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DO AUSTRALIAN INVESTMENT AND SAVINGS BEHAVE 

PROCYCLICALLY?   

 

 Arusha Cooray* and Bruce Felmingham** 

 

Abstract:    This study uses spectral analysis to examine the behaviour of Australian 

savings and investment and their synchronisation with the business cycle over the 

period September 1959 to December 2005.  The results  reveal that the major cyclical 

components of  savings and investment cohere strongly.    Further, savings   coheres 

strongly with the business cycle suggesting that Australian savings is procyclical.  

Investment also exhibits a procyclical pattern although the evidence of this is weaker.  
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1   The Significance of the Saving Investment Relationship 

 

The interrelationship between investment and savings  is a widely studied issue but 

much less work has been completed on the cyclical characteristics of the data and 

their synchronisation with the business cycle.  Our objective here is to fill this gap for 

Australian data by first examining the cyclical behaviour of  Australian  savings and  

investment and  to  determine if the major harmonic components of Australian  

savings (S) and  investment (I) are coherent over time as economic theory suggests.    

Further, for policy coordination, it is important to know if cycles in investment and 

savings cohere with the major cyclical  components of  GDP ( y ).  The preferred 

technique for identification of cycles in  individual series is spectral analysis 

described  in section 3 below.  This technique is better suited to the analysis of cycles 

in an individual series in comparison with other techniques because it allows 

researchers to model  non linearity directly and to identify more than one major cyclic 

(harmonic) component of each series.  Once the major components of I, S and y  are 

identified the study is extended to answer questions about the coherence of investment 

and savings  and the correspondence of each of these with y using cross spectral 

analysis.  

 

Spectral analysis has been used in the work of Owens and Sarte (2005) to investigate 

how diffusion indices capture business cycles; Selover, Jensen and Kroll (2005, 2003)  

to examine the regional and industrial synchronisation of business cycles in the US; 

A’Hearn and Woitek (2001) to examine the structure of the business cycle;  Bennet 

and Barth (1990) money and the business cycle and  Sichel (1989) on the asymmetry 

of business cycles.  
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In summary, the three goals of this study are as follows:  to determine if the individual 

series for S and I  on Australian data display cyclical patterns;  to  assess the strength 

of correlation between major cycles in I and S and  to test for any pro or 

countercyclical patterns against the variation of y as a benchmark.  The data are 

described in the following section  of the paper.  The methodology is explained in 

section 3 while the results of the spectral and  cross spectral analysis are discussed in 

section 4.  Finally, conclusions are summarised in a closing section. 

 

2  Data  

All data are quarterly, seasonally adjusted and run from 1959:3 to 2005:4.  The 

Australian Bureau of Statistics is the sole data source
1
.  Gross investment  is 

constructed by adding to gross capital expenditure in the Australian National 

Accounts the value of investment in inventories.  Further,  gross savings is assembled  

by adding the aggregate measures net national savings and depreciation (capital used 

up in production).    Real GDP (y) is the chain volume measure  recorded in the 

Australian National Accounts.   

 

3     Methodology 

To test for the  cyclical behaviour of each individual series  a univariate spectral 

analysis is applied to each of the series S, I and y.  A bi-variate (cross-spectral) 

analysis is applied then to the relationship between I and S, I and y and S and y.  The 

I-S study will indicate if Australian savings and investment are linked thus indicating 

if the major cyclical components of each series are correlated, while the analysis of I-y 

and S-y will indicate if I and S are correlated with the business cycle.  

                                                 
1
 All three series for real GDP, gross investment and gross savings are constructed from ABS 5406.0: 

Australian National Accounts.  
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3.1  Spectral Analysis 

Spectral methods are applicable only to time series which are covariance stationary 

which holds if the mean of the series is constant through time and if the 

autocovariance function is determined by periodic time intervals but not by historical 

time.    In order to achieve the desired covariance stationary property the three series 

are filtered using the Hodrick and Prescott (1997) filter. Baxter and King (1999) in 

their analysis of band pass filters note that the Hodrick Prescott filter has several 

desirable properties: first, no phase shift is introduced; second it has trend removal 

characteristics; it contains multi-differencing properties; penalises variation in the 

growth component of the series and approximates the Baxter and King preferred band 

pass filter.  The Hodrick Prescott filter provides a close approximation to Baxter and 

King’s  filter when  quarterly data is used which is the case in this study. The filtered 

series is then used to determine the cyclical behaviour of the individual series. 

 

Spectral analysis establishes the cyclical behaviour of each series through time.  This 

frequency domain methodology has many applications and is described originally by 

Fishman (1969), Rayner (1971) and Koopmans (1974) and more recently by Hamilton 

(1994).  Spectral analysis decomposes a stationary, stochastic series into a set of 

uncorrelated cycles, each associated with a frequency (λ ) or period (the inverse of 

the frequency) which is the time required for the series to complete a whole cycle.  

The variation of an individual series ( x ) is represented by the spectrum, which is the 

Fourier transform of the autocovariance function.  The spectrum [ ]( )xg λ  decomposes 

the time series into a sequence of sine and cosine waves of differing frequencies with 

just the right number of amplitudes to compose the whole series.  It has the following 

definition: 
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λ λ λ= + .  The formal relationship between the spectrum and 

the autovariance function is defined in (1)  where the integral ( )
x

g λ  is the area under 

the spectrum and is equal to the variance (0)γ .  Thus the spectrum decomposes the 

variance into the components contributed by each frequency and in each series, cycles 

of differing length can be identified.  In the spectral analysis of each series the 

objective is to identify the predominant  cycles where the importance of each 

frequency component is assessed in terms of its power or contribution to the total 

variance of the series.  The power density function described by Rayner [1971, p.24] 

estimates the percentage contribution of each cycle (frequency component) to the total 

variance of the series as follows: 

2
2( ) .100
( )D

k

P A k
A k

 
 =
 
 

∑
                           (2) 

where 2 ( )A k  is the estimated variance of the k th  frequency component and 

2
( )

k

A k  ∑  is the estimated variance of the whole series.  The major cycle in each 

series is the one with the greatest power density.  The variance of each frequency 

component is half the square of its amplitude 2 ( )A k  and the estimates of these at each 

frequency are provided by estimates of the spectrum for each series.  This is estimated 

by smoothing or averaging the periodogram, which is the square of the absolute value 

of the Fourier transform of the autocovariance of the series at each frequency divided 

by the total number of observations.   

 



 6 

3.2  Cross Spectral Analysis 

The correlation of the two series is assessed in a pairwise comparison  by applying the 

technique known as cross spectral analysis.  This method analyses the joint variation 

of pairs of variables in the frequency domain and is equivalent to a series of individual 

regressions between sinusoids in two different series at the same frequency (λ ).  The 

cross spectrum is the bivariate equivalent of the spectrum in the single variable case 

and is defined in terms of its imaginary and real components – the quadrature 

spectrum ( )q λ and co-spectrum ( )c λ .  The cross spectrum describing the joint 

variation of the two series x  and y  at frequency ( )λ  is defined as follows: 

( ) ( ) ( )xyg c iqλ λ λ= −          (3) 

The cross spectrum is not estimated directly and its properties are summarized in two 

statistics associated with the quadrature and co-spectra.  These statistics provide all 

the information required for the purpose of the study.  The coherence is analogous to 

the correlation coefficient in the time domain and measures the strength of association 

of two interdependent series at particular frequencies and is formally defined as 

follows: 

{ }1/ 2
2 2( ) ( ) ( ) ( ) ( )x ycoh c q g gλ λ λ λ λ   = +     

0 ( ) 1coh λ≤ ≤                      (4) 

The coherence indicates the strength of association of the common harmonic 

components in the two series and is employed to indicate the correlation of I and S 

series.  If the coherence of the I and S series are significant at the five percent level, 

according to the tests specified by Fishman [(1969), p. 138], then I and S are 

deemed to be correlated. If the coherence is not significant according to these tests, 

correlation does not occur. 
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A second statistic associated with cross spectral analysis is the phase angle in radians 

or the time difference in quarters between peaks in each series.  The phase angle ( )p λ  

is computed from the quad and co-spectra as follows: 

[ ]1
( ) tan ( ) / ( )p q cλ λ λ−= −              (5) 

( )p λ  assesses the fraction of a cycle by which one series leads the other.  The phase 

in radians can be expressed as a time difference in quarters by dividing the phase by 

its  frequency: ( ) /p λ λ . 

 

4  Results of the Study 

The results of the  analysis are discussed in this section begining with the individual 

(univariate) spectral analysis (4.1) which is followed by discussion of the results of 

the cross sepctral analysis (4.2). 

 

4.1   Spectral Analysis of  Individual Time Series 

The individual spectra for gross savings  (S), gross investment  (I), and  GDP (y) are 

estimated as the Fast Fourier transform of the autocovariance function. The results of 

the individual spectral studies for I, S and y are shown on Table 1. 

Table 1:  Maximum Power Spectra: Australian Real GDP, Investment and 

Savings: 1959(3) to 2005(4) 

Series y I S 

Entry (j) 31 27 30 

Frequency 0.368 0.319 0.356 

(radians)    

Duration 17.067 19.687 17.650 

(Quarters)    

% Variance 39.54 37.40 44.64 

t statistic of 

sample mean 

9.131 7.189 8.836 

skewness 2.132 2.454 2.169 

kurtosis 3.596 5.089 3.467 
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The first row of  Table 1 show the data point ( )j , at  which the maximum 

individual power spectra occur while the second row shows the frequency in 

radians of  this maximum spectra.  The percentage contribution of the maximum 

estimated power spectra to the variance of each series is calculated by applying 

the ratio in equation (4) to the estimated spectrum.  The total variance of each 

series is the area under the power spectra on Figures 1, 2,  and 3 and the 

percentage explained at the peak spectra is shown in the fourth row of Table 1.  

The diagnostics in the last few rows of Table 1 relate to the significance of the 

mean of the power spectra in each series; the t-ratio in each case suggests that the 

estimated mean  of the estimated power spectra is significant in each case.   

 

The results of this spectral estimation are interesting.  The most important 

component of each individual series occurs at data entry points j =31, 27 and 30 

for y, I and S respectively.  These points and  frequencies relate to a harmonic 

component of around 4 to 4.75 years duration (periodicity).  In the case of 

Australia’s real GDP this harmonic component is associated with the generally 

agreed notion of the duration  of the Australian business cycle. Some specific 

evidence to support this general notion is provided by Cotis and Coppel (2005) in 

a study of the business cycle dynamics of OECD countries.  These authors find 

that the average duration of downswings in the Australian business cycle is 6.3 

quarters and for upswings 10.7 quarters.  This is very close to the estimated 

duration of the cycle in real GDP found in this study namely, 17.067 quarters.  

This leads to the conclusion that the major cycle in real GDP is the Australian 

business cycle. 
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It is also of interest  to note that the peak spectral estimate also occurs on a 

frequency component of similar duration in the case of both  I and S.  For I, this is 

data entry j=27 and for S  j=30. This peak component is also evident on Figures 1, 

2,  and 3.  These provide a graphical representation of the estimated spectra.  The 

respective peak frequencies are 0.368 for y, 0.319 for I and .356 for S.  This band 

of frequencies explains 39.54 percent, 37.4 percent and 44.64 percent of the total 

variance of  y, I and S respectively.  The individual series behave differently when 

harmonic components other than the peak ones are considered.  In particular, there 

is clearly a longer swing of some importance  occurring at a lower frequency than 

the business cycle on Figure 1. 

Figure 1 
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This occurs at entry j =14  at a low frequency of 0.159 radians consistent with a 

periodicity of 39.386 quarters a much longer swing of almost 10 years in duration.  

By way of contrast, the graph of  investment  (Figure 2) reveals a second peak at 

frequency / 3.4π  with a periodicity of 10 quarters or 18 months  shorter than the 

main component of 4 years duration. 
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Figure 2 
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Savings also displays an important shorter swinging component with a frequency 

of 8.722 radians  periodicity of 7.2 quarters.  This short swing may reflect the  

motives of both savers and investors. In each case this  second important 

component of the I and S series is much shorter than the conventional view of the 

Australian business cycle. 

Figure 3 

S a v in g s
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In summary, the major component of each of  the three series is one which completes 

a full cycle in 4 to 4.75 years.  A longer swinging 10 year cycle is evident in the 

Australian real GDP series although it does not contribute as much to its total variance 

GDP  in comparison with the four year business cycle.  The  second most important 

contributor to the variance of  Australia’s S and I series is a swing of 18-21 months.  
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These  attributes of the I and S series may reflect the  motives of investors and savers 

who are influenced by short term as well as long term effects on their investment and 

savings plans. 

 

4.2 Cross Spectral Relationships  

An interesting  aspect of the results from the univariate spectral analysis is that the 

peak frequencies in each individual case appear to occur on cycles of similar 

periodicity: the predominant cycle in each series has a duration of 4 to 4.75 years.  

This correspondence of cycles in the individual series prompts further bivariate cross 

spectral analysis with the purpose of determining if the predominant cycles in each 

series cohere.  The results of this cross spectral analysis are shown on Table 2 

beginning with the bivariate analysis of I and S and moving to the coherence of S with 

y and I respectively.  The diagnostics shown below the maximum coherence in each 

bivariate study on Table 2 indicate first that the mean coherence between I and S 

(0.621) and I and y (0.630), S and y (0.697) are of commensurate size across all 

components.  Table 2 has been constructed to capture the coherence between the 

major swings in the three variables at j = 27, 30 and 31 for I, S and y respectively.  

Thus in the analysis of cycles in S and I, the coherence between components at j = 27 

(frequency 0.319 radians) the coherence is 0.754 and significant at the 5 percent level 

according to the tests for ˆ 0coh =  specified by Koopmans (1974, p.284).  We reject 

this hypothesis at the given level because the relevant F=10.958.  The same 

conclusion is drawn about the coherence of S and I at j = 28 (frequency 0.335 radians) 

and j = 29 (frequency 0.343 radians).  The coherence between the common major 

cyclical episodes in I and y is weaker.   
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Table 2:  Cross Spectral Analysis of S and I and y 

 I and S  

j Coherence 

 
F

(1)
 Phase 

(Radians) 

Time Difference 

27 0.754 10.958 -1.51 -0.473 

28 0.757 11.002 -1.68 -0.507 

29 0.758 11.231 -1.78 -0.519 

Min Coh 0.013    

Max Coh 0.981    

Mean 0.621  0.082  

T ratio 33.165  4.001  

Skewness -0.559  -0.548  

Kurtosis -0.927  0.911  

     

 I and y  

j Coherence F
(1)

 Phase 

(Radians) 

Time Difference 

27 0.550 3.608 0.034 0.107 

29 0.523 3.257 0.030 0.088 

31 0.498 2.767 0.022 0.155 

Min Coh 0.024    

Max Coh 0.992    

Mean 0.630  -0.046  

T ratio 32.558  2.683  

Skewness -0.577  -0.783  

Kurtosis -0.799  3.026  

     

 S and y  

j Coherence F
(1)

 Phase 

(Radians) 

Time Difference 

29 0.870 25.720 -0.160 -0.690 

30 0.874 26.879 -0.162 -0.456 

31 0.875 27.099 -0.156 -0.424 

Min Coh 0.100    

Max Coh 0.987    

Mean 0.697  -0.108  

T ratio -4.083  4.083  

Skewness 1.121  1.121  

Kurtosis 1.819  1.891  

     

 (1) Koopmans (1974 p.284) test statistic for the coherence on Table 2 will exceed the 0.05α =  

critical value for Fisher’s F distribution.  F
2 2

2,2( 1)
ˆ ˆ( 1) /(1 )n n coh coh− = − − has the critical value 19.5 

at 2, 2(n-1) degrees of freedom.  The null of 0coh =  is rejected in each case. 
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The calculated F statistics in this case hover just below the 5% critical value and are 

only significant at the 10% value.  Further, the coherence statistic is markedly lower, 

ranging in value  from 0.498 to 0.550 at j = 27.  Finally, from Table 2, the strongest 

coherence relates to the study of S with y.  In this case the major common swing at j = 

29, 30 and 31 cohere strongly so that in  each case the F statistic exceeds its critical 

value comfortably.  The value of the coherence at j = 29, 30 and 31 is 0.870, 0.874 

and 0.875 respectively. 

 

This cross spectral study indicates the presence of a medium term relationship 

between the I and S series of approximately four to four and  three quarter years 

duration.  This frequency component was also found to be the predominant harmonic 

component in the individual series and is also strongly correlated in the bivariate case. 

The correlation of the 4.75 years swing in gross saving  and the four year swing in the 

I series may be explained by  their  association with the predominant 4.5 year swing in 

y.   In addition we can add that the Australian  gross savings series  cohere strongly 

with the predominant 4.25-4.75  year cycle in  GDP.  The negative signs on each 

estimated time difference in the last column of Table 2 indicate that investment  leads  

savings  by 0.473 quarters at j = 27, by 0.507 quarters at j = 28 and by 0.519 at j = 29 

quarters.   

 

The outstanding finding from this cross spectral study is that Australian gross  savings 

and gross investment cohere strongly and that gross savings are also strongly 

correlated  with the major swing in real GDP however, the coherence between gross 

investment and real GDP is not as strong. The policy implications which follow from 

this frequency domain analysis are discussed in the concluding section. 
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5 Conclusions 

The cyclical behaviour of I and S and confirm that both series are cyclical in nature.  

The most important cyclical component in each series is a swing of 4 to 4.75 years 

duration.  A second noteworthy feature of the I series is the presence of a cyclical 

component of 18 months somewhat shorter than the  4 year business cycle perhaps 

reflecting the shorter term motives of some investors.  The S series also displays a 

shorter swing of less than 2 years duration reflecting the short run motivation of some 

savers.  Finally, the major component of the real GDP series is a cyclical component 

of 4 years consistent with the commonly accepted duration of the business cycle.  This 

business cycle component explains 37 percent  of the total variation of the real GDP 

series.  Further, a longer swing of 10 years duration is also evident in the real GDP 

series.  This component explains one quarter of the variation of the real GDP series. 

 

The study of the individual I and S series is augmented by bivariate comparisons of 

cycles in the individual series and in this way we find the strongest coherence 

between the I and S series occurring on the cyclical component of  4.75 years 

duration.  So from this outcome it can be argued that the Australian saving and 

investment ratios are strongly correlated in the medium term.  Further the coherence 

between the variation of the I series and real GDP is at a maximum on a cyclical 

component of 4.25 about the same duration as the business cycle. However, the 

coherence of the peaks in gross investment and real GDP is smaller.   Finally, gross 

savings and real GDP exhibit their strongest coherence on a cycle of 17 quarters again 

close to the duration of the business cycle.   
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The  studies of Obstfeld (1986), Finn (1990), Mendoza (1991) show that the 

persistence of business cycle shocks is the main reason for the high correlation 

between savings and investment.  The results derived in this study are consistent with 

the findings of  these studies. Moreover, Mendoza (1991)   finds that in the case of  

Canada,  there is a high correlation between savings and investment with high capital 

mobility contrary to the findings of Feldstein and Horioka (1980).    The Australian 

economy is very similar to that of Canada in that it is a small open economy.  The 

high correlation between savings and investment in the Australian economy need not 

therefore be interpreted as evidence against capital mobility although this has not been 

specifically tested. 

 

These finding are significant for policy coordination.  If investment and saving ratios 

are coherent  with the business cycle then policies motivated by the presence of 

internal imbalances will have a simultaneous impact on saving and investment and 

consequently on external balance.  Thus the procyclical characteristic of saving and to 

a lesser extent investment greatly enhances the prospective benefits of harmonising 

policy strategies to achieve both internal and external balance.  In conclusion, we can 

infer from the results of this study that Australian savings behave procyclically 

potentially making the effects of policy changes more predictable and effective.  

However, the correlation of swings in gross investment with the business cycle is not 

so strong  suggesting that gross investment in Australia is explained by factors other 

than the business cycle.   
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