (3-methoxyphenylmagnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride (1.08 M, 1.80 mL, 1.94 mmol), LiCl (106 mg, 2.50 mmol), and 3-iodoanisole (599 mg, 2.56 mmol), and the resulting mixture stirred at room temperature for 1.5 h prior to combining with indigo. Subsequent Boc-mediated dehydration (*General Procedure F*) of the crude product afforded a deep red-orange mixture, which was separated by flash chromatography (80 g silica, 10% EtOAc/pet spirit) to afford the title compound **223** (168 mg, 72%) as a bright orange powder, mp 79–80 °C (dec.). R_t (10% EtOAc/pet spirit) 0.25. UV-Vis (acetone) λ_{max}/nm (c, M$^{-1}$cm$^{-1}$) 347 (2250), 412 (1222), 469 (1104), 504 (979). 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (d, $J = 8.4$ Hz, 1H, H7), 7.65 (d, $J = 7.7$ Hz, 1H, H4), 7.60 (d, $J = 8.7$ Hz, 2H, H2", H6"), 7.55 (d, $J = 7.1$ Hz, 1H, H4"), 7.51 (td, $J = 7.6$, 1.3 Hz, 1H, H6"), 7.46 (ddd, $J = 8.4$, 7.2, 1.2 Hz, 1H, H6), 7.40 (d, $J = 7.5$ Hz, 1H, H7"), 7.30 (ddd, $J = 8.1$, 7.2, 1.0 Hz, 1H, H5), 7.26 – 7.21 (m, 1H, H5"), 6.97 (d, $J = 8.7$ Hz, 2H, H3", H5") 3.83 (s, 3H, -OCH$_3$), 1.52 (s, 9H, 3×Boc CH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 191.9 (C3"), 160.6 (C7a"), 160.3 (C2"), 159.5 (C4"), 150.1 (Boc C=O), 136.9 (C7a), 136.7 (C6"), 132.2 (C2", C6"), 129.8 (C3a), 128.5 (C5") 128.0 (C3), 126.6 (C6), 125.0 (C4"), 124.9 (C2), 124.0 (C1"), 123.5 (C5), 122.7 (C3a"), 122.6 (C7"), 121.3 (C4), 115.7 (C7), 113.7 (C3", C5"), 85.2 (Boc Cq), 55.4 (-OCH$_3$), 28.1 (Boc CH$_3$). IR (neat) 2956 (w), 2923 (m), 2853 (w), 1734 (s), 1506 (m), 1250 (s) 1151 (s), 763 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{28}$H$_{25}$N$_2$O$_4$+ 453.1809, found 453.1807.
product afforded a deep red-orange residue, which was subjected to flash chromatography (95 g silica, 10% EtOAc/hexane), to afford the N-Boc indole 223 (167 mg, 72%) as deep orange crystals, mp 64–65 °C. R_f (10% EtOAc/hexane) 0.25. UV-Vis (acetone) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 327 (3430), 433 (1549), 467 (1357), 504 (1143). 1H NMR (400 MHz, CDCl$_3$) δ 8.24 (d, $J = 8.4$ Hz, 1H, H7), 7.69 (d, $J = 7.9$ Hz, 1H, H4), 7.55 (d, $J = 7.1$ Hz, 1H, H4$'$), 7.51 (td, $J = 7.6$, 1.2 Hz, 1H, H6$'$), 7.48 – 7.42 (m, 1H, H6), 7.37 (d, $J = 7.5$ Hz, 1H, H7$'$), 7.34 – 7.22 (m, 4H, H5, H5$'$, H2$''$, H5$''$), 7.20 – 7.16 (m, 1H, H6$''$), 6.91 (ddd, $J = 8.2$, 2.5, 0.8 Hz, 1H, H4$''$), 3.83 (s, 3H, -OCH$_3$), 1.52 (s, 9H, 3×Boc CH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 191.7 (C3$'$), 160.43 (C7a$'$ or C2$'$), 159.5 (C3$''$), 150.1 (Boc C=O), 136.8 (C7a), 136.7 (C6$'$), 133.0 (C1$''$), 130.9 (C2), 129.5 (C3a), 129.2 (C5$''$), 128.6 (C5$'$), 127.9 (C3), 126.7 (C6), 125.0 (C4$'$), 123.6 (C5), 123.2 (C6$''$), 122.7 (C3a$'$), 122.6 (C7), 121.2 (C4), 116.2 (C2$''$), 115.7 (C7), 114.4 (C4$''$), 85.4 (Boc Cq), 55.4 (-OCH$_3$), 28.1 (Boc CH$_3$). IR (neat) 2976 (w), 2361 (m), 2853 (w), 1734 (s), 1149 (s), 763 (m), 750 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{28}$H$_{25}$N$_2$O$_4$+ 453.1809, found 453.1808.

tert-butyl 3-(2-methoxyphenyl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (224)

Prepared via General Procedure C. The substituted Grignard reagent (2-methoxyphenylmagnesium chloride/lithium chloride complex) was prepared using isopropylmagnesium chloride (1.08 M, 1.80 mL, 1.94 mmol), LiCl (106 mg, 2.50 mmol), and 2-iodoanisole (592 mg, 2.53 mmol), and the resulting mixture stirred at room temperature for 1.5 h prior to combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep red-orange residue, which was subjected to flash chromatography (80 g silica, 10% EtOAc/hexane), to afford the N-Boc indole 224 (217 mg, 94%) as deep orange crystals, mp 159–160 °C (dec.). X-ray quality crystals were grown by slow evaporation of a 9:1 hexane:chloroform solution. R_f (10% EtOAc/hexane) 0.24. UV-Vis (acetone) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 329 (2794), 419 (1496), 505 (948). 1H NMR (400 MHz, CDCl$_3$) δ 8.25 (d, $J = 8.4$ Hz, 1H, H7), 7.61 – 7.53 (m, 3H, H6$''$, H4, H4$'$), 7.47 (td, $J = 7.8$, 1.2 Hz, 1H, H6$'$), 7.42 (ddd, $J = 8.4$, 7.3, 1.2 Hz, 1H, H6), 7.34 – 7.22 (m, 4H, H5, H5$'$, H7, H4$''$), 7.09 (td, $J = 7.5$, 0.9 Hz, 1H, H5$''$), 6.83 (d, $J = 8.0$ Hz, 1H, H3$''$), 3.37 (s, 3H, -OCH$_3$), 1.51 (s, 9H, 3×Boc CH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 192.9 (C3$'$), 161.2 (C2$'$), 160.6 (C7a$'$), 155.5 (C2$''$), 149.9 (Boc C=O), 136.9 (C7a), 136.5 (C6$''$), 132.0 (C6$''$), 129.6 (C3a),
129.2 (C4'''), 128.3 (C5'''), 126.18 (C6), 126.15 (C2), 124.4 (C4'), 123.4 (C5), 122.8 (C3a'), 122.6 (C3), 122.3 (C7'), 121.1 (C1'''), 121.0 (C5''''), 120.9 (C4), 115.8 (C7), 111.4 (C3'''), 85.1 (Boc Cq), 55.2 (-OCH3), 28.1 (Boc CH3).

IR (neat) 2981 (w), 2358 (w), 1718 (s), 1323 (s), 1149 (s), 748 (s) cm⁻¹. HRESI-MS calcd. for C28H25N2O4⁺ 453.1809, found 453.1808.

tert-butyl 3-(2,4-dimethoxyphenyl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (228)

Prepared via General Procedure D. The substituted Grignard reagent (2,4-dimethoxyphenyl)magnesium chloride lithium chloride complex was prepared using isopropylmagnesium chloride lithium chloride complex (0.45 M, 4.4 mL, 1.98 mmol), and 1-iodo-2,4-dimethoxybenzene (664 mg, 2.51 mmol), and the mixture stirred at 0 °C for 2 h prior to combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep red-orange residue, which was subjected to flash chromatography (80 g silica, 20% EtOAc/hexane), to afford the N-Boc indole 228 (179 mg, 72%) as a deep orange solid, mp 89–90 °C (dec.). Rt (20% EtOAc/hexane) 0.35. UV-Vis (acetone) λmax/nm (ε, M⁻¹ cm⁻¹) 330 (3138), 400 (1623), 421 (1610), 507 (1127). ¹H NMR (500 MHz, CDCl3) δ 8.24 (d, J = 8.5 Hz, 1H, H7), 7.59 (d, J = 7.1 Hz, 1H, H4'), 7.54 (d, J = 8.0 Hz, 1H, H4), 7.50 – 7.45 (m, 2H, H6', H6''), 7.41 (app t, J = 7.2 Hz, 1H, H6), 7.32 – 7.23 (m, 3H, H5, H5', H7'), 6.63 (dd, J = 8.4, 2.4 Hz, 1H, H5''), 6.40 (d, J = 2.4 Hz, 1H, H3'''), 3.83 (s, 3H, C4''-OCH3), 3.36 (s, 3H, C2''-OCH3), 1.51 (s, 9H, 3xBoc CH3). ¹³C NMR (126 MHz, CDCl3) δ 193.0 (C3'), 161.3 (C2'), 160.70 (C4'' or C7a'), 160.65 (C4'' or C7a), 156.6 (C2''), 149.9 (Boc C=O), 136.9 (C7a), 136.5 (C6'), 132.5 (C6''), 129.8 (C3a), 128.2 (C5'), 126.1 (C6), 125.8 (C2), 124.4 (C4'), 123.3 (C5), 122.8 (C3a'), 122.6 (C3), 122.3 (C7'), 120.9 (C4), 115.8 (C7), 113.7 (C1''), 104.8 (C5''), 99.4 (C3''), 85.0 (Boc Cq), 55.5 (C4''-OCH3), 55.2 (C2''-OCH3), 28.1 (Boc CH3). IR (neat) 2978 (w), 2933 (w), 2361 (w), 1734 (s), 1451 (m), 1323 (m), 1149 (s), 748 (s) cm⁻¹. HRESI-MS calcd. for C29H27N2O5⁺ 483.1915, found 483.1914.
tert-butyl 3-(4-fluorophenyl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (231)

Prepared via General Procedure C. The substituted Grignard reagent (4-fluorophenylmagnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride (1.08 M, 1.70 mL, 1.84 mmol), LiCl (106 mg, 2.50 mmol), and 4-fluoroiodobenzene (567 mg, 2.56 mmol and the resulting mixture stirred at room temperature for 1.5 h prior to combining with indigo.

Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep red-orange residue, which was subjected to flash chromatography (80 g silica, 10% EtOAc/hexane), to afford the N-Boc indole 231 (167 mg, 75%) as bright orange crystals, mp 137–138 °C (dec.). R_t (10% EtOAc/hexane) 0.53. UV-Vis (acetone) λ_{max}/nm (ϵ, M$^{-1}$cm$^{-1}$) 329 (3911), 418 (2023), 470 (1725), 503 (1448). 1H NMR (500 MHz, CDCl$_3$) δ 8.24 (d, $J = 8.4$ Hz, 1H, H7), 7.64 – 7.57 (m, 3H, H4, H2'' H6''), 7.56 (d, $J = 7.1$ Hz, 1H, H4), 7.52 (td, $J = 7.6$, 1.3 Hz, 1H, H6'), 7.47 (ddd, $J = 8.4$, 7.2, 1.2 Hz, 1H, H6), 7.38 (d, $J = 7.5$ Hz, 1H, H7'), 7.31 (app t, $J = 7.1$ Hz, 1H, H5), 7.29 – 7.22 (m, 1H, H5'), 7.11 (app tt, $J = 8.8$, 2.9 Hz, 2H, H3'', H5''), 1.53 (s, 9H, 3×Boc CH$_3$). 13C NMR (126 MHz, CDCl$_3$) δ 191.7 (C3''), 162.7 (d, $J_{C-F} = 248.2$ Hz, C4''), 160.4 (C2' or C7a'), 160.0 (C2' or C7a'), 150.2 (Boc C=O), 136.82 (C7a), 136.80 (C6''), 132.7 (d, $J_{C-F} = 8.1$ Hz, C2'', C6''), 129.5 (C3a), 128.6 (C5'), 127.7 (d, $J_{C-F} = 2.5$ Hz, C1''), 127.2 (C3), 126.8 (C6), 125.3 (C2), 125.1 (C4'), 123.6 (C5), 122.7 (C3a'), 122.6 (C7'), 121.0 (C4), 115.8 (C7), 115.3 (d, $J_{C-F} = 21.3$ Hz, C3'', C5''), 85.5 (Boc Cq), 28.1 (Boc CH$_3$). 19F NMR (470 MHz, CDCl$_3$, 1H-decoupled) δ -114.0. IR (neat) 2980 (w), 2931 (w), 2367 (w), 1734 (s), 1506 (m), 1319 (m), 1149 (s), 748 (s) cm$^{-1}$. HRESI-MS calcd. for C$_{27}$H$_{22}$FN$_2$O$_3$+ 441.1609, found 441.1608.

tert-butyl 3-(2-chlorophenyl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (232)

Prepared via General Procedure C. The substituted Grignard reagent (2-chlorophenylmagnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride (1.08 M, 1.80 mL, 1.94 mmol), LiCl (106 mg, 2.50 mmol), and 2-chloroiodobenzene (605 mg, 2.54 mmol), and the resulting mixture stirred at room temperature for 1.5 h prior to
combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep red-orange residue, which was subjected to flash chromatography (80 g silica, 10% EtOAc/hexane), to afford the N-Boc indole 232 (182 mg, 79%) as deep red-orange crystals, mp 108–109 °C (dec.). X-ray quality crystals were grown by slow evaporation of a 9:1 hexane/chloroform solution. R_t (10% EtOAc/hexane) 0.30. UV-Vis (acetone) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 327 (3120), 401 (1619), 466 (1220), 500 (952). 1H NMR (400 MHz, CDCl$_3$) δ 8.25 (d, $J = 8.5$ Hz, 1H, H7), 7.57 (d, $J = 7.2$ Hz, 1H, H4$''$), 7.52 (dd, $J = 7.5$, 1.7 Hz, 1H, H6$''$), 7.49 – 7.45 (m, 2H, H6, H6$'$), 7.43 (dd, $J = 5.4$, 1.3 Hz, 1H, H3$''$), 7.41 – 7.39 (m, 1H, H4), 7.35 (dd, $J = 7.4$, 1.6 Hz, 1H, H5$''$), 7.32 (dd, $J = 7.6$, 1.9 Hz, 1H, H4$''$), 7.30 – 7.27 (m, 3H, H5, H5$'$, H7$'$), 1.53 (s, 9H, 3×Boc CH$_3$). 13C NMR (101 MHz, CDCl$_3$) δ 191.8 (C3$'$), 160.5 (C7a$'$), 160.1 (C2$'$), 149.9 (Boc C=O), 136.8 (C7a), 136.6 (C6$'$), 133.6 (C2$''$), 133.0 (C6$''$), 131.3 (C1$''$), 130.0 (C3$''$), 129.4 (C4$''$), 129.2 (C3a), 128.6 (C5$'$), 128.4 (C2), 126.7 (C5$''$), 126.6 (C3), 124.8 (C4$'$), 123.6 (C5), 122.54 (C3a$'$), 122.52 (C7$'$), 121.0 (C4), 115.8 (C7), 85.5 (Boc Cq), 28.3 (Boc CH$_3$). IR (neat) 2980 (w), 2931 (w), 2377 (w), 1734 (s), 1458 (m), 1320 (m), 1150 (s), 748 (s) cm$^{-1}$. HRESI-MS calcd. for C$_{27}$H$_{22}$Cl$_3$N$_2$O$_3$+ 457.1314, found 457.1313; calcd. for C$_{27}$H$_{22}$Cl$_3$N$_2$O$_3$+ 459.1284, found 459.1285.

tert-butyl 3'-oxo-3-(pyridin-3-yl)-1H,3'H-[2,2'-biindole]-1-carboxylate (233)

Prepared via General Procedure D. The substituted Grignard reagent (pyridin-3-ylmagnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride lithium chloride complex (0.45 M, 4.4 mL, 1.98 mmol), and 3-iodopyridine (534 mg, 2.60 mmol), and the mixture stirred at room temperature for 1.5 h prior to combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep orange residue, which was subjected to flash chromatography (80 g silica, 10% EtOAc/CH$_2$Cl$_2$), to afford the N-Boc indole 233 (190 mg, 89%) as a bright orange powder, mp 123–124 °C. R_t (10% EtOAc/CH$_2$Cl$_2$) 0.35. UV-Vis (acetone) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 338 (2624), 431 (2240), 463 (2057), 500 (1593). 1H NMR (500 MHz, CDCl$_3$) δ 8.90 (s, 1H, H2$'$), 8.60 (app s, 1H, H4$''$), 8.26 (d, $J = 8.5$ Hz, 1H, H7), 8.02 (d, $J = 7.8$ Hz, 1H, H6$''$), 7.60 (d, $J = 7.9$ Hz, 1H, H4), 7.56 (d, $J = 7.0$ Hz, 1H, H4$'$), 7.52 (d, $J = 7.8$ Hz, 1H, H6$''$), 7.48 (d, $J = 8.3$ Hz, 1H, H6), 7.40 – 7.35 (m, 2H, H7, H5$''$), 7.33 (app t, $J = 7.5$ Hz, 1H, H5), 7.28 – 7.23 (m, 1H,
H5'), 1.54 (s, 9H, 3×Boc CH3). 13C NMR (126 MHz, CDCl3) δ 191.4 (C3'), 160.2 (C7a'), 159.6 (C2'), 151.4 (C2''), 149.9 (Boc C=O), 149.1 (C4''), 138.4 (C6''), 136.9 (C7a), 136.8 (C6'), 129.1 (C3a), 128.7 (C5'), 127.9 (C1''), 127.0 (C6), 126.1 (C2), 125.1 (C4'), 124.4 (C3), 123.9 (C5), 123.1 (C5''), 122.7 (C7'), 122.6 (C3a'), 120.6 (C4), 123.1 (C5''), 122.4 (C3a'), 121.9 (C5''), 121.5 (C4), 117.0 (C3), 115.5 (C7), 85.7 (Boc Cq), 28.1 (Boc CH3). IR (neat) 2978 (w), 2933 (w), 1734 (s), 1559 (m), 1318 (s), 1149 (s), 909 (m), 763 (s), 731 (s), 715 (s) cm⁻¹. HRESI-MS calcd. for C26H22N3O3⁺ 424.1656, found 424.1655.

tert-butyl 3-(1-methyl-imidazol-2-yl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (235)

Prepared via General Procedure E. The substituted organolithium reagent (1-methyl-1H-imidazol-2-yl)lithium was prepared using n-BuLi (1.95 M, 1.15 mL, 2.24 mmol), and N-methylimidazole (217 mg, 2.64 mmol), and the mixture stirred for 1.5 h prior to combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep orange residue, which was subjected to flash chromatography (25 g silica, 20% EtOAc/CH2Cl2), to afford the N-Boc indole 235 (204 mg, 94%) as a deep orange-brown solid, mp 101–102 °C. Rf (10% MeCN/CHCl3) 0.46. UV-Vis (acetone) λmax/nm (ε, M⁻¹cm⁻¹) 334 (2215), 436 (1841), 465 (1653), 501 (1296). 1H NMR (500 MHz, CDCl3) δ 8.21 (d, J = 8.5 Hz, 1H, H7), 7.56 – 7.51 (m, 2H, H4, H4''), 7.51 – 7.43 (m, 2H, H6, H6''), 7.37 – 7.28 (m, 2H, H5, H7''), 7.25 (app t, J = 7.5 Hz, 1H, H5'), 7.16 (app s, 1H, H4''), 7.04 (app s, 1H, H5''), 3.68 (s, 3H, -NCH3), 1.55 (s, 9H, 3×Boc CH3). 13C NMR (126 MHz, CDCl3) δ 190.9 (C3'), 160.2 (C7a'), 159.7 (C2'), 149.8 (Boc C=O), 140.1 (C4''), 136.9 (C7a), 136.7 (C6'), 129.5 (C3a), 129.4 (C4''), 128.7 (C2), 128.6 (C5'), 127.0 (C6), 125.0 (C4'), 123.9 (C5), 122.6 (C7'), 122.4 (C3a'), 121.9 (C5''), 121.5 (C4), 117.0 (C3), 115.5 (C7), 85.7 (Boc Cq), 34.3 (-NCH3), 28.1 (Boc CH3). IR (neat) 2980 (w), 2933 (w), 1734 (s), 1559 (m), 1456 (m), 1369 (m), 1315 (s), 1149 (s), 909 (m), 763 (s), 748 (s), 731 (s) cm⁻¹. HRESI-MS calcd. for C25H23N4O3⁺ 427.1765, found 427.1764.
tert-butyl 3'-oxo-3-(thiophen-2-yl)-1H,3'H-[2,2'-biindole]-1-carboxylate (237)

Prepared via **General Procedure C**. The substituted Grignard reagent (thiophen-2-ylmagnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride (1.08 M, 1.70 mL, 1.84 mmol), LiCl (106 mg, 2.50 mmol), and 2-iodothiophene (537 mg, 2.56 mmol), and the mixture stirred at room temperature for 1 h prior to combining with indigo. Subsequent Boc-mediated dehydration (**General Procedure F**) of the crude product afforded a deep orange residue, which was subjected to flash chromatography (80 g silica, 10% EtOAc/hexane), to afford the N-Boc indole 237 (210 mg, 95%) as bright orange crystals, mp 78–79 °C (dec.). X-ray quality crystals were grown by evaporating a saturated 9:1 hexane/chloroform (1 mL) solution to ¼ its original volume, then the mother liquor removed from the precipitated solids and diluted with fresh hexane, and the resulting solution slowly evaporated. *R*_f (10% EtOAc/hexane) 0.42. UV-Vis (acetone) *λ*_{max}/nm (ε, M⁻¹cm⁻¹) 328 (5623), 436 (1945), 466 (1796), 506 (1540). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.4 Hz, 1H, H7), 7.94 (d, *J* = 7.9 Hz, 1H, H4), 7.60 (dd, *J* = 3.6, 1.1 Hz, 1H, H5ꞌ), 7.59 – 7.52 (m, 2H, H4ꞌ, H6ꞌ), 7.50 – 7.45 (m, 2H, H6, H7ꞌ), 7.40 (dd, *J* = 5.1, 1.1 Hz, 1H, H3ꞌ), 7.35 (app t, *J* = 7.2 Hz, 1H, H5), 7.28 (app t, *J* = 6.7 Hz, 1H, H5ꞌ), 7.14 (dd, *J* = 5.1, 3.6 Hz, 1H, H4ꞌ), 1.52 (s, 9H, 3×Boc CH₃). ¹³C NMR (101 MHz, CDCl₃) δ 191.5 (C3ꞌ), 160.4 (C7aꞌ), 159.6 (C2ꞌ), 149.9 (Boc C=O), 136.9 (C7a), 136.8 (C6ꞌ), 123.6 (C1ꞌ), 129.6 (C5ꞌ), 129.2 (C3a), 128.6 (C5'), 127.4 (C4'), 126.9 (C6), 126.8 (C3ꞌ), 125.5 (C2), 125.1 (C4), 123.7 (C5), 122.9 (C3a'), 122.7 (C7'), 121.4 (C4), 121.1 (C3), 115.7 (C7), 85.6 (Boc Cq), 28.1 (Boc CH₃). IR (neat) 2979 (w), 2930 (w), 2373 (w), 1734 (s), 1558 (m), 1319 (s), 1148 (s), 841 (m), 761 (m), 747 (s), 700 (m) cm⁻¹. HRESI-MS calcd. for C₂₅H₂₁N₂O₃S⁺ 429.1267, found 429.1267.
tert-butyl 3-(benzofuran-2-yl)-3'-oxo-1H,3'H-[2,2'-biindole]-1-carboxylate (239)

Prepared via General Procedure E. The substituted organolithium reagent (benzofuran-2-yllithium) was prepared using \(n \)-BuLi (1.95 M, 1.2 mL, 2.34 mmol), and benzofuran (299 mg, 2.53 mmol), and the mixture stirred for 1 h prior to combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep orange residue, which was fractionated on silica (80 g, using 10% EtOAc/hexane as eluent), and the resulting deep red-orange residue subjected to flash chromatography (40 g silica, 60% CH\(_2\)Cl\(_2\)/pet spirit), to afford the \(N \)-Boc indole 239 (200 mg, 85%) as a deep orange powder, mp 96–98 °C. \(R_f \) (10% EtOAc/hexane) 0.42. UV-Vis (acetone) \(\lambda_{\text{max}}/\text{nm} \) (\(\varepsilon \), M\(^{-1}\) cm\(^{-1}\)) 332 (12256), 385 (3234), 436 (1841), 435 (2152), 510 (1797). \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.29–8.23 (m, 2H, H4, H7), 7.64–7.59 (m, 2H, H4ꞌ, H4ꞌꞌ), 7.59–7.54 (m, 3H, H6ꞌ, H7ꞌ, H3ꞌꞌ), 7.50 (app t, \(J = 7.7 \text{ Hz} \), 1H, H6), 7.45 (d, \(J = 8.1 \text{ Hz} \), 1H, H7ꞌ), 7.41 (app t, \(J = 7.6 \text{ Hz} \), 1H, H5), 7.33–7.25 (m, 2H, H5ꞌ, H6ꞌ), 7.24–7.19 (m, 1H, H5ꞌꞌ), 7.15 (s, 9H, 3xBoc CH\(_3\)). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 191.2 (C3ꞌ), 160.3 (C7aꞌ), 159.8 (C2ꞌ), 155.1 (C7aꞌꞌ), 149.8 (C2), 149.6 (C2ꞌ), 137.0 (C7a), 136.8 (C6), 128.8 (C5ꞌ), 128.7 (C3aꞌ), 127.7 (C3a), 127.0 (C6), 125.8 (C3), 125.2 (C4ꞌ), 124.8 (C6ꞌ), 124.0 (C5), 123.0 (C5ꞌ), 122.8 (C3a), 122.70 (C4), 122.66 (C7ꞌ), 121.4 (C4ꞌꞌ), 117.2 (C2), 115.6 (C7), 111.2 (C7ꞌ), 108.1 (C3ꞌ), 85.8 (Boc Cq), 28.1 (Boc CH\(_3\)). IR (neat) 2977 (w), 2932 (w), 1734 (s), 1717 (m), 1559 (s), 1507 (m), 1417 (m), 1148 (s), 761 (m), 747 (s) cm\(^{-1}\). HRESI-MS calcd. for C\(_{29}\)H\(_{22}\)N\(_2\)O\(_4\)Na\(^+\) 485.1477, found 485.1479.

tert-butyl 1''-methyl-3-oxo-1'H,1''H,3'H-[2,2';3,5''-terindole]-1'-carboxylate (245)

Prepared via General Procedure C. The substituted Grignard reagent ((1-methyl-1H-indol-5-yl)magnesium chloride lithium chloride complex) was prepared using isopropylmagnesium chloride lithium chloride complex (0.512 M, 3.90 mL, 2.00 mmol), and 5-iodo-\(N \)-methylindole 243 (651 mg, 2.53 mmol), and the mixture stirred at 0 °C for 2 h prior to combining with indigo. Subsequent Boc-mediated dehydration (General Procedure F) of the crude product afforded a deep red-orange residue, which was subjected to flash chromatography (100 g silica, 10%
EtOAc/hexane), to afford the crude N-Boc terindole 245 (186 mg, 61% corrected NMR yield) as a bright orange amorphous solid, isolated alongside an unknown impurity which proved irresolute by all trialled separation techniques, including recrystallisation, PTLC separation and flash chromatographic separation. \(R_t \) (10% EtOAc/pet spirit) 0.28. \(\text{1H} \) NMR (500 MHz, CDCl\(_3\)) \(\delta \) 8.26 (d, \(J = 8.4 \) Hz, 1H, H7), 7.93 (d, \(J = 1.0 \) Hz, 1H, H4''), 7.68 (d, \(J = 7.8 \) Hz, 1H, H4), 7.52 (d, \(J = 7.1 \) Hz, 1H, H4'), 7.49 – 7.42 (m, 3H, H6, H6', H6''), 7.37 – 7.32 (m, 2H, H7', H7''), 7.28 (app t, \(J = 7.1 \) Hz, 1H, H5), 7.21 (dd, \(J = 7.3, 0.8 \) Hz, 1H, H5'), 7.06 (d, \(J = 3.1 \) Hz, 1H, H2''), 6.52 (d, \(J = 2.3 \) Hz, 1H, H3''), 3.80 (s, 3H, \(N'\text{CH}_3 \)), 1.52 (s, 9H, 3×Boc \(\text{CH}_3 \)). \(\text{13C} \) NMR (126 MHz, CDCl\(_3\)) \(\delta \) 192.0 (C3''), 160.5 (C7a''), 160.4 (C2''), 136.9 (C7a or C7a''), 136.6 (C6'), 136.5 (C7a or C7a''), 130.2 (C3a), 129.7 (C2), 129.4 (C2''), 129.0 (C3), 128.4 (C5'), 128.1 (C3a''), 126.4 (C6), 124.9 (C4' or C6''), 124.8 (C4' or C6''), 123.5 (C4''), 123.2 (C5), 122.6 (C5''), 122.5 (C3a''), 122.4 (C7''), 121.5 (C4), 115.6 (C7), 109.0 (C7''), 101.6 (C3''), 84.9 (Boc Cq), 32.9 (N''\text{CH}_3), 27.3 (Boc \text{CH}_3). HRESI-MS calcd. for C\(_{30}\)H\(_{26}\)N\(_3\)O\(_3\) + 476.1969, found 476.1968.

7.4.7 General Procedure G for Boc Deprotection:

To a solution of the tert-butoxycarbonyl protected indole (ca. 0.1 mmol) in CH\(_2\)Cl\(_2\) (0.1 M) was added neat trifluoroacetic acid (1 mL per 0.1 mmol of N-Boc indole). The resulting solution was stirred at room temperature for the indicated time, then diluted to ca. 20 mL with CH\(_2\)Cl\(_2\), and transferred to a separatory funnel. The organic phase was repeatedly washed with sat. NaHCO\(_3\) solution until foaming ceased (typically 2-3×20 mL), the organic layer dried (Na\(_2\)SO\(_4\)), and the solvent removed.

3-isopropyl-1H,3'H-[2,2'-biindol]-3'-one (209)

Prepared via General Procedure G, using 48.4 mg (0.124 mmol) of 210, and a 1 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and triturated with hot hexane to afford the desired indole 209 (33.0 mg, 92%) as an intense, black-purple powder, mp 168–170 °C (dec.). \(R_t \) (10% EtOAc/hexane) 0.56. UV-Vis (acetone) \(\lambda_{\text{max}}/\text{nm} (\varepsilon, \text{M}^{-1}\text{cm}^{-1}) \) 302 (7209), 552 (1594). \(\text{1H} \) NMR (400 MHz, CDCl\(_3\)) \(\delta \) 10.11 (s, 1H, NH), 7.92 (d, \(J = 8.3 \) Hz, 1H, H4), 7.57 – 7.49 (m, 2H, H4', H6'), 7.42 (d, \(J = 8.3 \) Hz, 1H, H7), 7.37 (d, \(J = 7.5 \) Hz, 1H, H7'), 7.32 – 7.27 (m, 1H, H6), 7.18 (app t, \(J = 7.1 \) Hz, 1H, H5'), 7.11 – 7.05 (m, 1H, H5), 4.55 (hept, \(J = 7.0 \) Hz, 1H, H2''), 1.54 (d, \(J = 7.1 \) Hz, 6H, H1'', H3''). \(\text{13C} \) NMR (101 MHz, CDCl\(_3\)) \(\delta \) 197.1 (C3''), 162.7 (C7a''), 154.6 (C2''), 138.8 (C7a), 137.5
(C6'), 135.0 (C3), 127.3 (C5'), 126.6 (C3a), 125.7 (C6), 125.1 (C4'), 122.6 (C4), 121.9 (C7'), 121.7 (C3a'), 119.8 (C5), 112.3 (C7), 26.5 (C2''), 22.6 (C1''), C3''). IR (neat) 3378 (m), 1709 (s), 1540 (s), 1451 (m), 1329 (s), 1240 (m), 1168 (s), 875 (m), 761 (s), 741 (s), 672 (s) cm\(^{-1}\). HRESI-MS calcd. for C\(_{19}\)H\(_{17}\)N\(_2\)O\(_2\) 289.1341, found 289.1353.

3-phenyl-1\(H\),3'\(H\)-[2,2'-biindol]-3'-one (214)

Prepared via General Procedure G, using 51.1 mg (0.121 mmol) of 211, and a 2 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/pet spirit), and removal of the solvent gave the desired indole 214 (31.6 mg, 81%) as an intense, black-purple powder. Spectral and physical characteristics were identical to those reported above.

3-butyl-1\(H\),3'\(H\)-[2,2'-biindol]-3'-one (250)

Prepared via General Procedure G, using 43.6 mg (0.108 mmol) of 215, and a 1.5 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and removal of the solvent afforded the desired indole 250 (29.8 mg, 91%) as an intense, black-purple powder, mp 131–132 °C. \(R_t\) (10% EtOAc/hexane) 0.45. UV-Vis (acetone) \(\lambda_{max}$/nm (\varepsilon, M\(^{-1}\)cm\(^{-1}\)) 327 (2462), 542 (1654). \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 10.00 (s, 1H, NH), 7.71 (dd, \(J = 8.2, 1.0\) Hz, 1H, H4), 7.58 – 7.49 (m, 2H, H4', H6'), 7.41 (d, \(J = 8.3\) Hz, 1H, H7), 7.36 (d, \(J = 7.6\) Hz, 1H, H7'), 7.33 – 7.28 (m, 1H, H6), 7.22 – 7.13 (m, 1H, H5'), 7.12 (ddd, \(J = 8.0, 6.9, 1.0\) Hz, 1H, H5), 3.37 (t, \(J = 7.7\) Hz, 2H, H4''), 1.80 – 1.68 (m, 2H, H2''), 1.47 (h, \(J = 7.4\) Hz, 2H, H3''). \(^{13}\)C NMR (101 MHz, CDCl\(_3\)) \(\delta\) 197.0 (C3'), 163.0 (C7a'), 154.6 (C2'), 138.4 (C7a), 137.6 (C6'), 129.7 (C3), 128.4 (C3a), 127.3 (C5'), 126.2 (C6), 125.1 (C4'), 125.0 (C2), 122.1 (C3a'), 122.0 (C4), 120.9 (C7'), 120.3 (C5), 112.0 (C7), 32.7 (C2''), 25.4 (C1''), 23.0 (C3''), 14.2 (C4''). IR (neat) 3382 (m), 2955 (w), 2924 (w), 1715 (s), 1551 (s), 1449 (m), 1340 (w), 1237 (w), 1170 (m), 877 (w), 761 (m), 740 (m) cm\(^{-1}\). HRESI-MS calcd. for C\(_{20}\)H\(_{19}\)N\(_2\)O\(^+\) 303.1497, found 303.1508.
3-benzyl-1H,3′H-[2,2′-biindol]-3′-one (251)

Prepared via General Procedure G, using 65.3 mg (0.150 mmol) of 219, and a 1.5 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and triturated with hexane to give the desired indole 251 (35.7 mg, 71%) as an intense, black-purple powder, mp 139–140 °C (dec.). R_f (10% EtOAc/hexane) 0.36. UV-Vis (acetone) λ_{max}/nm (ϵ, M$^{-1}$cm$^{-1}$) 327 (5752), 355 (4608), 537 (1655). 1H NMR (500 MHz, CDCl$_3$) δ 10.09 (s, 1H), 7.59 (d, $J = 8.2$ Hz, 1H, H4), 7.54 (d, $J = 7.0$ Hz, 1H, H4'), 7.51 (td, $J = 7.6$, 1.3 Hz, 1H, H6'), 7.41 (d, $J = 8.4$ Hz, 1H, H7), 7.38 (d, $J = 7.0$ Hz, 2H, H2'', H6''), 7.35 (d, $J = 7.5$ Hz, 1H, H7'), 7.29 (ddd, $J = 8.2$, 6.9, 1.1 Hz, 1H, H6), 7.23 (ddd, $J = 8.3$, 6.9 Hz, 2H, H3'', H5''), 7.18 (td, $J = 7.5$, 0.9 Hz, 1H, H5'), 7.16 – 7.12 (m, 1H, H4''), 7.08 (ddd, $J = 8.0$, 6.9, 1.0 Hz, 1H, H5), 4.81 (s, 2H, Ar-$C\equiv CH_2Ph$). 13C NMR (126 MHz, CDCl$_3$) δ 196.7 (C3''), 162.6 (C7a''), 154.4 (C2''), 141.1 (C1''), 138.3 (C7a), 137.5 (C6''), 128.8 (C2''), 128.4 (C3''), 128.17 (C3a), 127.4 (C5''), 126.3 (C3), 126.1 (C6), 125.8 (C4''), 125.2 (C2), 125.1 (C4), 121.9 (C3a''), 121.1 (C7'), 120.5 (C5), 112.0 (C7), 31.3 (Ar-$C\equiv CH_2Ph$). IR (neat) 3421 (w), 2919 (w), 1734 (s), 1717 (s), 1558 (s), 1507 (s), 1457 (s), 1339 (w), 1237 (w), 1167 (m), 745 (s) cm$^{-1}$. HRESI-MS calcd. for C$_{23}$H$_{17}$N$_2$O$^+$ 337.1341, found 337.1326.

3-(4-methoxyphenyl)-1H,3′H-[2,2′-biindol]-3′-one (252)

Prepared via General Procedure G, using 31.8 mg (0.070 mmol) of 222, and a 1.5 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and removal of the solvent gave the desired indole 252 (23.6 mg, 95%) as intense, black-purple crystals, mp 227–228 °C. R_f (10% EtOAc/hexane) 0.33. UV-Vis (acetone) λ_{max}/nm (ϵ, M$^{-1}$cm$^{-1}$) 327 (3173), 337 (3174), 390 (1478), 541 (1016). 1H NMR (500 MHz, CDCl$_3$) δ 10.26 (s, 1H, NH), 7.70 – 7.65 (m, 3H, H4, H2'', H6''), 7.52 (d, $J = 7.1$ Hz, 1H, H4'), 7.49 – 7.45 (m, 2H, H7, H6''), 7.35 (ddd, $J = 8.2$, 6.9, 1.0 Hz, 1H, H6), 7.24 (d, $J = 7.6$ Hz, 1H, H7'), 7.19 – 7.12 (m, 2H, H5, H5''), 7.04 (d, $J = 8.8$ Hz, 2H, H3'', H5''), 3.91 (s, 3H, -OCH$_3$). 13C NMR (126 MHz, CDCl$_3$) δ 196.6 (C3''), 162.4 (C7a''), 159.1 (C2''), 154.1 (C4''), 138.3 (C7a), 137.5 (C6''), 132.3 (C2'', C6''), 128.2 (C3), 127.6 (C5''), 126.8 (C3a), 126.4 (C6), 126.1 (C2), 125.2 (C4''), 124.3 (C1''), 122.4
(C4), 122.2 (C3a'), 121.8 (C7'), 121.2 (C5), 113.6 (C3'', C5''), 112.0 (C7), 55.4 (-OCH3). IR (neat) 3374 (w), 3349 (w), 1710 (s), 1539 (s), 1444 (s), 1320 (m), 1251 (m), 1166 (s), 877 (m), 832 (s), 758 (m), 744 (s), 691 (s) cm⁻¹. HRESI-MS calcd. for C23H17N2O2+ 353.1290, found 353.1280.

3-(2-methoxyphenyl)-1H,3'H-[2,2'-biindol]-3'-one (253)

Prepared via General Procedure G, using 70.9 mg (0.157 mmol) of 224, and a 1.5 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and removal of the solvent gave the desired indole 253 (48.2 mg, 87%) as an intense, black-purple solid, mp 168–170 °C (dec.). Rf (10% EtOAc/hexane) 0.56. UV-Vis (acetone) λmax/nm (ε, M⁻¹ cm⁻¹) 328 (5039), 535 (2864). ¹H NMR (500 MHz, CDCl₃) δ 10.09 (s, 1H, NH), 7.56 (d, J = 8.2 Hz, 1H, H₄), 7.51 – 7.48 (m, 2H, H₄', H₆''), 7.48 – 7.41 (m, 3H, H₆, H₇, H₆'), 7.36 – 7.31 (m, 1H, H₄''), 7.21 (d, J = 7.6 Hz, 1H, H₇'), 7.18 – 7.08 (m, 3H, H₅, H₅', H₅''), 7.04 (d, J = 7.3 Hz, 1H, H₃''), 3.72 (s, 3H, -OCH3). ¹³C NMR (126 MHz, CDCl₃) δ 195.1 (C₃'), 162.1 (C₇aꞌ), 157.6 (C₂ꞌ), 154.9 (C₂ꞌꞌ), 138.1 (C₇a), 137.3 (C₆'), 132.1 (C₆''), 129.1 (C₄'), 128.5 (C₃), 127.6 (C₅'), 126.1 (C₆), 125.6 (C₃a), 125.0 (C₅), 123.4 (C₂), 122.4 (C₃a'), 122.1 (C₄), 121.9 (C₁''), 121.8 (C₇'), 121.0 (C₅''), 120.6 (C₅), 111.9 (C₇), 111.3 (C₃''), 55.6 (-OCH₃). IR (neat) 3402 (m), 1718 (s), 1549 (s), 1451 (m), 1326 (s), 1321 (s), 1293 (s), 1026 (m), 875 (m), 793 (m), 745 (s), 691 (s) cm⁻¹. HRESI-MS calcd. for C23H17N2O2+ 353.1298, found 353.1298.

3-(2,4-dimethoxyphenyl)-1H,3'H-[2,2'-biindol]-3'-one (254)

Prepared via General Procedure G, using 29.1 mg (0.0603 mmol) of 228 in neat TFA (2 mL), and the mixture allowed to stir overnight. The resulting dark purple residue was triturated with hexane to give the desired indole 254 (18.9 mg, 82%) as an intense, black-purple solid, mp 119–120 °C. Rf (20% EtOAc/hexane) 0.25. UV-Vis (acetone) λmax/nm (ε, M⁻¹ cm⁻¹) 326 (4530), 546 (1547). ¹H NMR (400 MHz, CDCl₃) δ 10.15 (s, 1H, NH), 7.57 (d, J = 8.1 Hz, 1H, H₄), 7.50 (d, J = 7.2 Hz, 1H, H₄'), 7.48 – 7.40 (m, 3H, H₇, H₆', H₆''), 7.32 (app t, J = 7.6 Hz, 1H, H₆), 7.22 (d, J = 7.6 Hz, 1H, H₇'), 7.17 – 7.08 (m, 2H, H₅, H₅'), 6.67 – 6.60 (m, 2H, H₃'', H₅''), 3.91 (s, 3H, C₄''-OCH₃), 3.70 (s, 3H, C₂''-OCH₃). ¹³C NMR (101 MHz, CDCl₃) δ 195.2 (C₃'), 162.2 (C₄''), 160.8 (C₇a'), 158.6 (C₂''), 154.8
(C2"), 138.2 (C7a), 137.2 (C6"), 128.6 (C3a), 127.4 (C5"), 126.1 (C6), 125.5 (C3), 125.0 (C4"), 122.4 (C2), 122.1 (C3a''), 122.0 (C4), 121.9 (C7"), 120.8 (C5), 116.2 (C1"), 111.9 (C7), 104.4 (C5"), 99.3 (C3"), 55.6 (C4"-OCH₃), 55.5 (C2"-OCH₃). IR (neat) 3414 (w), 2928 (m), 2360 (w), 1718 (s), 1612 (s), 1549 (s), 1451 (s), 1327 (m), 1301 (m), 1262 (m), 1209 (s), 1159 (s), 1032 (m), 876 (m), 746 (s), 692 (w) cm⁻¹. HRESI-MS calcd. for C₂₄H₁₈N₂O₃Na⁺ 405.1215, found 405.1213.

3-(2-chlorophenyl)-1H,3'H-[2,2'-biindol]-3'-one (255)

Prepared via General Procedure G, using 41.4 mg (0.0906 mmol) of 232, and the mixture allowed to stir overnight. The resulting deep burgundy residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and triturated with hexane to give the desired indole (26.4 mg, 82%) as an intense, black-purple solid, mp 203–204 °C. Rf (10% EtOAc/hexane) 0.44. UV-Vis (acetone) λmax/nm (ε, M⁻¹·cm⁻¹) 328 (3113), 535 (2301). ¹H NMR (500 MHz, CDCl₃) δ 10.08 (s, 1H, NH), 7.57 – 7.54 (m, 1H, H₆"'), 7.52 – 7.44 (m, 4H, H₄, H₇, H₄', H₆'), 7.43 (dd, J = 8.1, 0.8 Hz, 1H, H₃"'), 7.41 – 7.34 (m, 3H, H₆, H₄", H₅"), 7.21 (d, J = 7.6 Hz, 1H, H₇'), 7.20 – 7.13 (m, 1H, H₅'), 7.17 – 7.11 (m, 1H, H₅). ¹³C NMR (126 MHz, CDCl₃) δ 194.8 (C₃'), 161.8 (C7a'), 154.7 (C2'), 137.8 (C7a), 137.3 (C₆'), 134.8 (C2"'), 133.6 (C1"'), 132.6 (C₆"'), 129.8 (C₃"'), 129.0 (C4"'), 128.4 (C₃), 127.9 (C₅'), 126.6 (C₅"'), 126.3 (C₆), 125.7 (C₃a), 125.1 (C₄'), 124.4 (C₂), 122.6 (C₃a'), 122.4 (C₄), 121.5 (C₇'), 121.3 (C₅), 112.0 (C₇). IR (neat) 3407 (w), 2924 (m), 1718 (m), 1554 (s), 1451 (s), 1327 (m), 1163 (w), 877 (m), 746 (s), 692 (w) cm⁻¹. HRESI-MS calcd. for C₂₂H₁₆N₂O₃Na⁺ 357.0789, found 357.0795.

3-(4-fluorophenyl)-1H,3'H-[2,2'-biindol]-3'-one (256)

Prepared via General Procedure G, using 33.7 mg (0.0765 mmol) of 231, and a 2 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and triturated with hexane to afford the desired indole 256 (23.2 mg, 89%) as an intense, black-purple solid, mp 244–246 °C. Rf (10% EtOAc/hexane) 0.20. UV-Vis (acetone) λmax/nm (ε, M⁻¹·cm⁻¹) 326 (3668), 534 (2307). ¹H NMR (400 MHz, CDCl₃, ¹⁹F-decoupled) δ 10.27 (s, 1H, NH), 7.68 (d, J = 8.7 Hz, 2H, H₂", H₆"), 7.64 (d, J = 8.2 Hz, 1H, H₄), 7.53 (d, J = 7.1 Hz, 1H, H₄'), 7.51 – 7.45 (m, 2H, H₇, H₆'). 3.6 (app
t, $J = 7.7$ Hz, 1H, H6), 7.23 (d, $J = 7.6$ Hz, 1H, H7), 7.21 – 7.12 (m, 4H, H5, H5', H3'', H5''). 13C NMR (101 MHz, CDCl$_3$) δ 196.2 (C3'), 162.3 (d, $^1J_{C-F} = 246.6$ Hz, C4''), 162.0 (C7a'), 153.9 (C2'), 138.0 (C7a), 137.4 (C6'), 132.6 (d, $^3J_{C-F} = 8.0$ Hz, C2''), 129.6 (d, $^4J_{C-F} = 3.3$ Hz, C1''), 128.0 (C3a), 127.7 (C5'), 126.3 (C6), 125.4 (C3), 125.1 (C4'), 124.4 (C2), 122.3 (C4), 122.0 (C3a'), 121.3 (C7'), 121.2 (C5), 115.0 (d, $^2J_{C-F} = 21.4$ Hz, C3''), 112.0 (C7). 19F NMR (377 MHz, CDCl$_3$, 1H-decoupled) δ -114.8. IR (neat) 3367 (w), 2998 (m), 1734 (m), 1714 (m), 1559 (s), 1507 (s), 1340 (m), 1255 (m), 879 (m), 834 (m), 746 (m), 692 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{22}$H$_{14}$N$_2$OF$^+$ 341.1090, found 341.1098.

3-(thiophen-2-yl)-1H,3'H-[2,2'-biindol]-3'-one (257)

Prepared via General Procedure G, using 49.0 mg (0.114 mmol) of 237, and a 1.5 h reaction time. The resulting dark purple residue was subjected to flash chromatography (20 g silica, 10% EtOAc/hexane), and removal of the solvent gave the desired indole 257 (36.0 mg, 96%) as an intense, black-purple powder, mp >300 °C. R_f (10% EtOAc/hexane) 0.42. UV-Vis (acetone) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 328 (4194), 545 (1342). 1H NMR (500 MHz, CDCl$_3$) δ 10.36 (s, 1H, NH), 7.97 (dd, $J = 8.2$, 0.9 Hz, 1H, H4), 7.76 (dd, $J = 3.6$, 1.2 Hz, 1H, H5''), 7.55 (ddd, $J = 7.1$, 1.4, 0.6 Hz, 1H, H4'), 7.53 – 7.46 (m, 3H, H7, H6', H3''), 7.37 (ddd, $J = 8.1$, 6.9, 1.1 Hz, 1H, H6), 7.33 (d, $J = 7.6$ Hz, 1H, H7'), 7.23 (dd, $J = 5.1$, 3.6 Hz, 1H, H4''), 7.22 – 7.17 (m, 2H, H5, H5''). 13C NMR (126 MHz, CDCl$_3$) δ 196.4 (C3’), 162.1 (C7a’), 153.5 (C2’), 139.2 (C2’’), 137.9 (C7a), 137.5 (C6’), 134.7 (C3), 129.5 (C5’’), 127.8 (C3a), 127.7 (C4’’), 127.1 (C5’), 126.4 (C3’’), 126.2 (C6), 125.2 (C4’’), 125.0 (C2), 122.4 (C7’), 122.0 (C4), 121.4 (C5), 119.2 (C3a’), 111.9 (C7). IR (neat) 3366 (w), 1734 (s), 1653 (s), 1558 (s), 1507 (s), 1340 (w), 1250 (w), 876 (w), 758 (w), 745 (m), 691 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{20}$H$_{13}$N$_2$OS$^+$ 329.0749, found 329.0750.

3-(pyridin-3-yl)-1H,3'H-[2,2'-biindol]-3'-one (258)

Prepared via General Procedure G, using 36.8 mg (0.0869 mmol) of 233, and the mixture allowed to stir overnight. The resulting deep burgundy residue was subjected to flash chromatography (20 g silica, 10% EtOAc/CH$_2$Cl$_2$), and triturated with hexane to give the desired indole 258 (26.4 mg, 94%) as an intense, black-purple powder, mp 276–277 °C (dec.). R_f (10% EtOAc/CH$_2$Cl$_2$) 0.46. UV-Vis (acetone) λ_{max}/nm (ε, M$^{-1}$cm$^{-1}$) 326 (5139), 530 (3061). 1H
NMR (400 MHz, CDCl$_3$) δ 10.40 (s, 1H, NH), 8.95 (app s, 1H, H2"), 8.65 (app s, 1H, H4") , 8.04 (d, $J = 7.8$ Hz, 1H, H6"), 7.62 (d, $J = 8.2$ Hz, 1H, H4), 7.53 – 7.41 (m, 4H, H7, H4', H6', H5"), 7.36 (ddd, $J = 8.2, 7.0, 0.9$ Hz, 1H, H6), 7.23 – 7.12 (m, 3H, H5, H5', H7').

13C NMR (101 MHz, CDCl$_3$) δ 195.9 (C3'), 161.8 (C7a'), 153.9 (C2'), 151.6 (br, C2''), 148.2 (br, C4''), 138.3 (br, C6''), 138.1 (C7a), 137.6 (C6'), 127.94 (C5'), 127.92 (C3a), 127.7 (C3), 126.5 (C6), 125.3 (C4'), 125.0 (C1''), 123.1 (br, C5''), 122.5 (C5), 122.2 (C2'), 122.0 (C3a'), 121.8 (C4), 120.9 (C7'), 112.3 (C7). IR (neat) 3393 (w), 1718 (s), 1556 (s), 1507 (w), 1452 (m), 1340 (w), 1261 (w), 1167 (w), 877 (m), 759 (w), 745 (m), 732 (m), 714 (w), 688 (m) cm$^{-1}$. HRESI-MS calcd. for C$_{21}$H$_{14}$N$_3$O$^+$ 324.1137, found 324.1142.

7.5 Biological testing

7.5.1. General considerations

All biological assays were performed by collaborators at Griffith University (Prof. Vicky Avery and Dr. Leonardo Lucantoni). The antiplasmodial activity of the experimental compounds was assessed against Plasmodium falciparum 3D7 (chloroquine sensitive) and Dd2 (drug resistant) parasite strains. Preliminary cytotoxicity assessment was carried out using Human Embryonic Kidney (HEK293) cells. The compounds were tested in a 22-point concentration-response range of 80 µM – 0.01 nM (160 µM – 0.02 nM for Compound 155). Artesunate, dihydroartemisinin (DHA), chloroquine, puromycin and pyrimethamine were used as reference compounds / drugs, and were tested in both experiments using 22-point concentration-response range of 40 µM – 0.01 nM (10 µM – 0.003 nM for DHA and artesunate). 0.4% DMSO and 5 µM puromycin were used as negative and positive in-plate controls, respectively. Raw data from each assay was normalized using the in-plate positive and negative controls to obtain normalized % inhibition data, which was then used to calculate IC$_{50}$ values, through a 4-parameter logistic curve fitting in Prism v 6.0 (GraphPad). All experiments were carried out in two biological replicates, each consisting of two technical repeats.

7.5.2. Antimalarial assay

Plasmodium falciparum 3D7 (chloroquine sensitive) and Dd2 (drug resistant) parasite strains were maintained in RPMI 1640 supplemented with 25 mM HEPES, 5% AB human male serum, 2.5 mg/ml Albumax II, and 0.37 mM hypoxanthine. Parasites were subjected to two rounds of sorbitol synchronization before undergoing compound treatment. Ring stage parasites at 2% parasitemia and 0.3% hematocrit were exposed to the experimental
compounds in 384-wells imaging CellCarrier microplates (PerkinElmer), as previously described. Plates were incubated for 72 h at 37 °C, 90% N₂, 5% CO₂, 5% O₂, then the parasites were stained with 2-(4-aminophenyl)-1H-indole-6-carboxamidine (DAPI) in permeabilization buffer (PBS, 5mM EDTA, 0.5μg/ml DAPI, 0.01% Triton X-100, and 0.001% saponin), and imaged with an Opera QEHS micro-plate confocal imaging system (PerkinElmer) using 20x water-immersion objective and 405 nm excitation, 450/50 nm emission filters. Images were analysed using a custom Acapella spot detection script to quantify DAPI-stained parasites in each well, as previously described.

7.5.3. Cytotoxicity Assay
Human Embryonic Kidney cells (HEK293) were maintained in DMEM medium supplemented with 10% FBS. Cells were seeded at 2,000 cells/well in TC-treated 384-wells clear-bottom plates (Greiner), 24 h before the addition of compounds. Compounds were added to the plates as described above, then the plates were incubated for 72 h at 37 °C, 5% CO₂. At the end of the incubation, the media was removed from the wells and replaced with an equal volume of 44 μM resazurin. After an additional 5-6 hours incubation at standard conditions, the total fluorescence (excitation/emission: 530 nm / 595 nm) was measured using an Envision plate reader (PerkinElmer).

7.6 X-ray crystallographic data
7.6.1. Crystallographic data for compound 133:

Crystal data
Compound 133. C₃₄H₂₂N₂O₂, M = 490.56, T = 150 K, monoclinic, space group P2₁/c, Z = 4, a = 19.0715 (5), b = 14.3956 (5), c = 8.8496 (2), β = 98.221 (2) °, V = 2404.65 (12) Å³, Dₓ = 1.355 Mg m⁻³, CuKα radiation, λ = 1.54184 Å, 35145 reflections measured (θ = 5–72°), merged to 4690 unique data, R = 0.054 [for 4185 data with I > 2σ(I)], Rₓ = 0.062 [all data], S = 1.07.

Structure determination of compound 133
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, λ = 1.54184 Å) and data extracted using the CrysAlis PRO package. Structure solution was by direct methods (SIR92). The structure was refined using the CRYSTALS program package.
7.6.2. Crystallographic data for compounds 134 and 135:

Crystal data
Compounds 134 and 135. 0.688×(C_{36}H_{27}BrN_{2}O_{4})·0.312×(C_{36}H_{26}N_{2}O_{4})·0.172×(H_{2}O), M = 608.92, T = 150 K, Triclinic, space group P1, Z = 2, a = 9.4687 (3), b = 11.7407 (3), c = 13.5610 (3), α = 91.4143 (19) °, β = 100.6415 (19) °, γ = 109.760 (3) °, V = 1388.20 (7) Å³, D_x = 1.457 Mg m⁻³, CuKα radiation, λ = 1.54184 Å, 22229 reflections measured (θ = 3–74 °), merged to 5600 unique data, R = 0.022 [for 5462 data with I > 2σ(I)], R_w = 0.045 [all data], S = 1.12.

Structure determination of compounds 133 and 135
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, λ = 1.54184 Å) and data extracted using the CrysAlis PRO package. Structure solution was by direct methods (SIR92). The structure was refined using the CRYSTALS program package.

7.6.3. Crystallographic data for compound 153:

Crystal data
Compound 153. C_{19}H_{14}N_{2}O_{3}, M = 318.33, T = 150 K, orthorhombic, space group Pccn, Z = 8, a = 10.8798(1), b = 18.4104(1), c = 14.5081(1) Å, V = 2905.99 (4) Å³, D_x = 1.455 Mg m⁻³, CuKα radiation, λ = 1.54184 Å, 54126 reflections measured (θ = 5–72°), merged to 2881 unique data, R = 0.030 [for 2749 data with I > 2σ(I)], R_w = 0.075 [all data], S = 1.00

Structure determination of compound 153
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, λ = 1.54184 Å) and data extracted using the CrysAlis PRO package. Structure solution was by direct methods (SIR92). The structure was refined using the CRYSTALS program package. Atomic coordinates, bond lengths and angles and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC no. 1590267). These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
7.6.4. Crystallographic data for compound 154:

Crystal data
Compound 154. C_{23}H_{18}N_{2}O_{6}, M = 418.41, T = 150 K, monoclinic, space group C2/c, Z = 8, a = 23.9584 (7), b = 9.6484 (3), c = 16.0090 (6) Å, β = 90.165 (3)°, V = 3700.6 (2) Å^3, D_x = 1.502 Mg m^{-3}, MoKα radiation, λ = 0.71073 Å, 39146 reflections measured (θ = 2–29°), merged to 4736 unique data, R = 0.044 [for 4495 data with I > 2σ(I)], R_w = 0.109 [all data], S = 1.03

Structure determination of compound 154
Images were measured on an Agilent SuperNova diffractometer (Mo Kα radiation, mirror monochromator, λ = 0.71073 Å) and data extracted using the CrysAlis PRO package.[192] Structure solution was by direct methods (SIR92).[193] The structure was refined using the CRYSTALS program package.[194] Atomic coordinates, bond lengths and angles and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC no. 1590269). These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

7.6.5. Crystallographic data for compound 155:

Crystal data
Compound 155. C_{22}H_{18}N_{2}O_{4}, M = 374.40, T = 150 K, orthorhombic, space group P2_12_12_1, Z = 4, a = 8.64640 (7), b = 11.41283 (8), c = 17.69376 (13) Å, V = 1746.02 (2) Å^3, D_x = 1.424 Mg m^{-3}, CuKα radiation, λ = 1.54184 Å, 28445 reflections measured (θ = 5–72°), merged to 3528 unique data, R = 0.030 [for 3486 data with I > 2σ(I)], R_w = 0.081 [all data], S = 1.00

Structure determination of compound 154
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, λ = 1.54184 Å) and data extracted using the CrysAlis PRO package.[192] Structure solution was by direct methods (SIR92).[193] The structure was refined using the CRYSTALS program package.[194] Atomic coordinates, bond lengths and angles and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC no. 1590268). These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
7.6.6. Crystallographic data for compound 180:

Crystal data
Compound 180. C₃₁H₂₅N₃O₄S, \(M = 535.62 \), \(T = 150 \) K, monoclinic, space group \(P2_1/c \), \(Z = 4 \), \(a = 23.5193 \) (13), \(b = 11.6263 \) (7), \(c = 9.3856 \) (5) Å, \(\beta = 90.966(5)^\circ \), \(V = 2566.1 \) (3) Å³, \(D_x = 1.386 \) Mg m⁻³, CuKα radiation, \(\lambda = 1.54184 \) Å, 16907 reflections measured (\(\theta = 4–72^\circ \)), merged to 4953 unique data, \(R = 0.071 \) [for 3162 data with \(I > 2\sigma(I) \)], \(R_w = 0.153 \) [all data], \(S = 1.01 \)

Structure determination of compound 180
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, \(\lambda = 1.54184 \) Å) and data extracted using the CrysAlis PRO package. Structure solution was by direct methods (SIR92). The structure was refined using the CRYSTALS program package. Atomic coordinates, bond lengths and angles and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC no. 1590271). These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

7.6.7. Crystallographic data for compound 183:

Crystal data
Compound 183. 2(C₂₀H₁₆N₂O₄).1.85(CH₂Cl₂).0.15(CHCl₃), \(M = 871.73 \), \(T = 150 \) K, orthorhombic, space group \(P2_12_12_1 \), \(Z = 4 \), \(a = 10.5565 \) (2), \(b = 14.9406 \) (2), \(c = 25.9563 \) (4) Å, \(V = 4093.84 \) (11) Å³, \(D_x = 1.414 \) Mg m⁻³, CuKα radiation, \(\lambda = 1.54184 \) Å, 61022 reflections measured (\(\theta = 3–64^\circ \)), merged to 7974 unique data, \(R = 0.068 \) [for 6934 data with \(I > 2\sigma(I) \)], \(R_w = 0.151 \) [all data], \(S = 0.98 \)

Structure determination of compound 183.
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, \(\lambda = 1.54184 \) Å) and data extracted using the CrysAlis PRO package. Structure solution was by direct methods (SIR92). The structure was refined using the CRYSTALS program package. Atomic coordinates, bond lengths and angles and displacement parameters have been deposited at the Cambridge Crystallographic Data Centre (CCDC no. 1590270). These data can be obtained free-of-charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
7.6.8. Crystallographic data for compound 211:

Crystal data
Compound 211. C$_{27}$H$_{22}$N$_2$O$_3$, M = 422.28, T = 150 K, monoclinic, space group P2$_1$/c, Z = 4, a = 9.4461 (1), b = 10.2612 (1), c = 23.0912 (2), $\beta = 100.4899$ (8) $^\circ$, V = 2200.78 (4) Å3, D_x = 1.275 Mg m$^{-3}$, CuKα radiation, λ = 1.54184 Å, 42054 reflections measured (θ = 4–74$^\circ$), merged to 4448 unique data, $R = 0.031$ [for 4255 data with $I > 2\sigma(I)$], $R_w = 0.036$ [all data], $S = 1.00$.

Structure determination of compound 211
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, λ = 1.54184 Å) and data extracted using the CrysAlis PRO package.[192] Structure solution was by direct methods (SIR92).[193] The structure was refined using the CRYSTALS program package.[194]

7.6.9. Crystallographic data for compound 213:

Crystal data
Compound 213. C$_{26}$H$_{26}$N$_2$O$_6$, M = 462.50, T = 150 K, monoclinic, space group C2/c, Z = 4, a = 20.9084 (10), b = 7.3041 (2), c = 17.0572 (7), $\beta = 100.4899$ (8) $^\circ$, V = 2383.40 (19) Å3, D_x = 1.289 Mg m$^{-3}$, MoKα radiation, λ = 0.71073 Å, 19845 reflections measured (θ = 2–30 $^\circ$), merged to 3017 unique data, $R = 0.033$ [for 2600 data with $I > 2\sigma(I)$], $R_w = 0.051$ [all data], $S = 1.04$.

Structure determination of compound 213
Images were measured on an Agilent SuperNova diffractometer (Mo Kα radiation, mirror monochromator, λ = 0.71073 Å) and data extracted using the CrysAlis PRO package.[192] Structure solution was by direct methods (SIR92).[193] The structure was refined using the CRYSTALS program package.[194]

7.6.10. Crystallographic data for compound 224:

Crystal data
Compound 224. C$_{28}$H$_{24}$N$_2$O$_4$, M = 452.51, T = 150 K, monoclinic, space group P2$_1$/c, Z = 4, a = 7.6361 (2), b = 13.7150 (3), c = 22.4168 (5), $\beta = 98.156$ (2) $^\circ$, V = 2323.95 (10) Å3, D_x = 1.293 Mg m$^{-3}$, CuKα radiation, λ = 1.54184 Å, 4583 reflections measured (θ = 4–74$^\circ$), 4583 unique data, $R = 0.062$ [for 4398 data with $I > 2\sigma(I)$], $R_w = 0.074$ [all data], $S = 1.00$.

253
Structure determination of compound 224
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, \(\lambda = 1.54184 \text{ Å}\)) and data extracted using the CrysAlis PRO package.\[192\] Structure solution was by direct methods (SIR92).\[193\] The structure was refined using the CRYSTALS program package.\[194\]

7.6.11. Crystallographic data for compound 232:

Crystal data
Compound 232. \(\text{C}_{27}\text{H}_{21}\text{ClN}_{2}\text{O}_{3}\), \(M = 456.93\), \(T = 150\) K, orthorhombic, space group \(\text{Pna2}_1\), \(Z = 4\), \(a = 18.76631\) (12), \(b = 14.88559\) (11), \(c = 7.88336\) (7), \(V = 2202.21\) (3) \(\text{Å}^3\), \(D_x = 1.378\) Mg m\(^{-3}\), CuKα radiation, \(\lambda = 1.54184\) Å, 34133 reflections measured \((\theta = 2–74^\circ)\), merged to 4142 unique data, \(R = 0.024\) [for 4091 data with \(I > 2\sigma(I)\)], \(R_w = 0.033\) [all data], \(S = 1.01\).

Structure determination of compound 232
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, \(\lambda = 1.54184\) Å) and data extracted using the CrysAlis PRO package.\[192\] Structure solution was by direct methods (SIR92).\[193\] The structure was refined using the CRYSTALS program package.\[194\]

7.6.12. Crystallographic data for compound 237:

Crystal data
Compound 237. \(\text{C}_{25}\text{H}_{20}\text{N}_{2}\text{O}_{3}\text{S}\), \(M = 428.51\), \(T=150\) K, monoclinic, space group \(\text{P2}_1/c\), \(Z = 4\), \(a = 9.4271\) (1), \(b = 10.0632\) (1), \(c = 23.0963\) (2), \(\beta = 101.1492\) (11) \(^\circ\), \(V = 2149.72\) (4) \(\text{Å}^3\), \(D_x = 1.324\) Mg m\(^{-3}\), CuKα radiation, \(\lambda = 1.54184\) Å, 32752 reflections measured \((\theta = 5–72^\circ)\), merged to 4347 unique data, \(R = 0.034\) [for 3948 data with \(I > 2\sigma(I)\)], \(R_w = 0.037\) [all data], \(S = 1.00\).

Structure determination of compound 237
Images were measured on an Agilent SuperNova diffractometer (Cu Kα radiation, mirror monochromator, \(\lambda = 1.54184\) Å) and data extracted using the CrysAlis PRO package.\[192\] Structure solution was by direct methods (SIR92).\[193\] The structure was refined using the CRYSTALS program package.\[194\]
Chapter 8:
References

355-363.

a) A. Rolfe, T. B. Samarakoon, P. R. Hanson, I. Vilotijevic, T. F. Jamison, S. Isaacs, A. S. Pell, G. Pilcher, 2014.

b) J. P. Foster, F. Weinhold, J. Am. Chem. Soc. 1980, 102, 7211-7218;

[133] a) X. E. Hu, Tetrahedron 2004, 60, 2701-2743;
b) P. Lu, Tetrahedron 2010, 66, 2549-2560;
c) C.-Y. Huang, A. G. Doyle, Chem. Rev. 2014, 114, 8153-8198;

[138] a) A. Rolfe, T. B. Samarakoon, P. R. Hanson, Org. Lett. 2010, 12, 1216-1219;

939-944.

[192] CrysAlis PRO, Agilent Technologies, Version 1.171.37.21t, Yarnton, Oxfordshire, England, **2013**
