The molecular identification and thermal attributes of forensically important blowflies (Diptera: Calliphoridae: Chrysomya)

Leigh Alden Nelson
University of Wollongong
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
The molecular identification and thermal attributes of forensically important blowflies (Diptera: Calliphoridae: *Chrysomya*)

A thesis submitted in fulfilment of the requirements for the award of the degree of

Doctor of Philosophy

from

University of Wollongong

by

Leigh Alden Nelson
BBiotech (Hons), GradCertBus

School of Biological Sciences
2008
Declaration

I, Leigh Alden Nelson, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced and acknowledged. This document has not been submitted for qualifications at any other academic institution.

Leigh Alden Nelson
November, 2008
The fly heeds not death; eating is all to him.

African proverb
The forensically important *Chrysomya rufifacies* female (left) and male (right) on pig carrion.

Photo: L.A. Nelson
Table of Contents

Acknowledgements ... v

Abstract... vii

List of Abbreviations ... ix

List of Figures... xi

List of Tables ... xiii

Chapter 1. General Introduction... 1

1.1. Introduction to forensic entomology... 1

1.2. Forensically important blowflies (Diptera: Calliphoridae) 3

 1.2.1. Genus Chrysomya.. 6

1.3. DNA analysis in entomology .. 7

 1.3.1. Mitochondrial DNA.. 8

 1.3.2. Nuclear ribosomal DNA .. 10

1.4. DNA-based techniques for species identification ... 16

 1.4.1. PCR-RFLP analysis ... 16

 1.4.2. Phylogenetic analysis ... 18

 1.4.3. DNA barcoding .. 19

1.5. Conclusions ... 22

1.6. Aims .. 23

1.7. Thesis format... 24

Chapter 2. Identification of forensically important *Chrysomya* (Diptera:
Calliphoridae) species using the second ribosomal internal transcribed spacer
(ITS2) .. 25
2.1. Introduction ... 26
2.2. Materials and Methods .. 28
 2.2.1. Specimens .. 28
 2.2.2. DNA Extraction ... 28
 2.2.3. PCR amplification .. 28
 2.2.4. DNA Sequencing ... 30
 2.2.5. Phylogenetic analysis ... 31
 2.2.6. ITS2 restriction digestion ... 32
2.3. Results ... 33
 2.3.1. Amplification of the entire ITS region ... 33
 2.3.2. Amplification of ITS2 .. 34
 2.3.3. ITS2 sequences from *Chrysomya* species .. 35
 2.3.4. Assessment of geographical variation in ITS2 sequences of *Ch. incisuralis* .. 37
 2.3.5. Restriction analysis .. 37
 2.3.6. Digestion with Dra I ... 38
 2.3.7. Digestion with other restriction enzymes (Hinf I, BsaX I, BciV I and Ase I) ... 39
 2.3.8. Phylogenetic analysis ... 42
2.4. Discussion ... 45

Chapter 3. Use of the COI ‘barcode’ for identification of forensically and medically important blowflies ... 49

3.1. Introduction ... 50
3.2. Materials and Methods .. 52
 3.2.1. Specimens .. 52
 3.2.2. DNA Extraction, amplification and sequencing ... 55
Table of Contents

3.2.3. DNA sequence analysis .. 57
3.3. Results and Discussion ... 58
 3.3.1. Amplification and sequencing of the COI barcode region 58
 3.3.2. Neighbour-joining analysis of COI barcode sequences 61
 3.3.3. Comparison of methods of COI barcode analysis 63
 3.3.4. ITS2 sequence analysis for selected species .. 63
3.4. Conclusion ... 66

Chapter 4. Thermal attributes of *Chrysomya* (Diptera: Calliphoridae) species ..67

4.1. Introduction ... 67
4.2. Materials and Methods ... 72
 4.2.1. Choice of species ... 72
 4.2.2. Fly cultures ... 73
 4.2.3. Larval thermogenesis ... 73
 4.2.4. Growth under different temperatures ... 74
 4.2.5. Temperature preferences ... 76
 4.2.6. Larval survivorship .. 77
 4.2.7. Data and statistical analyses ... 77
4.3. Results ... 78
 4.3.1. Species identification ... 78
 4.3.2. Larval thermogenesis ... 79
 4.3.3. Growth under different temperatures ... 79
 4.3.4. Temperature preferences and larval survivorship 88
4.4. Discussion ... 91
 4.4.1. Species identifications ... 91
 4.4.2. Larval densities ... 92
 4.4.3. Larval development ... 93
4.4.4. Larval temperature preferences

4.4.5. Comparing growth of *Chrysomya* species

4.4.6. Conclusions

Chapter 5. General Conclusions

5.1. Investigation of molecular methods for streamlined identification of Australian blowflies

5.1.1. Utility of the ITS2 region for PCR-RFLP and phylogenetic-based identification

5.1.2. Evaluation of the COI DNA barcode

5.2. Thermal attributes of *Chrysomya* species

5.3. Recommendations and future research

References

Appendix 1. Standard curves for inference of preferred temperatures

Appendix 2. Comparison of *Chrysomya* and *Calliphora* larval lengths at three temperatures
Acknowledgements

I would like to thank Dr Alan York (now at University of Melbourne, Australia) for introducing me to the ‘maggot man’, where all of this started.

I am grateful to the Forensic Services Group of the NSW Police and the Australian Research Council for financial support of portions of this work. Dr Melanie Archer (Victorian Institute of Forensic Medicine, Australia) supplied the Victorian *Chrysomya incisuralis* specimen; Marie Turner (University of Wollongong, Australia) provided ITS2 sequences for *Lucilia porphyrina* and *Hemipyrellia fergusoni*; and Prof. Kom Sukontason (Chiang Mai University, Thailand) provided the Thai *Chrysomya nigripes* specimens. I also wish to acknowledge a travel grant provided by the Australian Biological Resources Study (ABRS) which facilitated my participation at the XXIII International Congress of Entomology in South Africa, July 2008.

I could not have wished to be working with two better supervisors than Dr James Wallman and Associate Professor Mark Dowton. They have imparted so much of their knowledge, and spent countless hours teaching me the skills and techniques required to undertake this research. At all times they have gone out of their way to assist me, and have always provided rapid responses to my queries. Their generosity and thoughtfulness has also enabled me to attend many conferences and meetings throughout my time as a student. I would like to thank them for their support and friendship over the years. I hope that I have done them proud as a student.

A huge thank you goes to Associate Professor Ken Russell (Faculty of Informatics, University of Wollongong) for statistical advice and generously agreeing to proofread part of this thesis in his spare time.

I would like to thank Dr Tracey Maddocks and the Animal House staff for putting up with the revolting odours emanating from our fly rearing room, not to mention the frequent occurrence of escapee maggots.
Gratitude goes to members of the Dowton Lab for their assistance and encouragement, particularly to Tracey Gibson for help with cloning ITS2. All members of the Forensic Entomology Research and Analysis Laboratory (FERAL), especially my wonderful friend Bryan Lessard, provided me with help and no end of entertainment over the years. I sure am going to miss our dress-ups, birthday surprises and general shenanigans. I probably won’t miss smelling like decomposition, though! I owe particular thanks to Aidan Johnson, my ‘unofficial supervisor’ for his extensive assistance, advice, and most importantly, friendship. Aidan provided invaluable guidance and suggestions regarding aspects of experimental design and assistance with statistical analyses and data presentation. I wish him every success in completing his own PhD.

Last but not least I thank my fantastic mother, who has put up with all sorts of things over my research years including dead piglets in the fridge, rotten meat, bad odours, maggots and flies – and my continuous fascination with these things. She has also facilitated my PhD lifestyle and provided for me so that I could achieve this goal. I would like to particularly thank her for accompanying me on a fly collecting trip in Cairns in a car that was constantly surrounded by a swarm of flies attracted by a rotting piglet carcass, and putting up with the odour of decaying meat in the motel room which managed to arouse the suspicions of other patrons!
Abstract

Forensic entomology applies the study of arthropods associated with carrion, in terms of species succession and development rates, to determine the minimum time since death, or postmortem interval (PMI). Correct species identification is crucial, as the rate of larval development can vary substantially between species. The identification of forensically important blowflies of the genus *Chrysomya* (Diptera: Calliphoridae) may be hampered by their close morphological similarities, especially as immatures. DNA-based approaches, such as those investigated here, have the capacity to be useful for the identification of forensic entomological evidence in cases where morphological characters are unreliable.

In this study, two DNA regions were investigated as potential candidates for the identification of the nine *Chrysomya* species in Australia: (1) the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) and (2) the cytochrome oxidase I (COI) DNA ‘barcode’ region. The ITS2 region was assessed by sequence comparison, which identified five restriction enzymes (DraI, BsaXI, BciVI, AseI and HinfI) that were able to differentiate most members of the genus by polymerase chain reaction (PCR) restriction fragment length polymorphism (PCR-RFLP). The closely related species pairs *Chrysomya latifrons* + *Chrysomya semimetallica* and *Chrysomya incisuralis* + *Chrysomya rufifacies* could not be separated by restriction profile analysis, but the latter could be separated using the size differences resulting from amplification of the entire ITS region. Identical restriction profiles were generated from eight *Ch. incisuralis* specimens, suggesting low intraspecific ITS2 variation within this species. Phylogenetic analysis of the ITS2 sequence, which is a possible means by which species could be identified, proved successful for the identification of the majority of *Chrysomya* species.

The COI ‘barcode’ region resolved all nine *Chrysomya* species as reciprocally monophyletic, following a neighbour-joining (NJ) analysis of the Kimura two-parameter distances. Mean intraspecific and interspecific sequence divergences were 0.097% and 6.499%, respectively. The hybrid status of one specimen was confirmed
following subsequent ITS2 sequence analysis. In another instance, this nuclear region was used to verify four cases of specimen misidentification that had been highlighted by the COI analysis. The COI DNA barcode was successful in identifying *Chrysomya* species from the east coast of Australia. The ability of the barcode to identify two *Chrysomya nigripes* specimens from Thailand shows potential for this method to be expanded to other blowfly genera and continents. This result confirmed previous successes with COI as a genetic barcode for species identification and comparisons at the intra- and interspecies levels.

Together with correct species identification, thermodevelopment data of blowfly species are vital for the estimation of the PMI. The close morphological and molecular similarities among *Chrysomya* species led to speculation as to whether members of this genus shared similar developmental profiles. The aim was to establish whether genetically closely related species would share similar developmental profiles. This would permit the application of developmental data to a number of closely related species, including those for which thermodevelopmental studies are lacking. If Australian *Chrysomya* were found to share developmental profiles, identification of the blowfly specimen to a level beyond genus may not be necessary, or at least it may not be necessary to distinguish morphologically similar sister species. The experimental design employed in this study sets it apart, to date, from other published larval development studies. Nowhere else have the developments of such closely related blowfly species been compared. As the species were collected from the same geographical location, the effects of acclimation and population-level genetic variation were not variables in this study. The experimental conditions in this study were virtually identical, which enabled direct comparisons to be made among the species. This study established that the sister species *Ch. megacephala* and *Ch. saffranea* differed significantly in their developmental profiles, as well as compared with the more distantly related *Ch. rufifacies*. Because of this, genetic distance was not considered to be a useful factor for predicting thermodevelopment profiles of closely related species within a genus, and highlighted the necessity for correct species identification.
List of Abbreviations

% percent
± plus or minus
ACT Australian Capital Territory
ANOVA analysis of variance
approx. approximately
C. *Calliphora*
Ch. *Chrysomya*
cm centimetre
COI cytochrome oxidase subunit I
COII cytochrome oxidase subunit II
DNA deoxyribonucleic acid
dNTP deoxynucleotide triphosphate
E east
e.g. for example
EDTA ethylenediaminetetraacetic acid
EtOH ethanol
g gram
GTR + I + Γ general time reversible model with some sites assumed to be invariable and with variable sites assumed to follow a discrete gamma distribution
GTR general time-reversible model
h hour
i.e. that is
ITS internal transcribed spacer
kb kilobase
km kilometre
L litre
ml millilitre
mM millimolar
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>mtDNA</td>
<td>mitochondrial DNA</td>
</tr>
<tr>
<td>N</td>
<td>number</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>ºC</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>P</td>
<td>probability</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PEG</td>
<td>polyethylene glycol</td>
</tr>
<tr>
<td>pers. comm.</td>
<td>personal communication</td>
</tr>
<tr>
<td>Pfu</td>
<td>Pyrococcus furiosus</td>
</tr>
<tr>
<td>PMI</td>
<td>post-mortem interval</td>
</tr>
<tr>
<td>Qld</td>
<td>Queensland</td>
</tr>
<tr>
<td>rDNA</td>
<td>ribosomal DNA</td>
</tr>
<tr>
<td>S</td>
<td>south</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>sp.</td>
<td>Species (singular)</td>
</tr>
<tr>
<td>spp.</td>
<td>Species (plural)</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>Vic.</td>
<td>Victoria</td>
</tr>
<tr>
<td>vs.</td>
<td>versus</td>
</tr>
<tr>
<td>V/V</td>
<td>on a volume per volume basis</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>µM</td>
<td>micromolar</td>
</tr>
</tbody>
</table>
List of Figures

Figure 1.1. Generalised lifecycle of the fly ... 4
Figure 1.2. Photographs of two members of the genus Chrysomya; Chrysomya latifrons and Chrysomya semimetallica, illustrating the high degree of adult morphological similarity among some members of this genus 7
Figure 1.3. Map of mitochondrial DNA of the fruit fly Drosophila yakuba 9
Figure 1.4. Schematic diagram of a single repeat unit of rDNA which consists of the conserved 18S, 5.8S and 28S rDNA genes and two highly variable species-specific internal transcribed spacers (ITS) .. 11
Figure 2.1. Agarose gel of PCR fragments containing the entire ITS region amplified from Australian members of the genus Chrysomya .. 34
Figure 2.2. Alignment of ITS2 sequences of all Australian members of the genus Chrysomya ... 36
Figure 2.3. An example of a 2% agarose gel showing PCR-RFLP profiles obtained following digestion of the rDNA ITS2 with Dra I ... 38
Figure 2.4. PCR-RFLP protocol for the identification of Australian members of the genus Chrysomya using the restriction enzymes Dra I, Hinf I, BsaX I and BciV I and Ase I .. 41
Figure 2.5. Most likely tree of relationships among Australian members of the genus Chrysomya species based on Bayesian analysis of ITS2 sequences 43
Figure 2.6. Most likely tree of relationships among Australian member of the genus Chrysomya species based on Bayesian analysis of combined ITS2, ND4-ND4L, COI and COII sequences ... 44
Figure 3.1. Location of the 658 bp COI ‘barcode’ region, corresponding to nucleotide positions 1490 – 2198 of the Drosophila yakuba mitochondrial genome 52
Figure 3.2. Map of locations on the east coast of Australia from which specimens in this study were collected ... 55
Figure 3.3. NJ tree of K2P distances for 55 COI sequences from all nine Australian Chrysomya and three calliphorid outgroups ... 62
Figure 4.1. The generalised thermal development curve showing a curvilinear relationship at low and high temperatures and linear in between 68
Figure 4.2. Sister species *Chrysomya saffranea* and *Chrysomya megacephala* display considerable morphological similarity, differing primarily in the coloration of the supravibrissal and subvibrissal setulae.

Figure 4.3. Temperature gradient apparatus used for larval temperature preference experiments.

Figure 4.4. Mean larval lengths of *Ch. megacephala*, *Ch. rufifacies* and *Ch. saffranea* grown at constant temperatures of 25, 30 and 35°C and a 12:12 (light:dark) h photoperiod.

Figure 4.5. Examples of the variation in larval lengths of *Ch. megacephala*, *Ch. rufifacies* and *Ch saffranea* larvae at two times and temperatures, where means were significantly different.

Figure 4.6. Proportions of *Ch. megacephala*, *Ch. rufifacies* and *Ch. saffranea* immature (first-, second- and third-instar and pupae) observed per time point (hours since egg laying) when grown at 25°C.

Figure 4.7. Proportions of *Ch. megacephala*, *Ch. rufifacies* and *Ch. saffranea* immature (first-, second- and third-instar and pupae) observed per time point (hours since egg laying) when grown at 30°C.

Figure 4.8. Proportions of *Ch. megacephala*, *Ch. rufifacies* and *Ch. saffranea* immature (first-, second- and third-instar and pupae) observed per time point (hours since egg laying) when grown at 35°C.

Figure 4.9. Mean percentage survival of *Chrysomya* larvae grown on kangaroo mince alone or a 50:50 (V/V) mixture of kangaroo mince with water storage crystals.

Figure 4.10. Mean percentage survival of *Chrysomya* larvae after 24 hours on a temperature gradient (approximately 16-57°C) comprising a 50:50 (V/V) mixture of kangaroo mince with water storage crystals, and predicted survival based on growth under constant temperatures.

Figure 4.11. Distributions of *Ch. megacephala*, *Ch. rufifacies* and *Ch. saffranea* larvae after 24 hours feeding on a temperature gradient (approximately 16-57°C) comprising a 50:50 (V/V) mixture of kangaroo mince with water storage crystals.
List of Tables

Table 2.1. Voucher codes, collection data and accession numbers for the Australian Chrysomya species from which DNA was extracted ... 30
Table 2.2. Pairwise sequence distances between Australian members of the genus Chrysomya based on differences in nucleotide sequences of ITS2 35
Table 2.3. Calculated restriction fragment sizes (bp) following digestion of PCR-amplified ITS2 region of Australian Chrysomya species with five restriction enzymes ... 39
Table 3.1. Specimen information, collection dates and collection localities for the Australian Chrysomya species studied, and three calliphorid outgroups .. 53
Table 3.2. Summary of genetic divergences (using K2P model) of 9 species (52 sequences) within the genus Chrysomya in Australia ... 59
Table 3.3. Percentage sequence divergences (K2P) between selected sister Chrysomya species for the cytochrome oxidase I (COI) barcode region 60
Table 4.1. Mean percentage sequence divergences (K2P) by DNA region between sister species Ch. megacephala and Ch. saffranea, and their divergence from Ch. rufifacies .. 71
Table 4.2. Maximum larval lengths (μm) of Chrysomya species grown at constant temperatures of 25, 30 and 35°C on kangaroo mince ... 81
Female *Chrysomya rufifacies* resting on foliage above carrion.

Photo: L.A. Nelson