Investigation of the role of the plasminogen-binding group A streptococcal M-like protein (PAM) in the pathogenesis of Streptococcus pyogenes

Martina L. Sanderson-Smith

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infingeements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infingeements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation
http://ro.uow.edu.au/theses/602
Investigation of the role of the plasminogen-binding group A streptococcal M-like protein (PAM) in the pathogenesis of Streptococcus pyogenes

Martina Louise Sanderson-Smith, B. Biotechnology (Hons)

Submitted in fulfillment of the requirements for the Degree of Doctor of Philosophy

School of Biological Sciences

University of Wollongong

Wollongong, Australia

May, 2006
Declaration of Authenticity

This thesis is submitted in accordance with the regulations of the University of Wollongong in fulfillment of the degree of Doctor of Philosophy. It does not include any material previously published by another person except where due reference is made in the text. The experimental work described in this thesis is original, and has not been submitted for a degree to any other University.

Martina Louise Sanderson-Smith
Acknowledgements

I would like to sincerely thank both my supervisors Mark Walker, and Marie Ranson. This work would not have been possible without their knowledge, guidance and support. Mark – thank you for knowing when to tell me that I could stop banging my head against that brick wall, and Marie – thank you for reminding me that I could really do this, and for all the coffee.

For all their work towards the immunisation and opsonisation studies, I would like to thank KS Sriprakash, Michael Batzloff and Jon Hartas. Also, I would like to thank all the guys from QIMR for making me so welcome during my visit, in particular Dave and Colleen for giving up their spare room, and Frank for being my chauffeur!

For making the lab so much fun to be in, I would like to thank all the labrats from the Walker, Ranson and Wilson labs. Corky, Carola, Anna, Tracey, Coley, Jake, Jason, Fay, Ania, Amie, Teresa, Rachel, Dave, Tam and Justin. I consider myself lucky to be able to work with such fantastic people every day – you often made me forget that I was working at all.

There are a number of people in the department who have been incredibly supportive, both personally and professionally. Laura Mothersdill, Mark Dowton and Marie Dwarte – thankyou so much for all your assistance and encouragement.

For being my extended family, I would like to thank my ladies! Gillian, Christine, Elise, Kara, Roz and Fi. I consider you all mentors as well as friends. Thanks for all the laughs, all the tears, all the drinks and all the spare beds!! Whatever else comes out of the last four years, I know that I will not walk away empty handed as long as I have these friendships to take with me.

To my family, the Hudsons, the Sandersons and the Smiths, you all mean so much to me, and your unwavering support, encouragement, and understanding has made these last four years so much easier. I will never forget your unconditional love, or your faith in me.

Last but never least, I could not have achieved any of this without the love and support of my John Smith. Thank you for always reminding me that I am more than a PhD, and for understanding that “PAM” sometimes had to come first. You are the most inspirational person I know, please never forget that this thesis is as much the result of your perseverance as it is mine.

"Whereas in art nothing worth doing can be done without genius, in science, even a very moderate capacity can contribute to a supreme achievement"
Bertrand Russell 1872-1970
TABLE OF CONTENTS

Declaration of Authenticity ... 1
Acknowledgements .. ii
Table of Contents .. iii
List of Figures .. vi
List of Tables .. vii
List of Abbreviations ... viii
List of Publications and Conference presentations ix
Summary .. xi

1 Introduction .. 1

1.1 Overview ... 2

1.2 Classification of group A streptococcus .. 2

1.2.1 Lancefield classification... 2

1.2.2 M-typing ... 3

1.2.3 Vir-typing ... 3

1.2.4 Emm-sequence typing ... 4

1.2.5 Emm-patterning .. 5

1.3 Group A streptococcal disease and epidemiology 5

1.3.1 Epidemiology ... 5

1.3.2 Non-invasive diseases ... 8

1.3.3 Invasive diseases .. 9

1.3.4 Post infection sequelae ... 10

1.3.5 Treatment of GAS disease .. 12

1.4 Group A Streptococcal virulence determinants 13

1.4.1 M protein ... 14

1.5 The plasminogen activation system ... 21

1.5.1 Plasminogen and plasmin .. 22

1.5.2 Physiological roles of the plasminogen activation system 25

1.5.3 Regulation of the plasminogen activation system 25

1.6 Interactions between the plasminogen activation system and GAS . 27

1.6.1 Streptokinase ... 28

1.6.2 Indirect plasminogen binding .. 30

1.6.3 Direct plasminogen binding ... 33

1.6.4 The plasmin(ogen)-binding group A streptococcal M-like protein (PAM) .. 35

1.7 Aims and objectives ... 39

2 Materials and methods ... 41

2.1 General materials ... 42

2.2 General methods .. 42

2.2.1 Bacterial culture methods ... 42

2.2.1.1 Escherichia coli .. 42

2.2.1.2 Streptococcus pyogenes ... 42

2.2.2 Agarose gel electrophoresis .. 43

2.2.3 DNA extraction and purification .. 43

2.2.3.1 Plasmid extraction from E. coli .. 43

2.2.3.2 Extraction of streptococcal DNA 44

2.2.3.3 DNA extraction from agarose gels 45

2.2.4 Restriction enzyme digestion of plasmid DNA 46

2.3 Molecular characterisation of PAM ... 46
2.3.1 Cloning of PAM genes into pCR2.1 ... 46
2.3.2 Southern hybridisation analysis ... 47
 2.3.2.1 DNA transfer ... 49
 2.3.2.2 3’-end labelling of oligonucleotide probe with digoxigenin-11-ddUTP 49
 2.3.2.3 Detection of PAM genes ... 50
2.3.3 DNA sequence analysis .. 50
 2.3.3.1 Calculation of DNA concentration .. 50
 2.3.3.2 DNA sequencing reactions ... 51
 2.3.3.3 DNA sequence gel electrophoresis .. 52
 2.3.3.4 Analysis of DNA sequence data ... 52
2.3.4 Molecular typing and emm pattern analysis ... 53
2.3.5 Pulsed field gel electrophoresis... 54
2.4 Characterisation of recombinant PAM variants...................................... 56
 2.4.1 Expression and purification of recombinant PAM variants 56
 2.4.1.1 Cloning into pGEX2T ... 56
 2.4.1.2 Site-directed mutagenesis .. 57
 2.4.1.3 Purification of recombinant PAM variants 59
 2.4.2 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS- 60
 PAGE) ... 60
 2.4.3 Western and ligand blotting analysis .. 61
 2.4.3.1 Transfer ... 61
 2.4.3.2 Detection ... 62
 2.4.4 Determination of protein concentration .. 62
 2.4.5 Concentration of protein samples .. 63
 2.4.6 Plasminogen purification ... 63
 2.4.7 Fibrinogen purification .. 63
 2.4.8 Protein labelling .. 64
 2.4.9 Functional characterisation of recombinant proteins 64
 2.4.9.1 Ligand blotting analysis... 64
 2.4.9.2 Solid phase microtitre assays ... 64
 2.4.9.2.1 Plasminogen binding ... 64
 2.4.9.2.2 Fibrinogen binding ... 66
 2.4.9.2.3 tPA binding ... 66
 2.4.9.3 Circular dichroism (CD) spectroscopy .. 66
 2.4.10 Immunological studies ... 67
 2.4.10.1 Immunisation and challenge of mice .. 67
 2.4.10.2 Detection of murine antibodies and indirect bactericidal assay 68
 2.4.11 Statistical analysis ... 69
3 Characterisation of the plasminogen-binding properties of naturally occurring PAM 70
variants ... 70
 3.1 Introduction ... 71
 3.2 Results .. 72
 3.2.1 Cloning of PAM genes ... 72
 3.2.2 DNA sequence analysis ... 73
 3.2.3 emm pattern and emm sequence typing ... 75
 3.2.4 Pulsed field gel electrophoresis and phylogenetic analysis 81
 3.2.5 Cloning and expression of recombinant PAM variants 84
 3.2.6 Characterisation of the binding properties of recombinant PAM variants 87
3.2.6.1 Plasminogen purification and labelling...87
3.2.6.2 Plasminogen binding analysis...87
3.2.6.3 Fibrinogen purification and labelling..93
3.2.6.4 Fibrinogen binding analysis...98
3.2.6.5 tPA binding analysis ...98
3.2.6.6 Analysis of the impact of PAM sequence variation on immune
recognition of GAS...101

3.3 Discussion...103

4 Characterisation of the plasminogen-binding site of PAM..............................108
4.1 Introduction...109
4.2 Results...110
 4.2.1 Site-directed mutagenesis ...110
 4.2.2 Structural characterisation of mutant proteins111
 4.2.3 Plasminogen binding analysis...112

4.3 Discussion...119

5 Characterisation of the phylogenetically distinct PAM variant PAMNS88.2........123
5.1 Introduction...124
5.2 Results...126
 5.2.1 Site directed mutagenesis ...126
 5.2.2 Structural characterisation of PAMNS88.2 site directed mutants126
 5.2.3 Plasminogen binding analysis...129

5.3 Discussion...132

6 Conclusions and future research ...135
7 Appendix 1 ..140
8 References...147
9 Publications ..161
List of Figures

Figure 1.1 Arrangement of emm genes in the GAS chromosome ... 6
Figure 1.2 Schematic of the protein plasminogen .. 24
Figure 1.3 Proposed interactions of plasminogen with GAS plasminogen binding proteins32
Figure 1.4 Schematic of the PAM protein ...37
Figure 2.1 Cloning of PAM genes into pCR2.1 ..48
Figure 2.2 Cloning of PAM genes into pGEX2T..58
Figure 3.1 Example of Southern hybridisation analysis of clones containing PAM genes73
Figure 3.2 ClustalW alignment of deduced PAM amino acid sequences76
Figure 3.3 Alignment of the deduced amino acid sequences of PAM variants corresponding to the a1 and a2 repeat regions of the prototype PAM sequence79
Figure 3.4 Evolutionary analysis of PAM positive GAS isolates ...83
Figure 3.5 Agarose gel electrophoresis and EcoRI/BamHI restriction digestion analysis of pGEX2T/PAM expression constructs ..85
Figure 3.6 SDS-PAGE analysis of recombinant PAM variants ..86
Figure 3.7 Purification of plasminogen from human plasma ...88
Figure 3.8 Biotinylation of glu-plasminogen ...89
Figure 3.9 Ligand blot analysis of purified recombinant PAM variants90
Figure 3.10 Saturation binding analysis of biotinylated glu-plasminogen to immobilised recombinant PAM variant proteins ...92
Figure 3.11 Competition of glu-plasminogen binding to immobilised recombinant PAM variants with fluid phase PAM$_{NS13}$...94
Figure 3.12 Western blot analysis of purified fibrinogen ..96
Figure 3.13 Biotinylation of purified fibrinogen ...97
Figure 3.14 Saturation binding analysis of biotinylated fibrinogen to immobilised recombinant PAM variant proteins ...99
Figure 3.15 Analysis of PAM$_{NS13}$ binding to tPA ..100
Figure 3.16 Immunisation of mice with a KLH-conjugated peptide representing the a1 region of PAM$_{NS13}$ and subsequent challenge with GAS strain NS13102
Figure 4.1 SDS-PAGE analysis of PAM$_{NS13}$ site-directed mutants111
Figure 4.2 Circular dichroism spectra of recombinant PAM$_{NS13}$ mutants113
Figure 4.3 Ligand blot analysis of PAM$_{NS13}$ site-directed mutants114
Figure 4.4 Saturation binding analysis of biotinylated glu-plasminogen to immobilised recombinant PAM$_{NS13}$ mutant proteins ...116
Figure 4.5 Competition of glu-plasminogen binding to immobilised recombinant PAM variants with fluid phase PAM$_{NS13}$...118
Figure 5.1 SDS-PAGE analysis of recombinant PAM$_{NSS8.2}$ site-directed mutants127
Figure 5.2 Ligand blot analysis of recombinant PAM$_{NSS8.2}$ site-directed mutants128
Figure 5.3 Saturation binding analysis of biotinylated glu-plasminogen to immobilised recombinant PAM$_{NSS8.2}$ mutant proteins ...130
Figure 5.4 Circular dichroism spectra of recombinant PAM$_{NSS8.2}$ site-directed mutants131
List of Tables

Table 1.1 Proposed GAS virulence determinants ... 16
Table 2.1 Oligonucleotide primers designed for DNA sequence analysis of PAM genes........ 51
Table 2.2 Primers used to determine the emm pattern of GAS strains 55
Table 2.3 Primers used for PCR and DNA sequence analysis of PAM/pGEX-2T expression plasmids ... 59
Table 3.1 Molecular characteristics of PAM positive GAS strains. .. 80
Table 3.2 Plasminogen binding properties of recombinant PAM variants. 95
Table 4.1 Forward primer sequences used to construct PAM_{NS13} site-directed mutants 110
Table 4.2 Functional and structural characteristics of PAM_{NS13} site–directed mutants 117
Table 5.1 Forward primer sequences used to construct PAM_{NS13} site-directed mutants 126
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ap</td>
<td>ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>ammonium persulfate</td>
</tr>
<tr>
<td>ARF</td>
<td>acute rheumatic fever</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CD</td>
<td>circular dichroism</td>
</tr>
<tr>
<td>CFU</td>
<td>colony forming units</td>
</tr>
<tr>
<td>DAB</td>
<td>diaminobenzidine</td>
</tr>
<tr>
<td>DIG</td>
<td>digoxigenin-11-ddUTP</td>
</tr>
<tr>
<td>EC<sub>50</sub></td>
<td>effective concentration of competitor required to decrease binding by 50%</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
</tr>
<tr>
<td>GAS</td>
<td>group A streptococcus</td>
</tr>
<tr>
<td>GST</td>
<td>glutathione-S-transferase</td>
</tr>
<tr>
<td>6-His</td>
<td>hexahistidyl</td>
</tr>
<tr>
<td>HRP</td>
<td>horseradish peroxidase</td>
</tr>
<tr>
<td>K<sub>d</sub></td>
<td>dissociation equilibrium constant</td>
</tr>
<tr>
<td>KLH</td>
<td>keyhole limpet hemocyanin</td>
</tr>
<tr>
<td>Km</td>
<td>kanamycin</td>
</tr>
<tr>
<td>LB</td>
<td>Luria Bertani</td>
</tr>
<tr>
<td>LBS</td>
<td>lysine-binding sites</td>
</tr>
<tr>
<td>NPBP</td>
<td>nephritogenic plasminogen-binding protein</td>
</tr>
<tr>
<td>OD</td>
<td>optical density</td>
</tr>
<tr>
<td>NTP</td>
<td>N-terminal peptide</td>
</tr>
<tr>
<td>PAGE</td>
<td>polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>PAI-1</td>
<td>plasminogen activator inhibitor 1</td>
</tr>
<tr>
<td>PAI-2</td>
<td>plasminogen activator inhibitor 2</td>
</tr>
<tr>
<td>PAM</td>
<td>plasminogen-binding group A streptococcal M-like protein</td>
</tr>
<tr>
<td>PAS</td>
<td>plasminogen activation system</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PFGE</td>
<td>pulsed field electrophoresis</td>
</tr>
<tr>
<td>PMSF</td>
<td>phenyl-methyl-sulfonyl fluoride</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulphate</td>
</tr>
<tr>
<td>SEN</td>
<td>streptococcal surface enolase</td>
</tr>
<tr>
<td>Serpin</td>
<td>serine protease inhibitors</td>
</tr>
<tr>
<td>SIC</td>
<td>streptococcal inhibitor of complement-mediated lysis</td>
</tr>
<tr>
<td>Spe</td>
<td>streptococcal pyrogenic exotoxins</td>
</tr>
<tr>
<td>ST</td>
<td>sequence type</td>
</tr>
<tr>
<td>STSS</td>
<td>streptococcal toxic shock syndrome</td>
</tr>
<tr>
<td>TBS</td>
<td>tris-buffered saline</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-tetra-methylethylenediamine</td>
</tr>
<tr>
<td>THB</td>
<td>Todd Hewitt broth</td>
</tr>
<tr>
<td>THBN</td>
<td>Todd Hewitt broth 1% neopeptone</td>
</tr>
<tr>
<td>THBY</td>
<td>Todd Hewitt broth 1% yeast</td>
</tr>
<tr>
<td>tPA</td>
<td>tissue-type plasminogen activator</td>
</tr>
<tr>
<td>uPA</td>
<td>urokinase-type plasminogen activator</td>
</tr>
<tr>
<td>UV</td>
<td>ultra violet</td>
</tr>
</tbody>
</table>
List of Publications and Conference Presentations

Publications *

* See Chapter 9
Conference Presentations

Summary

The Gram positive bacterium *Streptococcus pyogenes* (group A streptococcus; GAS) is the major etiological agent of a variety of skin and mucosal infections in humans. Whilst the majority of GAS infection results in only mild, uncomplicated disease, the migration of GAS from superficial to deep tissue sites can result in invasive infection. In recent years, there has been a resurgence in severe GAS disease, however, the details of GAS pathogenesis have yet to be fully elucidated. Increasingly, subversion of the host plasminogen activation system is being implicated in the virulence of *S. pyogenes*. GAS display receptors for the human zymogen plasminogen on the cell surface, one of which is the plasminogen-binding group A streptococcal M-like protein (PAM). PAM has been implicated in the pathogenesis of certain GAS isolates, but the mechanism of plasminogen binding by PAM, and the role of this interaction in the pathogenesis of GAS, requires further investigation. Thus, the focus of this thesis has been to characterise plasminogen binding by PAM and a number of naturally occurring PAM variants.

Characterisation of PAM genes from 13 GAS isolates revealed that whilst these molecules are highly conserved in the c and d repeat domains, they display significant variation within the plasminogen binding repeat motifs (a1/a2). Percent identity to the prototype PAM a1/a2 repeat sequence ranged from 52% to 100% amongst the variants studied here. No correlation was seen between the presence of a PAM gene, or variation within the sequence of PAM, and site of GAS isolation. In order to determine the impact of sequence variation on protein function, recombinant proteins representing six naturally occurring variants of PAM, together with a recombinant M1 protein were expressed and purified. Equilibrium dissociation constants for the interaction of PAM
variants with biotinylated glu-plasminogen ranged from 1.58 nM to 7.58 nM. Effective concentrations of prototype PAM required for 50% inhibition of plasminogen binding to immobilised PAM variants ranged from 0.34 nM to 22.06 nM. These results suggest that while variation in the a1/a2 region of the PAM protein does affect the comparative affinity of PAM variants, the functional capacity to bind plasminogen at physiologically relevant concentrations is conserved. Additionally, a potential role for the a1 region of PAM in eliciting a protective immune response was investigated using a mouse model for GAS infection. The a1 region of PAM was found to protect immunised mice challenged with a homologous PAM-positive GAS strain. These data suggest a link between selective immune pressure against the plasminogen-binding repeats and the functional conservation of the binding domain in PAM variants.

Site-directed mutagenesis of full length PAM_{NS13} protein from an invasive GAS isolate was undertaken to assess the contribution of residues in the a1 and a2 repeat domains to plasminogen binding function. Mutagenesis to alanine of key plasminogen binding site lysine residues in the a1 and a2 repeats (Lys^{98} and Lys^{111}) did not abrogate plasminogen binding by PAM, nor did additional mutagenesis of Arg^{101}, His^{102} and Glu^{104}, which have previously been implicated in plasminogen binding by PAM. Plasminogen binding was only abolished with the additional mutagenesis of Arg^{114} and His^{115} to alanine. Furthermore, mutagenesis of both arginine (Arg^{101} and Arg^{114}) and histidine (His^{102} and His^{115}) residues abolished interaction with plasminogen despite the presence of Lys^{98} and Lys^{111} in the binding repeats. This study shows for the first time that residues Arg^{101}, Arg^{114}, His^{102} and His^{115} in both the a1 and a2 repeat domains of PAM can mediate high affinity plasminogen binding. These data suggest that highly conserved arginine and histidine residues may compensate for variation elsewhere in the a1 and a2
plasminogen binding repeats, and may explain the maintenance of high affinity
plasminogen binding by naturally occurring variants of PAM.

Initial sequence characterisation of PAM variants in this study revealed a
phylogenetically distinct PAM variant, PAM\textsubscript{NS88.2}. This variant binds plasminogen with
high affinity ($K_d = 7.58$ nM), despite displaying only 52% identity to the classical a1/a2
repeat domain of PAM. It was therefore of interest to characterise the putative
plasminogen binding domain of PAM\textsubscript{NS88.2}. Additionally, the association of GAS strain
NS88.2, from which PAM\textsubscript{NS88.2} was isolated, with the invasive disease bacteraemia,
makes it a candidate for virulence studies employing the recently developed human
plasminogen transgenic mouse. Site-directed mutagenesis of the putative plasminogen
binding site indicated that as with PAM\textsubscript{NS13}, PAM\textsubscript{NS88.2} does not interact with
plasminogen exclusively via lysine residues. Mutagenesis to alanine of lysine residues
Lys\textsubscript{96} and Lys\textsubscript{101} reduced but did not abrogate plasminogen binding by PAM\textsubscript{NS88.2}.
Plasminogen binding was only abolished with the additional mutagenesis of Arg\textsubscript{107} and
His\textsubscript{108} to alanine. Furthermore, mutagenesis of Arg\textsubscript{107} and His\textsubscript{108} abolished plasminogen
binding by PAM\textsubscript{NS88.2} despite the presence of Lys\textsubscript{96} and Lys\textsubscript{101} in the binding site. Given
that GAS strain NS88.2 is associated with the invasive disease bacteraemia, and is
virulent in the humanised plasminogen transgenic mouse, the successful abrogation of
plasminogen binding by PAM\textsubscript{NS88.2} may facilitate the development of a PAM\textsubscript{NS88.2}
allelic replacement isogenic mutant for use in future studies involving this model.

This study examines in detail the interaction of PAM and PAM variants with the human
zymogen plasminogen. The maintenance of plasminogen-binding function in spite of
binding site sequence variation suggests that the ability to interact with plasminogen is
evolutionarily advantageous to a subset of GAS isolates. Additionally, this study provides previously unreported details of the ability of PAM to interact with plasminogen independently of binding site lysine residues. These findings have implications for both the future identification of novel plasminogen binding proteins, and may facilitate both the understanding of the role of PAM in GAS disease, and the development of therapeutics to assist in the treatment and prevention of streptococcal infection.