Coumarins and flavones from the fruit and root extracts of Micromelum integerrimum

Virayu Suthiphasilp
Mae Fah Luang University

Wisanu Maneerat
Mae Fah Luang University

Raymond J. Andersen
University of British Columbia

Stephen G. Pyne
University of Wollongong, spyne@uow.edu.au

Chatchai Muanprasat
Mahidol University

See next page for additional authors

Publication Details
Coumarins and flavones from the fruit and root extracts of Micromelum integerrimum

Abstract
A phytochemical investigation of the fruit and root extracts of Micromelum integerrimum resulted in the isolation and identification of a new compound, integerravone (1), together with 23 known compounds (2-24). Their structures were characterized by spectroscopic methods as well as comparisons made from the literature. Compounds 2, 3-15, 17-18 and 20-23 were evaluated for their cytotoxicities against the colon cancer cell line, HCT116. All of them were inactive at 50 µM. Most of the phenolic compounds were evaluated for their antioxidant activity using the DPPH assay. Compounds 14 and 22-24 showed antioxidant activity with IC50 values ranging from 24.83-135.05 µM.

Publication Details

Authors
Virayu Suthiphasilp, Wisanu Maneerat, Raymond J. Andersen, Stephen G. Pyne, Chatchai Muanprasat, Sawinee Seemakhan, Suparerk Borwornpinyo, and Surat Laphookhieo

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers1/483
Coumarins and flavones from the fruit and root extracts of *Micromelum integrimum*

Virayu Suthiphasilp\(^\text{a,b}\), Wisanu Maneerat\(^\text{a,b}\), Raymond J. Andersen\(^\text{c,d}\), Stephen G. Pyne\(^\text{e}\), Chatchai Muanprasat\(^\text{f,g}\), Sawinee Seemakan\(^\text{g}\), Suparerk Borwornpinyo\(^\text{e,h}\), and Surat Laphookhieo\(^\text{a,b,*}\)

\(^\text{a}\)Center of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand

\(^\text{b}\)School of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand.

\(^\text{c}\)Department of Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1

\(^\text{d}\)Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1

\(^\text{e}\)School of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia, 2522

\(^\text{f}\)Department of Physiology, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand

\(^\text{g}\)Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand

\(^\text{h}\)Department of Biotechnology, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand

\(*\)Phone: +66-5391-6238; fax: +66-5391-6776; e-mail: surat.lap@mfu.ac.th
Coumarins and flavones from the fruit and root extracts of *Micromelum integerrimum*

Virayu Suthiphasilpa,b, Wisanu Maneerata,b, Raymond J. Andersenc,d, Stephen G. Pynee, Chatchai Muanprasatc,g, Sawinee Seemakhang, Suparerk Borwornpinyoe,h, and Surat Laphookhieoa,b,*

aCenter of Chemical Innovation for Sustainability (CIS), Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand
bSchool of Science, Mae Fah Luang University, Tasud, Muang, Chiang Rai 57100, Thailand.
cDepartment of Earth, Ocean & Atmospheric Sciences, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
dDepartment of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1
eSchool of Chemistry, University of Wollongong, Wollongong, New South Wales, Australia, 2522
fDepartment of Physiology, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
gExcellent Center for Drug Discovery, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
hDepartment of Biotechnology, Faculty of Science, Mahidol University, Rajathevi, Bangkok 10400, Thailand
*Phone: +66-5391-6238; fax: +66-5391-6776; e-mail: surat.lap@mfu.ac.th

Abstract

A phytochemical investigation of the fruit and root extracts of *Micromelum integerrimum* resulted in the isolation and identification of a new compound, integerravone (1), together with 23 known compounds (2-24). Their structures were characterized by spectroscopic methods as well as comparisons made from the literature. Compounds 2, 3-15, 17-18 and 20-23 were evaluated for their cytotoxicities against the colon cancer cell line, HCT116. All of them were inactive at 50 µM. Most of the phenolic compounds were evaluated for their antioxidant activity using the DPPH assay. Compounds 14 and 22-24 showed antioxidant activity with IC\textsubscript{50} values ranging from 24.83-135.05 µM.

Keywords: *Micromelum integerrimum*; Rutaceae; Coumarin; Flavone

1. Introduction

Micromelum integerrimum belongs to the Rutaceae family which is widely distributed throughout South and Southeast Asia. Decoctions made from the fruit of this plant have been
used in the treatment of jaundice, while those made from the twigs, have been used to treat
dysentery by the indigenous community of Tripura, India (Deb et al. 2016). Decoctions of the
roots, bark, and leaves have been used to treat malaria, rheumatic, arthralgia and traumatic
injuries in traditional Chinese medicine (Fang et al. 2003). In previous phytochemical
investigations of the *Micromelum* genus, coumarins (Cassady et al. 1979; Das et al. 1994;
Kamperdick et al. 1999; Ito et al. 2000; Rahmani et al. 2003; Lekphrom et al. 2011;
2016), quinolone alkaloids (Tantivatana et al. 1983), polyoxygenated flavonoids (Phakhodee
et al. 2013; Yan et al. 2015), phenylpropanoids (Wang et al. 2014), triterpenoids (Susidarti et
al. 2006; Susidarti et al. 2009), benzene derivatives (Yan et al. 2015), norsesquiterpenoid
(Yan et al. 2015), triterpenoids (Susidarti et al. 2006; Susidarti et al. 2009), and acridone
(Yang et al. 2009), indole (Kong et al. 1988), and carbazole alkaloids (Siridachakorn et al.
2012; Sakunpak et al. 2013) have been isolated and identified. Some of these compounds
exhibited a wide range of biological and pharmacological activities, including cytotoxicity
(Tantivatana et al. 1983; Susidarti et al. 2009; Lekphrom et al. 2011; Sakunpak et al. 2013;
Lekphrom et al. 2016), and anti-mycobacterial (Lekphrom et al. 2011), anti-mutagenicity
(Nakahara et al. 2002), anti-corpulence (Hitara et al. 2009), and anti-platelet (Chen et al.
2003) activities. Herein, we report the isolation and structure elucidation of a new compound
(1) together with 23 known compounds (2-24) from the root and fruit extracts of *M.
integerrimum*. Some of these compounds were tested for their cytotoxicities against a colon
cancer cell line and for their antioxidant activities.

2. Results and discussion

The individual EtOAc extracts of the roots and fruit of *M. integerrimum* were
separated by various chromatographic techniques to obtain a new compound (1) together with
23 known compounds (2-24), 6-(3-methyl-2-oxobutyroyl)-7-methoxycoumarin (2) (Li et al.
2016), phebalosin (3) (Ito et al. 1987), murralongin (4) (Talapatra et al. 1973), ostenon (5)
(Ito et al. 1987), microminutin (6) (Suthiwong et al. 2014), minutuminolate (7) (Lekphrom et
al. 2016), murrangatin acetate (8) (Ito et al. 1987), (--)-murrangatin (9) (Ito et al. 1990), 2′-O-
ethylmurrangatin (10) (Choudhary et al. 2002), minumericolin (11) (Ito et al. 1990),
hopeyhopin (12) (Dominguez et al. 1977), dehydrogeijerin (13) (Dominguez et al. 1977),
isoscopoletin (14) (Shafizadeh et al. 1970), scopoletin (15) (Cassady et al. 1979), citropten
(16) (Gray et al. 1978), micromelin (17) (Cassady et al. 1979), dihydromicromelin B (18)
(Das et al. 1994), acetyldihydromicromelin A (19) (Das et al. 1994), flindulatin (20) (Collins
et al. 2004), gossypetin 3,7,8,4′-tetramethylether (21) (Wollenber et al. 2008), 5,7-dihydroxy-3,4′,6,8-tetramethoxyflavone (22) (Silva et al. 2005), 5,7-dihydroxy-3,8,4′-trimethoxyflavone (23) (Tandon et al. 1977) and acerosin (24) (Greenham et al. 2001).

Compound 1 was isolated as a yellow solid with mp. 128-130 °C. This compound showed a [M+Na]+ ion peak at m/z 437.1217 (calcd 437.1212) in the ESITOFMS spectrum indicating the molecular formula of C_{22}H_{22}O_8. The ^1H NMR and ^13C NMR spectra of 1 (Table S1, Supplementary material) displayed resonances for a hydrogen-bonded hydroxy proton [δ_H 12.37 (1H, s, OH-5)], a 1,4-disubstituted aromatic ring [δ_H 8.19 (2H, d, J = 9.0 Hz, H-2′/H-6′)/δ_C 130.4 and 7.07 (2H, d, J = 9.0 Hz, H-3′/H-5′)/δ_C 114.3], a pentasubstituted aromatic ring [δ_H 6.23 (1H, s, H-6)/δ_C 105.0] and three methoxy groups [δ_H 3.90 (3H, s, H-7)/δ_C 60.1 and 3.93 (6H, s, H-8/H-4′)/δ_C 55.7]. The locations of these methoxy groups at C-7 (139.4), C-8 (132.5) and C-4′ (162.1) were indicated from the HMBC correlations shown in Figure S10 and Table S1 (Supplementary material). The isobutyroyl substituent was evident from the NMR spectroscopic data by the resonances at δ_H 2.93 (1H, sept, J = 7.0 Hz, H-2′)/δ_C 33.9, δ_H 1.40 (6H, d, J = 7.0 Hz, H-3″/H-4″)/δ_C 19.0 and the resonance for the ester carbon at δ_C 174.8 (C-1”). The unusual lower field chemical shift of the sp^2 carbon C-3 (δ_C 148.3) suggested the flavone core structure and the isobutyroyl unit was linked via the ester linkage at C-3 of the flavone skeleton. The fragment ion at m/z 344 (68%) [M–C_4H_7O^+ + H]^+, in the EIMS spectrum of compound 1 also supported this ester linkage. Therefore, compound 1 was named as integerravone.

A proposed biogenetic pathway of the prenylated coumarins is shown in Scheme S1 (Supplementary material). Coumarin 25 (Lekphrom et al. 2016) is proposed as a precursor of all prenylated coumarins via various reactions, including oxidation, reduction, elimination, cyclization, alkylation and acylation pathways. It should be noted that the biogenetic pathway of intermediates 25.1 and 25.4, obtained from compound 25, has already been determined (Bourgaud et al. 2006). From Pathway A, a major route, the coumarins 2, 12, 13 and 17-19 would be produced. While Pathway B would produce coumarins 3, 5 and 8-10, and Pathway C would result in the coumarins, 4 and 6.

Compounds 2, 3-15, 17-18 and 20-23 were evaluated for their cytotoxieties against the colon cancer cell line HCT116. Unfortunately, all compounds were inactive at 50 µM. Most of the phenolic compounds were evaluated for their antioxidant activities using the DPPH assay. However, only compounds 14 and 22-24 showed antioxidant activities with
IC₅₀ values ranging from 24.83-135.05 µM (IC₅₀ of standard control (ascorbic acid) 18.51±0.08 µM).

3. Experimental

For the details of all experimental parts see the Supplementary material.

Integerravone (1). Yellow solid, mp. 128-130 °C; UV (MeOH) λmax (log ε) 327 (3.70) and 291 (3.58) nm; IR (neat) νmax 3340, 2923, 1762, 1652, 1491, 1434, 1093, 808 cm⁻¹; ¹H NMR (CDCl₃, 600 MHz) δH 12.37 (1H, s, 5-OH), 8.19 (2H, d, J = 9.0 Hz, H-2’ and H-6’), 7.07 (2H, d, J = 9.0 Hz, H-3’ and H-5’), 6.23 (1H, s, H-6), 3.93 (6H, s, 8-OMe and 4’-OMe), 3.90 (3H, s, 7-OMe), 2.93 (1H, sept, J = 7.0 Hz, H-2’’) and 1.40 (6H, d, J = 7.0 Hz, H-3’’ and H-4’’); ¹³C NMR (CDCl₃, 150 MHz): δC 179.3 (C-4), 174.8 (C-1’’), 162.1 (C-4’’), 156.6 (C-9), 156.5 (C-2), 149.4 (C-5), 148.3 (C-3), 139.4 (C-7), 132.5 (C-8), 130.4 (C-2’ and C-6’), 122.8 (C-1’), 114.3 (C-3’ and C-5’), 110.1 (C-10), 105.0 (C-6), 60.1 (7-OMe), 55.7 (8-OMe and 4’-OMe), 33.9 (C-2’’) and 19.0 (C-3’’ and C-4’’); EIMS m/z [M]+ 414 (34), 344 (68), 329 (100), 315 (8), 311 (4), 301 (7), 286 (7), 148 (7), 135 (14), 119 (7), 71 (10) and 69 (6); ESITOFMS m/z 437.1217 [M + Na]+ (calcd for C₂₂H₂₂O₈Na, 437.1212).

Acknowledgments

This work was supported by the joint research funding of Thailand Research Fund and Mae Fah Luang University through the Advanced Research Scholar (BRG5980012) and the Thailand Research Fund through the Direct Basic Research Grant (DBG5980001). A full Ph.D scholarship from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. program (PHD/0133/2559) is also acknowledged. Mae Fah Luang University, University of Wollongong and University of British Columbia are also acknowledged for laboratory facilities. We also thank Mr. Martin Van de Bult from Doi Tung Development Project Chiang Rai Thailand for plants collection and identification.

Supplementary material

The NMR and HR-ESI-MS spectra of compound 1 are available in supporting information.

Disclosure statement

The authors declare no conflicts of interest.

Funding

This research was supported by the Thailand Research Fund through the Advanced Research Scholar (BRG5980012) and Direct Basic Research Grant (DBG5980001). A full Ph.D scholarship from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. program (PHD/0133/2559)
References

