Creation and distribution of real-time content

Cong Duc Nguyen

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Creation and Distribution of Real-time Content: A Case Study in Provisioning Immersive Voice Communications to Networked Games.

A thesis submitted in fulfilment of the requirements for the award of the degree

Doctor of Philosophy

from

THE UNIVERSITY OF WOLLONGONG

by

Cong Duc Nguyen
Bachelor of Engineering (Honours Class I)

SCHOOL OF ELECTRICAL, COMPUTER AND TELECOMMUNICATIONS ENGINEERING

2006
Abstract

The rapid increases in network bandwidth and processing power have led to tremendous growth in Internet applications and changed the nature of delivering content. From earlier web application, which is only about retrieval of pre-computed static content, current content delivery architectures provide dynamic content and enable personalization of content. Recent interactive entertainment applications, such as multiplayer online games, require content to be created and distributed in real-time. In addition, the rapid increase in processor speed has led to various proposals to put real-time computation within or at the edge of the network that allow application specific processing on packet flow such as multimedia transcoding and content adaptation. In short, these emerging applications have a common characteristics that the contents of application flows are processed in real-time before being delivered to end users. We refer to these as applications that require real-time content creation.

This thesis aims to develop models for real-time content creation and distribution. We examine both network architectures for delivering content as well as server processing resource management for content creation. We concentrate on a case study when content creation is from a dynamic set of dispersed sources. In particular, we examine the provision of an immersive voice communication service to massively multiplayer online games, which requires real-time creation of audio scenes from dynamic sets of participants. We present various delivery architectures for this service, evaluate the performance of these architectures and provide recommendations based on the evaluation. In addition, this thesis designs a server resource management architecture for sharing processing resource among real-time content creation applications.
Our study begins with reviewing the evolution of content distribution over the Internet, ranging from simple caching proxies to content distribution networks and personalization of content. We then discuss current and future developments of content distribution which require real-time creation and distribution of content from dynamic sets of dispersed sources. These include state information processing and communication information processing in distributed virtual environments. While all networked games require state information processing, communication information processing has been recently seen as a key to enhance the reality and attractiveness of the virtual environment. In particular, this thesis reviews technologies and approaches for providing an immersive voice communication service to distributed virtual environments. Several delivery architectures are introduced for providing this service, namely peer-to-peer, central server, distributed locale server architecture, and distributed proxy architecture. Furthermore, we present a realistic simulation model that captures player distribution in the Internet and avatar distribution in the game virtual world and specify two key performance evaluation parameters: interactive delay and network bandwidth usage.

In the central server architecture, two optimization objectives are proposed for choosing an optimal central server from a set of potential servers. We also propose a dynamic relocation of a central server in response to changes in player distribution due to time zone differences. It is shown that relocation of the central server in response to these changes can significantly reduce the interactive delay by up to 40% and the network bandwidth usage by up to 50%. In addition, the optimal central server can significantly reduce the interactive delay compared to a randomly located central server.

In the distributed locale server architecture, the game virtual world is partitioned into smaller areas called locales and each locale is assigned to a server. We propose two server assignment algorithms for optimizing the latency performance of this architecture. The first algorithm is based on an Integer Linear Programming (ILP) model which provides an exact solution to the problem but is subject to high computation complexity. We then produce a new multi-layer graph representation of the problem and devise a greedy heuristic based on this graph. It is shown that the greedy heuris-
tics has low run time complexity and provides solutions close to the optimal (within 5% of the optimal in all cases). In addition, increasing the number of servers reduces the latency of the distributed locale server architecture significantly compared to the optimal central server when there is a physical/virtual world correlation. Specifically, with a reasonable number of servers, the distributed locale server architecture can reduce the delay of the central server by 20% to 60%.

In the distributed proxy architecture, players are assigned to a close proxy and each proxy manages the audio mixing operation on behalf of players and forwards audio streams from players to other interested proxies. This thesis develops an ILP model for an optimal proxy assignment and adapts the multi-layer graph approach used earlier to devise a greedy heuristics for solving the proxy assignment problem efficiently. While the ILP model is unscalable, the greedy heuristics is highly scalable and suitable for practical implementation. This thesis also investigates the efficiency of network multicast in different player and avatar distribution scenarios. The effect of varying the number of proxies is also investigated.

Extensive simulation experiments are carried out to evaluate the performance of all delivery architectures. In particular, since the distributed locale server architecture and the distributed proxy architecture are ‘dual’ of each other, we concentrate on comparing the performance of these. From the performance evaluation, we provide recommendations on choosing suitable delivery architectures based on the server resource availability, multicast, and game’s avatar aggregation behaviors. The quantitative study in this thesis will be of benefit to future immersive voice service providers in the design of a cost effective delivery architecture for this service.

Finally, the thesis presents a resource management architecture for sharing processing resources among various real-time content creation applications including the immersive audio mixing application. Due to the inability of determining processing times for scheduling, a processing resources scheduling algorithm called Start-time Weighted Fair Queueing (SWFQ) is proposed. From analysis and simulation, it is shown that SWFQ offers good fairness and delay properties compared to current schemes. In fact, the fairness of SWFQ was comparable to Weighted Fair Queueing (WFQ) and the delay behavior is better than Start-time Fair Queueing (SFQ).
Statement of Originality

This is to certify that the work described in this thesis is entirely my own work, except where due reference is made in the text. I also acknowledge the guidance from my supervisors and ideas generated from discussions with them in this work.

No work in this thesis has been submitted for a degree to any other university or institution.

Signed

Cong Duc Nguyen
1 May, 2006
Acknowledgments

First of all, I would like to thank my supervisor Professor Farzad Safaei for his guidance, support and encouragements during my PhD, especially through some difficult stages of the project. I am also very grateful to Dr. Paul Boustead for his help and support. This thesis may have not been completed without their help.

Next, I would like to express my gratitude to Professor Joe Chicharo for giving me the opportunity to undertake this study. I am also grateful to Smart Internet Technology Cooperative Research Center for supporting this work. I would like to thank Dr. Don Platt for his assistance in the early stages of the project and Fariza Sabrina for her collaboration.

I would like to thank all members of TITR lab for their encouragements and assistance. In particular, I would like to thank Vinh Nguyen, Ying Que, Jeremy Brun, Daniel Franklin and Justin Lipman.

I would like to thank Lan Nguyen, Cuong Tran and Long Nghiem for their friendship and support during my PhD in Wollongong.

Finally, I would like to thank my family and Hang Thuy Nguyen for their encouragements and support throughout my PhD.
Contents

1 Introduction ... 1
 1.1 Background ... 1
 1.2 Overview .. 3
 1.3 Contributions ... 7
 1.4 Publications based on Thesis 8

2 Literature Review 10
 2.1 Introduction ... 10
 2.2 Evolution of Content Delivery 11
 2.2.1 Proxy Caching 12
 2.2.2 Web Server Cluster 13
 2.2.3 Content Distribution Networks 14
 2.2.4 Advanced Content Service Delivery 16
 2.3 Future Development of Content Creation and Delivery . 19
 2.3.1 Multiplayer Online Games 19
 2.3.2 Group Communications in Multiplayer Online Games . 24
 2.3.3 Immersive Voice Communication in Distributed Virtual Environments .. 27
 2.3.4 Audio Codec Technologies 32
 2.4 Infrastructure Support 37
CONTENTS	viii
<p>| 2.4.1 Server Infrastructure | 37 |
| 2.4.2 Network Infrastructure Support | 45 |
| 2.5 Conclusions | 55 |
| 2.5.1 Issues Considered in Thesis | 55 |
| 3 An Immersive Audio Communication Service for Multi-Player Online | 57 |
| 3.1 Introduction | 57 |
| 3.2 Concept of Immersive Voice Communication Service | 58 |
| 3.3 Basic Delivery Architectures | 61 |
| 3.3.1 Peer-to-peer | 61 |
| 3.3.2 Central Server | 62 |
| 3.3.3 Distributed Locale Servers | 64 |
| 3.3.4 Distributed Proxies | 66 |
| 3.3.5 Discussion on peer-to-peer and server architectures | 67 |
| 3.4 Framework for Performance Evaluation | 68 |
| 3.4.1 Game Player Grouping Behaviors | 68 |
| 3.4.2 Models of Physical Networks and Virtual World | 71 |
| 3.4.3 Definition of Parameters and Assumption | 75 |
| 3.5 Conclusions | 77 |
| 4 Central Server | 78 |
| 4.1 Introduction | 78 |
| 4.2 Service Delivery Model | 79 |
| 4.2.1 Optimization Procedures | 79 |
| 4.2.2 Relocation of a Central Server | 81 |
| 4.3 Simulation Experiments | 84 |</p>
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.1 Simulation Setup</td>
<td>84</td>
</tr>
<tr>
<td>4.3.2 Relocation of a Central Server</td>
<td>85</td>
</tr>
<tr>
<td>4.3.3 Comparison of Optimization Objectives</td>
<td>87</td>
</tr>
<tr>
<td>4.3.4 Effect of Varying Physical/Virtual World Correlation on Network Resources and Delay Metrics</td>
<td>88</td>
</tr>
<tr>
<td>4.4 Conclusions</td>
<td>90</td>
</tr>
<tr>
<td>5 Distributed Locale Server</td>
<td>91</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>91</td>
</tr>
<tr>
<td>5.2 Service Delivery Model</td>
<td>92</td>
</tr>
<tr>
<td>5.2.1 Problem Description</td>
<td>93</td>
</tr>
<tr>
<td>5.2.2 Mathematical Programming Model</td>
<td>94</td>
</tr>
<tr>
<td>5.2.3 Greedy Heuristic Algorithm</td>
<td>96</td>
</tr>
<tr>
<td>5.2.4 Impact of Avatar Movements and Player Distribution on Optimal Server Assignment</td>
<td>100</td>
</tr>
<tr>
<td>5.3 Simulation Experiments</td>
<td>100</td>
</tr>
<tr>
<td>5.3.1 Simulation Setup</td>
<td>100</td>
</tr>
<tr>
<td>5.3.2 Investigation of Server Assignment Algorithms</td>
<td>101</td>
</tr>
<tr>
<td>5.3.3 Effect of Varying Number of Servers and Physical/Virtual World Correlation</td>
<td>103</td>
</tr>
<tr>
<td>5.3.4 Effect of Varying Correlation in Interactive Delay</td>
<td>105</td>
</tr>
<tr>
<td>5.3.5 Network Bandwidth Requirements in Different Avatar Aggregation Behaviors</td>
<td>108</td>
</tr>
<tr>
<td>5.4 Conclusions</td>
<td>110</td>
</tr>
<tr>
<td>6 Distributed Proxy Architecture</td>
<td>112</td>
</tr>
<tr>
<td>6.1 Introduction</td>
<td>112</td>
</tr>
<tr>
<td>6.2 Service Delivery Model</td>
<td>114</td>
</tr>
</tbody>
</table>
6.2.1 Proxy Location Problem .. 114
6.2.2 Mathematical Programming Model 115
6.2.3 Heuristic Algorithms ... 118
6.2.4 Different Proxy Architectures 121

6.3 Simulation Experiments ... 123
6.3.1 Simulation Setup .. 123
6.3.2 Investigation of Proxy Assignment Algorithms 124
6.3.3 Investigation with Proxy Architectures for Different Player Aggregation Behaviours .. 128
6.3.4 Efficiency of Multicast ... 132
6.3.5 Effect of Varying Number of POPs and Servers 134

6.4 Conclusions ... 136

7 Comparison of Architectures 138
7.1 Introduction ... 138
7.2 Comparisons of Architectural Requirements 139
7.2.1 Server Assignment Algorithms 139
7.2.2 Impact of Avatar Movements and Player Distribution 141
7.2.3 Server Resource Requirements 142
7.3 Simulation Experiments ... 142
7.3.1 Simulation Setup .. 142
7.3.2 Interactive Delay ... 143
7.3.3 Network Bandwidth Usage 148
7.4 Summary of Results and Recommendations 151
7.4.1 Impact of Avatar Aggregations on Delivery Architectures . 151
7.4.2 Impact of Number of Servers 152
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.3 Impact of Correlation</td>
<td>152</td>
</tr>
<tr>
<td>7.4.4 Efficiency of Multicast</td>
<td>153</td>
</tr>
<tr>
<td>7.4.5 Discussions on Choice of Delivery Architectures</td>
<td>153</td>
</tr>
<tr>
<td>8 Server Processing Resource Management</td>
<td>156</td>
</tr>
<tr>
<td>8.1 Introduction</td>
<td>156</td>
</tr>
<tr>
<td>8.2 Server Processing Resource Management</td>
<td>158</td>
</tr>
<tr>
<td>8.2.1 Processing Resource Requirements of Immersive Audio Mixing Operation</td>
<td>158</td>
</tr>
<tr>
<td>8.2.2 Server Processing Resource Management Model</td>
<td>159</td>
</tr>
<tr>
<td>8.2.3 Processor Resource Scheduling</td>
<td>161</td>
</tr>
<tr>
<td>8.3 Start-time Weighted Fair Queueing</td>
<td>162</td>
</tr>
<tr>
<td>8.3.1 Packet Scheduling Disciplines in Traditional Networks</td>
<td>164</td>
</tr>
<tr>
<td>8.3.2 Server Processing Resource Scheduling Model</td>
<td>165</td>
</tr>
<tr>
<td>8.3.3 Example of SWFQ</td>
<td>168</td>
</tr>
<tr>
<td>8.4 Analysis of SWFQ</td>
<td>169</td>
</tr>
<tr>
<td>8.4.1 Fairness Analysis</td>
<td>169</td>
</tr>
<tr>
<td>8.4.2 Delay Analysis</td>
<td>170</td>
</tr>
<tr>
<td>8.5 Simulation Experiments</td>
<td>172</td>
</tr>
<tr>
<td>8.5.1 Simulation Setup</td>
<td>172</td>
</tr>
<tr>
<td>8.5.2 Fairness of SWFQ</td>
<td>173</td>
</tr>
<tr>
<td>8.5.3 Delay Properties of SWFQ</td>
<td>173</td>
</tr>
<tr>
<td>8.6 Conclusions</td>
<td>178</td>
</tr>
<tr>
<td>9 Conclusions</td>
<td>183</td>
</tr>
<tr>
<td>9.1 Overview</td>
<td>183</td>
</tr>
<tr>
<td>9.2 Summary of Contributions and Findings</td>
<td>183</td>
</tr>
</tbody>
</table>
9.2.1 Classification of Architectures and Performance Evaluation Framework .. 184
9.2.2 Central Server .. 184
9.2.3 Distributed Locale Servers 185
9.2.4 Distributed Proxy Architecture 185
9.2.5 Performance Comparison Evaluation 186
9.2.6 Server Resource Management 186
9.3 Thesis Recommendations .. 187
9.3.1 Recommendations on Infrastructure Support 187
9.3.2 Recommendations on Delivery Architectures 188
9.4 Future Work ... 189
9.4.1 Performance Evaluation Model 189
9.4.2 Experimental Investigation 191

A Proofs for SWFQ Analysis .. 204
A.1 Proof of Theorem 1 ... 204
A.2 Proof of Theorem 2 ... 205
A.3 Proof of Theorem 3 ... 206
A.4 Proof of Theorem 4 ... 207

B Details of Simulation Environments 209
B.1 Network Topologies ... 209
B.2 Physical Network and Virtual World 212
 B.2.1 Physical Networks .. 212
 B.2.2 Virtual World ... 213
B.3 Simulation Procedures ... 214
List of Figures

2.1 A content distribution network. .. 14
2.2 Content delivery/assembly using Edge Side Includes (ESI). 17
2.3 Example of an ESI template consisting of ESI fragments and their expiration times. .. 18
2.4 Example of ICAP operation. .. 18
2.5 Game server architectures. ... 21
2.6 Example of a game virtual world 24
2.7 Basic functional elements of DICE, adapted from (Boustead et al., 2005). .. 31
2.8 Angular clustering, adapted from (Boustead et al., 2005). 32
2.9 The layered Grid architecture (Foster and Kesselman, 2004). 40
2.10 Example of IP multicast and application layer multicast. 48
2.11 Illustration of a service overlay network, adapted from (Duan et al., 2003). .. 49
2.12 Booster box and the deployment of booster boxes for distributed game servers, adapted from (Rooney et al., 2003). 52
2.13 Overlay server and routing between these servers over multiple network domains (Boustead et al., 2004). 53
2.14 Tunnel Switch design (Boustead et al., 2004). 54
3.1 Immersive voice communication scenario and zone definition 59
3.2 Peer-to-peer architecture for immersive audio scene creation ... 63
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3</td>
<td>Central server architectures for immersive audio scene creation</td>
<td>64</td>
</tr>
<tr>
<td>3.4</td>
<td>Distributed locale server architecture for immersive audio scene creation</td>
<td>65</td>
</tr>
<tr>
<td>3.5</td>
<td>Distributed proxy server architecture for immersive audio scene creation</td>
<td>67</td>
</tr>
<tr>
<td>3.6</td>
<td>Player behavior classification</td>
<td>71</td>
</tr>
<tr>
<td>3.7</td>
<td>Avatar distribution in different games</td>
<td>73</td>
</tr>
<tr>
<td>3.8</td>
<td>Delay components</td>
<td>76</td>
</tr>
<tr>
<td>3.9</td>
<td>Interactive delay and bandwidth cost metrics associated with avatar “a”</td>
<td>76</td>
</tr>
<tr>
<td>4.1</td>
<td>Physical/virtual world model</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>Relocation of a central server during a transient period</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Effect of changes in game client distribution on the interactive delay metric and network bandwidth usage of a fixed central server versus the optimal central server</td>
<td>86</td>
</tr>
<tr>
<td>4.4</td>
<td>Interactive delay comparison of the two optimization objectives in different cluster distribution</td>
<td>86</td>
</tr>
<tr>
<td>4.5</td>
<td>Effect of varying physical/virtual world correlation on network resource usage of multicast and peer-to-peer unicast versus the central server architecture</td>
<td>88</td>
</tr>
<tr>
<td>4.6</td>
<td>Effect of varying physical/virtual world correlation on the interactive delay metric</td>
<td>89</td>
</tr>
<tr>
<td>5.1</td>
<td>Graph representation of the server assignment problem and solution</td>
<td>98</td>
</tr>
<tr>
<td>5.2</td>
<td>Server assignment results from Cplex and the greedy heuristics</td>
<td>103</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of changes in number of server and physical/virtual world correlation</td>
<td>104</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of changes in correlation on interactive delay for crowd based games</td>
<td>106</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of changes in correlation on interactive delay for clan based games</td>
<td>107</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>5.6</td>
<td>Bandwidth resource requirements of distributed server and peer-to-peer versus central server for crowd/clan based games</td>
<td>109</td>
</tr>
<tr>
<td>5.7</td>
<td>Network bandwidth requirements in a loner based game</td>
<td>110</td>
</tr>
<tr>
<td>6.1</td>
<td>Graph representation of the proxy assignment problem and solution</td>
<td>119</td>
</tr>
<tr>
<td>6.2</td>
<td>Network bandwidth usages and interactive delay calculation associated with avatar “a”</td>
<td>122</td>
</tr>
<tr>
<td>6.3</td>
<td>Comparison of proxy assignment algorithms</td>
<td>127</td>
</tr>
<tr>
<td>6.4</td>
<td>Effect of varying virtual/physical world correlation on network bandwidth requirements in crowd/clan based games</td>
<td>130</td>
</tr>
<tr>
<td>6.5</td>
<td>Effect of varying density on network bandwidth requirements in loner and crowd based games</td>
<td>131</td>
</tr>
<tr>
<td>6.6</td>
<td>Effect of varying the number of POPs on network bandwidth requirements of proxy multicast and unicast</td>
<td>133</td>
</tr>
<tr>
<td>6.7</td>
<td>Effect of varying virtual/physical world correlation on interactive delays</td>
<td>134</td>
</tr>
<tr>
<td>6.8</td>
<td>Effect of varying number of proxies on interactive delay and network bandwidth requirements of distributed proxy architectures</td>
<td>135</td>
</tr>
<tr>
<td>7.1</td>
<td>Comparison in interactive delays between distributed proxies and distributed locale servers when varying the physical/virtual world correlation</td>
<td>144</td>
</tr>
<tr>
<td>7.2</td>
<td>Comparison in interactive delays between distributed proxies and distributed locale servers when varying the physical/virtual world correlation</td>
<td>145</td>
</tr>
<tr>
<td>7.3</td>
<td>Comparison in interactive delays between distributed proxies and distributed locale servers when varying the number of server</td>
<td>146</td>
</tr>
<tr>
<td>7.4</td>
<td>Network bandwidth usages of distributed proxies in clan/crowd based games when varying the physical/virtual world correlation</td>
<td>149</td>
</tr>
<tr>
<td>7.5</td>
<td>Network bandwidth usages of distributed locale servers in clan/crowd based games when varying the physical/virtual world correlation</td>
<td>150</td>
</tr>
<tr>
<td>7.6</td>
<td>Effect of avatar density on network bandwidth usages of different architectures</td>
<td>155</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
</tr>
<tr>
<td>8.1</td>
<td>An example of implementation of SWFQ in SWON.</td>
<td>158</td>
</tr>
<tr>
<td>8.2</td>
<td>Immersive Audio Mixing.</td>
<td>160</td>
</tr>
<tr>
<td>8.3</td>
<td>Variation in actual processing time requirements of immersive audio scene of a Quake 3 game with five players.</td>
<td>160</td>
</tr>
<tr>
<td>8.4</td>
<td>Model of a node processing resource management.</td>
<td>161</td>
</tr>
<tr>
<td>8.5</td>
<td>Variation in actual processing time of MPEG2 data block of fixed length for different executions (Sabrina and Jha, 2003).</td>
<td>163</td>
</tr>
<tr>
<td>8.6</td>
<td>Example of WFQ, SWFQ and SFQ.</td>
<td>167</td>
</tr>
<tr>
<td>8.7</td>
<td>Processing rates allocated to IP Forwading, Cast Encryption, and FEC.</td>
<td>174</td>
</tr>
<tr>
<td>8.8</td>
<td>Maximum delays of packets in IP Forwarding (queues: 0-9), Cast Encryption (queues: 10-19), and FEC (queues:20-29).</td>
<td>176</td>
</tr>
<tr>
<td>8.9</td>
<td>Delay performance of SWFQ and SFQ with Forward Error Coding application.</td>
<td>177</td>
</tr>
<tr>
<td>8.10</td>
<td>Delay performance of SWFQ and SFQ with Audio mixing applications.</td>
<td>179</td>
</tr>
<tr>
<td>8.11</td>
<td>Delay performance of SWFQ and SFQ with RC2 Encryption application.</td>
<td>180</td>
</tr>
<tr>
<td>8.12</td>
<td>Delay performance of SWFQ and SFQ with MPEG2 Encoding application.</td>
<td>181</td>
</tr>
<tr>
<td>B.1</td>
<td>Example of (a) random graph and (b) transit-stub graph.</td>
<td>210</td>
</tr>
</tbody>
</table>
List of Tables

2.1 Summary of common audio codecs and the codec-related processing delays in IP-applications (one frame per packet), specified in ITU-T G.114. ... 35

2.2 Bandwidth requirements for several common VoIP audio codecs. ... 36

4.1 Game client distribution in a day period 85

5.1 Comparison between optimal results and greedy heuristic results in the total interactive communication delay. 102

6.1 Comparison between the optimal proxy assignment, the greedy heuristics, and the simple heuristics with respect to total interactive communication delay. .. 125

6.2 Comparison between optimal results and greedy heuristic results in the total interactive communication delay. 128

6.3 Comparison between the greedy heuristics and the simple heuristics in the total interactive communication delay. 128

6.4 Comparison between the greedy heuristic and the simple heuristic in the total interactive communication delay. 129

6.5 Comparison between the greedy heuristics and the simple heuristics in the total interactive communication delay. 129

8.1 Delay standard deviations of SWFQ and SFQ with IP Forwarding, Cast Encryption and Solomon Forward Error Coding (msec). 175

8.2 Processing requirements of Audio Mixing, RC2 Encryption and MPEG2 Encoding. ... 175

xvii
8.3 Delay standard deviations of SWFQ and SFQ with Audio Mixing, RC2 Encryption and MPEG2 Encoding (msec) .. 178

B.1 Parameters used for generating the transit-stub graph ... 212
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADPCM</td>
<td>Adaptive Differential Pulse Code Modulation</td>
</tr>
<tr>
<td>AS</td>
<td>Autonomous System</td>
</tr>
<tr>
<td>API</td>
<td>Application Program Interface</td>
</tr>
<tr>
<td>ASIC</td>
<td>Application-Specific Integrated Circuit</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol</td>
</tr>
<tr>
<td>CDN</td>
<td>Content Distribution Network</td>
</tr>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>CVE</td>
<td>Collaborative Virtual Environment</td>
</tr>
<tr>
<td>DiffServ</td>
<td>Differentiated Service</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name Server</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>FPS</td>
<td>First Person Shooter</td>
</tr>
<tr>
<td>FPGA</td>
<td>Field Programmable Gate Array</td>
</tr>
<tr>
<td>FIB</td>
<td>Forwarding Information Base</td>
</tr>
<tr>
<td>GPS</td>
<td>Generalized Processor Sharing</td>
</tr>
<tr>
<td>GT-ITM</td>
<td>Georgia Tech Internet Topology Model</td>
</tr>
<tr>
<td>HRTF</td>
<td>Head Related Transfer Function</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hypertext Transfer Protocol</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>ILP</td>
<td>Integer Linear Programming</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>IPSec</td>
<td>IP Security Protocol</td>
</tr>
<tr>
<td>ISP POP</td>
<td>Internet Service Provider Point of Presence</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LPC</td>
<td>Linear Predictive Coding</td>
</tr>
<tr>
<td>LDD</td>
<td>Latency Driven Distribution</td>
</tr>
<tr>
<td>MMOG</td>
<td>Massively Multi-Player Online Games</td>
</tr>
<tr>
<td>MPLS</td>
<td>Multi-Protocol Label Switching</td>
</tr>
<tr>
<td>NP</td>
<td>Network Processor</td>
</tr>
<tr>
<td>NS-2</td>
<td>Network Simulator version 2</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>PGPS</td>
<td>Packet Generalized Processor Sharing</td>
</tr>
<tr>
<td>PVN</td>
<td>Programmable Virtual Network</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>RDD</td>
<td>Resource Driven Distribution</td>
</tr>
<tr>
<td>RFC</td>
<td>Request For Comment</td>
</tr>
<tr>
<td>RON</td>
<td>Resilient Overlay Network</td>
</tr>
<tr>
<td>RSVP</td>
<td>Resource Reservation Protocol</td>
</tr>
<tr>
<td>RTP</td>
<td>Real Time Transport Protocol</td>
</tr>
<tr>
<td>SFQ</td>
<td>Start-Time Fair Queueing</td>
</tr>
<tr>
<td>SON</td>
<td>Service Overlay Network</td>
</tr>
<tr>
<td>SPF</td>
<td>Shortest Path First</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>SWFQ</td>
<td>Start-Time Weighted Fair Queueing</td>
</tr>
<tr>
<td>SWON</td>
<td>Switched Overlay Network</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>VO</td>
<td>Virtual Organization</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WFQ</td>
<td>Weighted Fair Queueing</td>
</tr>
</tbody>
</table>