Effect of sintering temperature on the superconducting properties of graphene doped MgB2

K S B De Silva
University of Wollongong, kaludewa@uow.edu.au

X Xu
University of Wollongong, xun@uow.edu.au

Sanjeev Gambhir
University of Wollongong, sanjeev@uow.edu.au

D C K Wong
University Of Sydney, derek.wong@sydney.edu.au

W X Li
University of Wollongong, wenxian@uow.edu.au

See next page for additional authors

Publication Details

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Effect of sintering temperature on the superconducting properties of graphene doped MgB2

Abstract
A comprehensive study on the effects of sintering temperature on graphene-doped MgB2 superconductor was conducted. Graphene has emerged as an effective dopant that is capable of improving the critical current density (J_c) and flux pinning at a very low doping level, with only a slight reduction of the critical temperature (T_c). MgB2 undoped and graphene-doped bulk samples were prepared by the in situ method and sintered within a temperature range from 650 to 950 °C. It is surprising to note that at the doping level of 1 at.% the sample sintered at 850 °C shows a J_c of $5.6 \times 10^3 \, \text{A/cm}^2$, which is nearly two times higher than that of the undoped sample, with a slight reduction in T_c of 0.5 K. The effects of the sintering temperature on the lattice parameters, resistivity, grain to grain connectivity, lattice disorder, and critical fields have also been investigated. The results are compared with those for undoped samples subjected to the same sintering conditions, and the origins of the differences in the critical current density are discussed. 2002-2011 IEEE.

Keywords
graphene, properties, superconducting, doped, temperature, effect, mgb2, sintering

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details

Authors
K S B De Silva, X Xu, Sanjeev Gambhir, D C K Wong, W X Li, and Q Y. Hu

This journal article is available at Research Online: http://ro.uow.edu.au/aiimpapers/594
Effect of sintering temperature on the superconducting properties of graphene doped MgB$_2$

K. S. B. De Silvaa, X. Xua, S. Gambirb, D. C. K. Wongc, W. X. Lia, Q. Y. Hud

Abstract—A comprehensive study on the effects of sintering temperature on graphene doped MgB$_2$ superconductor was conducted. Graphene has emerged as an effective dopant that is capable of improving the critical current density (J_c) and flux pinning at a very low doping level, with only a slight reduction of the critical temperature (T_c).

MgB$_2$ un-doped and graphene doped bulk samples were prepared by the in-situ method and sintered within a temperature range from 650 to 950 ºC. It is surprising to note that at the doping level of 1 at. % the sample sintered at 850 ºC shows a J_c of 5.6 x 103 A/cm2, which is nearly 2 times higher than that of the un-doped sample, with a slight reduction in T_c of 0.5 K. The effects of the sintering temperature on the lattice parameters, resistivity, grain to grain connectivity, lattice disorder, and critical fields have also been investigated. The results are compared with those for un-doped samples subjected to the same sintering conditions, and the origins of the differences in the critical current density are discussed.

Index Terms—resistivity, upper critical and irreversibility fields, magnetic critical current density, MgB$_2$ bulk

I. INTRODUCTION

Since the discovery of superconductivity in MgB$_2$, numerous efforts have been focused on enhancing its superconducting properties, such as its critical current density (J_c), upper critical field (H_{c2}), and irreversibility field (H_{irr}) [1]. Besides having a high T_c, the simple crystal structure, large coherence length, high critical field, transparency of grain boundaries to supercurrent, and low product cost, are all fascinating features that have benefits for its use in both large-scale applications and electronic devices [2-4].

The critical current density of pristine MgB$_2$ drops rapidly in high magnetic field, however, due to the weak pinning centers and low upper critical field. Chemical doping is known to be the simplest way to improve the superconducting properties of MgB$_2$ superconductors. Among the many dopants investigated, carbon dopants are at the forefront, due to their capacity for addressing the drawbacks to MgB$_2$, particularly in terms of improving the performance of J_c at high fields and improving the H_{c2} [3-6].

Graphene (G) is recognized as a novel dopant for MgB$_2$ due to its specific way of improving J_c, as it improves the intergrain connectivity, and at the same time, leaves micro-strains in the MgB$_2$ matrix, which are beneficial for improving the flux pinning at very low doping levels [7, 8]. The reported results on graphene doping are mostly based on samples prepared through the diffusion process, however, for industrial applications, it is necessary to analyze the performance of samples prepared in a similar manner to the powder-in-tube method, which is the most widely used method to make MgB$_2$ wires.

In this study, we will present a systematic study on the effects of sintering temperature on the superconducting properties of graphene MgB$_2$ bulk samples prepared through the in-situ method.

II. EXPERIMENTAL METHODS

Un-doped and G-doped bulk samples were prepared via the in-situ method from crystalline boron powder (0.2 to 2.4 µm, 99.999%), Mg powder (99%, 352 mesh), and highly reduced chemically converted graphene (rCCG) [9] as precursors. Powders were mixed by mortar and pestle, pressed in a uniaxial press and made into pellets 13 mm in diameter. All the doped samples were prepared by adding 1 at % graphene. These pellets were sintered at four different temperatures, 650 ºC, 750 ºC, 850 ºC, and 950 ºC, respectively, for 30 minutes, at a heating rate of 5ºC/min, under high purity Ar atmosphere. The phase identification and crystal structure investigations were carried out using an X-ray diffractometer (XRD; GBCMMA) with Cu-Kα radiation ($\lambda = 1.54059$ Å). The scanning electron microscope (SEM) images were collected using a Zeiss Ultra Plus scanning electron microscope.

The superconducting transition temperature, T_c, was determined from the AC susceptibility measurements, and the magnetic J_c was derived from the width of the magnetization loop using Bean’s model [10], with data collected by a Quantum Design physical properties measurement system.
The resistivity measurements were conducted using the standard dc four-probe technique under magnetic fields up to 13 T. The upper critical field (H_{c2}) and the irreversibility field (H_{irr}) were determined using the 90% and 10% criteria of R(T) for different applied fields, where R(T) is the normal state resistance near 40 K. The active cross-section (A_F) was calculated from the resistivity, ρ, from Rowell’s model [11].

III. RESULTS AND DISCUSSION

Analysis of the XRD patterns of the powdered samples showed that all samples (i.e. both un-doped and G-doped) consisted of a main phase of MgB$_2$ together with MgO as a minor phase (not shown). Mg peaks, however, were also observed in the samples sintered at 650º C, indicating the incomplete formation of MgB$_2$ under that sintering condition. No significant peak shift was observed for the samples, due to the low doping level (1 at %). Table 1 summarizes the full width at half maximum (FWHM) of the (110) peak, the MgO level, the critical temperature (T_c), the resistivity at 300 K and 40 K, the residual resistivity ratio (RRR), and the active cross-sectional area (A_F) of un-doped and G-doped MgB$_2$ bulk samples.

Analysis of FWHM offers considerable information on the crystallite size and lattice strain in the sample. Among the XRD peaks, the FWHM of the (110) diffraction peak reveals information on the crystallinity. The grain size and the strain can alter the FWHM value [12]. The FWHM trend for the un-doped samples discloses the effects of the sintering temperature on the crystallinity. The G-doped samples are, however, affected by the contrary effects of both sintering temperature and substitution. The crystals of the doped samples have grown under strain due to the C substitution effect. The increased FWHM value of the (110) peak for the G-doped samples compared to the un-doped samples at relevant temperatures, gives evidence of strain effects that have occurred due to the changes in the in-plane crystallinity from graphene doping. It is hard to see any trend in the MgO levels of the samples with temperature, however, G-doped samples show higher levels compared to the un-doped samples. The presence of MgO is inevitable in samples prepared by the in-situ method, as Mg acts as an oxygen getter in air, due to its high reactivity.

![SEM images of undoped (a-c) and G-doped (d-f) MgB$_2$ bulk samples sintered at 750 ºC (a, d), 850 ºC (b, c), and 950 ºC (d, f) respectively.](image)

Fig. 1. SEM images of undoped (a-c) and G-doped (d-f) MgB$_2$ bulk samples sintered at 750 ºC (a, d), 850 ºC (b, c), and 950 ºC (d, f) respectively.

Table 1: Full width at half maximum (FWHM), intensity ratio of MgO to MgB$_2$, critical temperature, resistivity at 300 K & 40 K, residual resistance ratio (RRR) and active cross-sectional area (A_F) of the un-doped, and G-doped MgB$_2$ bulk samples prepared at different sintering temperatures.

<table>
<thead>
<tr>
<th>Sample</th>
<th>FWHM (110) (º)</th>
<th>I_{MgO}/I_{MgB2} (%)</th>
<th>T_c (K)</th>
<th>ρ (300K) ($\mu\Omega$ cm)</th>
<th>ρ (40K) ($\mu\Omega$ cm)</th>
<th>RRR</th>
<th>A_F (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure MgB$_2$ @ 750 ºC</td>
<td>0.4560</td>
<td>9.67</td>
<td>36.8</td>
<td>129.62</td>
<td>61.73</td>
<td>2.099</td>
<td>6.33</td>
</tr>
<tr>
<td>Pure MgB$_2$ @ 850 ºC</td>
<td>0.4320</td>
<td>10.06</td>
<td>37.4</td>
<td>120.91</td>
<td>56.87</td>
<td>2.126</td>
<td>6.71</td>
</tr>
<tr>
<td>Pure MgB$_2$ @ 950 ºC</td>
<td>0.4140</td>
<td>8.18</td>
<td>37.8</td>
<td>121.1</td>
<td>48.43</td>
<td>2.500</td>
<td>5.91</td>
</tr>
<tr>
<td>G-doped MgB$_2$ @ 750 ºC</td>
<td>0.4780</td>
<td>11.02</td>
<td>36.5</td>
<td>137.7</td>
<td>67.7</td>
<td>1.967</td>
<td>6.35</td>
</tr>
<tr>
<td>G-doped MgB$_2$ @ 850 ºC</td>
<td>0.4720</td>
<td>10.62</td>
<td>37.1</td>
<td>122.07</td>
<td>61.73</td>
<td>1.977</td>
<td>7.12</td>
</tr>
<tr>
<td>G-doped MgB$_2$ @ 950 ºC</td>
<td>0.4420</td>
<td>10.59</td>
<td>37.6</td>
<td>116.09</td>
<td>47.69</td>
<td>2.434</td>
<td>6.28</td>
</tr>
</tbody>
</table>
temperatures improve the crystallinity, and hence the T_c. The G-doped samples too show the same trend with a slight reduction compared to the relevant un-doped sample. The normal state resistivity (ρ_{300K}), shows a decreasing trend with increasing sintering temperature, revealing the increased grain perfection, which reduces the scattering due to disorder [13]. The residual resistivity ratio (RRR) also shows a similar trend, which gives evidence for the greater crystalline perfection produced by higher sintering temperatures [14]. The active cross-sectional area (A_v), is improved slightly in the G-doped samples compared to the un-doped ones. At each sintering temperature, however, the improvement is as not remarkable as in samples made by the diffusion method [7]. This may be due to the short sintering time, which has an adverse effect on the crystallinity, and the low heat energy available to break the stable graphene structure, which therefore reduces the benefits of doping. On the other hand, reduction of A_v was observed for both samples sintered at 950 ºC. The evaporation of Mg at high temperature may have played a dominant role over the improved crystallinity in this scenario [13].

The variation of the critical current densities (J_c) with the applied field for the un-doped and G-doped MgB$_2$ bulk samples prepared at different sintering temperatures is shown in Fig. 2. It can be clearly seen that the sintering temperature of the doped samples sintered at 650 ºC is not sufficient to give any benefit from the doping with graphene. On increasing the temperature, however, a significant improvement in J_c performance can be seen due to doping, especially for the sample sintered at 850 ºC. Generally, crystalline boron is less reactive compared to amorphous boron, and therefore a high sintering temperature is needed for complete formation of MgB$_2$. This is the reason for the poor J_c performance observed for the samples sintered at low temperatures. The grain growth and improved crystallinity that occur at high temperatures also adversely affect the J_c performance, particularly at high field [13]. It is surprising to note that at the doping level of 1 at %, the sample sintered at 850 ºC shows a J_c of 5.6×10^3 A/cm2 at 8 T, 5 K, which is nearly 2 times higher than that of the comparable un-doped sample, with a slight reduction T_c of 0.5 K. The results reveal that the most suitable sintering temperature for the in-situ method with the current precursors, is as high as 850 ºC. The critical current density in high fields near H_{c2} is mainly governed by H_{c2}, and hence higher H_{c2} leads to a higher J_c [15]. This, together with the improved connectivity, explains why the highest J_c performance is observed in the G-doped MgB$_2$ sample that was sintered at 850 ºC. It should be noted that the Bean’s model, which used to calculate all the J_c results in this manuscript, did not distinguish the contribution of the local current in the superconducting clusters and the global critical current passing through the whole of the samples. However, the magnetic J_c can still be used for qualitative comparisons of the deference of J_c for MgB$_2$ samples under high magnetic fields when the local current contribution was faded away [16].

The temperature dependence of the upper critical (H_{c2}) and irreversibility (H_{irr}) fields of the samples sintered at 750 ºC and
sintered at 950 ºC, although the improvement of grain to grain connectivity. The improvement of effective carbon substitution, improved flux pinning and improved performance in the G-doped samples sintered at 850 ºC are shown in Fig. 3. It reveals that both H_{c2} and H_{irr} have increased due to doping compared to the un-doped sample sintered at 850 ºC. This gives evidence that effective carbon substitution has occurred under the sintering conditions at 850 ºC. It is well-known that more scattering due to doping shortens the mean free path, thereby resulting in increased H_{c2}. Improved H_{c2} and H_{irr} due to doping were also observed in samples sintered at 950 ºC, although the improvement of H_{c2} and H_{irr} at 850 ºC is superior. This is due to the obvious grain growth and improved crystallinity that occurred at the higher sintering temperature, compared to sintering at 850 ºC. Degradation of the crystallinity is directly linked to lattice disorder, which leads to improved high field J_c performance.

IV. CONCLUSION

A significant enhancement of critical current density under high magnetic fields was observed in G-doped samples sintered at 850 ºC, without much reduction of T_c, which is due to effective carbon substitution, improved flux pinning and improved grain to grain connectivity. The improvement of J_c performance in the G-doped samples sintered at 850 ºC is reflected by the improved H_{c2} and H_{irr}. We found that a considerably high temperature is needed to optimize the effects of G-doping on improving the J_c performance of MgB$_2$ bulk samples prepared through the in-situ method, using crystalline boron and graphene as precursors.

ACKNOWLEDGMENTS

The authors would like to thank Prof. S. X. Dou, Prof. X. L. Wang, and Dr. T. Silver at the Institute for Superconducting and Electronic Materials, University of Wollongong, for their helpful discussions.

REFERENCES