A predictive GIS methodology for mapping potential mining induced rock falls

Hani Zahiri
University of Wollongong

UNIVERSITY OF WOLLONGONG
COPYRIGHT WARNING
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author.

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
A PREDICTIVE GIS METHODOLOGY FOR MAPPING
POTENTIAL MINING INDUCED ROCK FALLS

A thesis submitted in fulfilment of the requirements for the award of the degree

Master of Engineering by Research

from

UNIVERSITY OF WOLLONGONG

by

Hani Zahiri

B.Sc. Mining Engineering

School of Civil, Mining and Environmental Engineering

March 2006
IN THE NAME OF GOD

This thesis is especially dedicated to my family.

To my mother, Behjat Ayanfard, who taught me how to live and love and how to be,

To my father, Mahdi Zahiri, who taught me Erfan (mysticism) and how not to be,

To my sister, Hasti Zahiri, for her bright smile,

and also to my grandmother, Batool Ghari, for her love and support

I am truly grateful.
AFFIRMATION

I, Hani Zahiri, declare that this thesis, submitted in fulfilment of the requirements for the award of Master of Engineering by Research, in the School of Civil, Mining and Environmental Engineering, Faculty of Engineering, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The thesis was completed under the supervision of A/Prof. E. Baafi and has not been submitted for qualification at any other academic institution.

Hani Zahiri

March 2006

The following publications are the result of this thesis:

Zahiri H., Brassington G.M., Baafi E., (2005), The use of the GIS based Weights-of-Evidence method for assessing mining induced rock fall, Sixth International Mining Geology Conference, Darwin, Australia, August 2006, 12 p. (Submitted)
ACKNOWLEDGMENTS

The author would like to express his sincere gratitude to A/Prof. E. Baafi for his supervision, encouragement provided during the course of this research and providing the necessary facilities for this research.

I also would like to thank Dr. P. Flentji and Dr. D. Palamara for their invaluable guidance and inspiration.

I am grateful to the BHP Billiton Illawarra Coal for providing field data and technical support for this research. In particular, the author would like to thank Mr. G.M. Brassington for his assistance.

The assistance provided by the Faculty of Engineering, University of Wollongong is also appreciated. Specially, the author wishes to thank Mr. Des Jamison, Mrs. Heidi Brown and Mrs Lorelle Pollard for their assistance.

I wish to express my appreciation to Mr. Behzad Fatahi, Dr. Mohammad Mahdi Emamjomeh and Dr. J. Shorndhart for their helpful comments and assistance.

This study would not have been finished without support and encouragement from my fellow Iranians at the University of Wollongong and in my country including their families. In particular, the author is indebted to Dr. Farhang Sereshki, Mr. Mojtaba Rezaei, Mr. Salar Niknafs, Mr. Mehrdad Bahrami Samani, Mr. Ahmad Mosavian, Mr. Sayeed Hesami, Mr. Aidin Khatlan, Mr. Meysam Saleh and Mr. Sooroosh Fooladchi.
Abstract

Coal mining operations impact on various types of natural features, including cliff lines, steep slopes and natural watercourses. The introduction of longwall mining has led to subsidence depression due to the changing geometry of the mined out area. Subsidence can destabilise cliff lines and increase the probability of rock falls and cliff collapse. The current process for managing subsidence in New South Wales (NSW) involves the preparation of a Subsidence Management Plan (SMP).

One approach for managing the results of subsidence is to develop pre-mining methodologies for assessing potential mining impacts. This thesis deals with a quantitative Geographical Information Systems (GIS) based methodology for mapping potential mine subsidence-induced rock falls along cliffs and steep slopes along the Nepean River Gorge. The proposed methodology is developed using Weights-of-Evidence (WofE) method within a GIS framework to derive a probabilistic model of rock falls associated with mining-induced subsidence. The thesis uses ten (10) known mining-induced rock falls associated with longwall workings along the Cataract River to evaluate the impact of restricting mining to a region greater than 50 m of the Nepean cliffs. The results represent significant reduction of probabilities of rock fall occurrence when mining is conducted in this way.
Table of Contents

Affirmation.. I
Acknowledgments... II
Abstract.. III
Table of contents... IV
List of figures.. VII
List of tables.. IX
List of symbols and abbreviations.. X

Chapter 1: General Introduction

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Managing subsidence impacts</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Definition of problem</td>
<td>8</td>
</tr>
<tr>
<td>1.4 Thesis objectives</td>
<td>9</td>
</tr>
<tr>
<td>1.5 Scope of work</td>
<td>10</td>
</tr>
</tbody>
</table>

Chapter 2: Geographical Information Systems (GIS)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>12</td>
</tr>
<tr>
<td>2.2 GIS functions</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Reasons for a GIS based approach</td>
<td>15</td>
</tr>
<tr>
<td>2.4 Spatial datasets</td>
<td>16</td>
</tr>
<tr>
<td>2.5 Spatial analysis</td>
<td>19</td>
</tr>
<tr>
<td>2.6 GIS and spatial modelling</td>
<td>19</td>
</tr>
<tr>
<td>2.7 GIS and Weights-of-Evidence method</td>
<td>20</td>
</tr>
</tbody>
</table>

Chapter 3: Weights-of-Evidence Method

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>21</td>
</tr>
<tr>
<td>3.2 The Bayesian concept</td>
<td>23</td>
</tr>
<tr>
<td>3.2.1 Odds and likelihood ratios</td>
<td>27</td>
</tr>
<tr>
<td>3.2.2 Combining datasets</td>
<td>29</td>
</tr>
<tr>
<td>3.3 Implementation of weights-of-evidence method</td>
<td>32</td>
</tr>
</tbody>
</table>
Chapter 4: Case Study: Background Information 36

4.1 Introduction ...36
4.2 Area of study ..37
 4.2.1 Mine working ..38
4.3 Selecting evidential themes and training points ..40
 4.3.1 Evidential themes selection ...40
 4.3.2 Training points ..42
4.4 Data editing and manipulation ...42
 4.4.1 Digital Elevation Model (DEM) ...44
 4.4.2 Cliff height ..44
 4.4.3 Slope and slope aspect ..45
 4.4.4 Curvature ...47
 4.4.5 Watercourse ..47
 4.4.6 Structural geology ...47
 4.4.7 Mine working ..48

Chapter 5: Case Study: Assessing potential mining induced rock falls 51

5.1 Introduction ...51
5.2 Watercourse theme ..53
5.3 Slope theme ...58
5.4 Cliff height theme ...61
5.5 Slope aspect theme ...63
5.6 Curvature themes ..66
5.7 Structural geology themes ...69
5.8 Mine workings themes ...72
5.9 Conditional independence of themes ..78
5.10 Discussion of results ..80

Chapter 6: Summary and Conclusions 89

6.1 Summary ...89
6.2 Conclusion ...91
6.3 Limitations of the methodology ...92
6.4 Recommendations for future study ...95
References

Appendix

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1 Aspect function</td>
<td>A-1</td>
</tr>
<tr>
<td>A2 Classification methods</td>
<td>A-2</td>
</tr>
<tr>
<td>A3 Combine functions</td>
<td>A-4</td>
</tr>
<tr>
<td>A4 Curvature function</td>
<td>A-5</td>
</tr>
<tr>
<td>A5 Integer (INT) function</td>
<td>A-6</td>
</tr>
<tr>
<td>A6 Merge function</td>
<td>A-7</td>
</tr>
<tr>
<td>A7 Mosaic function</td>
<td>A-9</td>
</tr>
<tr>
<td>A8 Reclass function</td>
<td>A-10</td>
</tr>
<tr>
<td>A9 Slope function</td>
<td>A-14</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Cross-section of longwall mine subsidence (Ecological Australia, 2004)</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Characteristics of trough subsidence (Holla and Barcely, 2000)</td>
<td>3</td>
</tr>
<tr>
<td>Figure 1.3</td>
<td>Mine subsidence impacts on natural features in Southern Coalfield, NSW</td>
<td>5</td>
</tr>
<tr>
<td>Figure 1.4</td>
<td>Rock fall over the Tower Colliery, Appin area, Southern Coalfield (Wood, 2004)</td>
<td>8</td>
</tr>
<tr>
<td>Figure 1.5</td>
<td>Potentially unstable block over Cataract River, Appin area, Southern Coalfield (Wood, 2004)</td>
<td>9</td>
</tr>
<tr>
<td>Figure 1.6</td>
<td>Scope of work</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>GIS functions (Davis, 2001)</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Positional data in raster and vector format</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Raster and vector format (Martensson, 2000)</td>
<td>18</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Binary map showing the location of rock falls and venn diagram summarising the spatial overlaps relationship between the map pattern and the rock fall pattern (After Harris et al., 2000)</td>
<td>26</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Diagrammatic representation of the weights calculation in weights-of-evidence method</td>
<td>29</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Schematic GIS based weights-of-evidence method procedures</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>General procedure for weights-of-evidence implementation</td>
<td>34</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>a) Southern coalfield and location of Collieries (circle shows the area of study)</td>
<td>37</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Location of sections and instabilities (Wood, 2004)</td>
<td>39</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Schematic of slope theme processing</td>
<td>43</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>a) DEM, b) Cliff line shown by slope theme</td>
<td>45</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Slope-related themes a) Slope theme, b) Generated the area of study based on slope theme (Slope >40), c) Slope aspect theme</td>
<td>46</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Structural geology themes</td>
<td>48</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>The area of study showing the location of the existing and proposed mine workings</td>
<td>49</td>
</tr>
<tr>
<td>Figure 5.1</td>
<td>Area of study and watercourse a) before editing b) after editing</td>
<td>53</td>
</tr>
<tr>
<td>Figure 5.2</td>
<td>Buffered watercourse theme based on distance from feature and training point locations</td>
<td>54</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>Contrast and Studentized Contrast versus distance from watercourse</td>
<td>57</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Weights for watercourse</td>
<td>58</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>The reclassified classes of slope theme</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>Generalised slope theme, location of the training points and final weights</td>
<td>60</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Cliff heights, theme attribute and training point locations</td>
<td>61</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>Contrast and Studentized Contrast values against Cliff heights</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>Generalised cliff height theme and calculated final weights</td>
<td>63</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Slope aspect theme and locations of training points</td>
<td>64</td>
</tr>
<tr>
<td>Figure 5.11</td>
<td>Generalised slope aspect theme and location of training points</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure 5.12 Planform (a) and profile curvature (b) before theme generalizing 66
Figure 5.13 Generalised plan curvature theme and calculated final weights 68
Figure 5.14 Generalised profile curvature theme and calculated weights 69
Figure 5.15 Faults theme and location of training points ... 70
Figure 5.16 Dyke theme and location of training points ... 70
Figure 5.17 Old Douglas Park theme, existing mine working and location of training points 73
Figure 5.18 New Douglas Park theme, existing mine working and location of training points 74
Figure 5.19 Generalised Old Douglas Park theme and the calculated weights 76
Figure 5.20 Generalised New Douglas Park theme and the calculated weights 77
Figure 5.21 Response theme showing the probability of the rock fall occurrence based on the
Old Douglas Park longwall configuration .. 81
Figure 5.22 Response theme showing the probability of the rock fall occurrence based on the
New Douglas Park longwall configuration .. 81
Figure 5.23 Response theme showing the probability of the rock fall occurrence based on the
New Douglas Park longwall configuration .. 82
Figure 5.24 Response theme showing the probability of the rock fall occurrence based on the
New Douglas Park longwall configuration .. 82
Figure 5.25 Parallel snap shots taken from the old and new response themes 83
Figure 5.26 Classified Probability of rock fall occurrence against related area 84
Figure 5.27 Five areas of interest through which the model results are interpreted 86
Figure 5.28 Mean probability for rock fall occurrence within each zone 87
List of Tables

Table 4.1 Selected evidential themes (representing controlling factors) ..41
Table 4.2 Evidential themes used in the case study ...50

Table 5.1 Calculated data in weighting tables for each evidential theme ..52
Table 5.2 Initial model parameters ..52
Table 5.3 A summary table for the watercourse theme (Highlighted row shows cut-off distance of 76 m based on Contrast and Studentized Contrast) ..56
Table 5.4 Slope weights ...59
Table 5.5 Result of the primary weighting for cliff height theme (Highlighted row shows cut-off height, Contrast and Studentized Contrast at 47 m) ..62
Table 5.6 Slope aspect theme weights ..64
Table 5.7 Calculated weights for plan curvature theme ...67
Table 5.8 Calculated weights for profile curvature theme ...67
Table 5.9 Result of primary weighting for fault theme (highlighted row shows possible cut-off distance, Contrast and Studentized Contrast at 871 m) ...71
Table 5.10 Result of primary weighting for dyke theme (highlighted row shows possible cut-off distance, Contrast and Studentized Contrast at 2773 m) ...71
Table 5.11 Weights calculated for the Old Douglas Park theme ..75
Table 5.12 Weights calculated for the New Douglas Park theme ..75
Table 5.13 Summary of weighting results ..78
Table 5.14 Degree of freedom between evidential themes ..79
Table 5.15 Chi-square statistics calculated between evidential themes ...79
Table 5.16 Descriptive statistics of the probabilities of the response themes84
Table 5.17 Statistical summary of Probabilities (%) of zones ...86
List of Symbols and Abbreviations

\(P(D|B) \)
Conditional probability

\(\chi^2 \)
Chi-square

A\{x\}
Area covered by theme x

B
Evidential theme

C
Contrast

D
Training theme

DEM
Digital Elevation Model

DPI
Department of Primary Industries

GIS
Geographical Information System

GPS
Global Positioning System

LN
Necessity ratio

Logits\{x\}
Logarithm of odd for x

LS
 Sufficiency ratio

N\{x\}
Count of unit cells in theme x

O\{x\}
Odd for x

P\{x\}
Probability of occurrence of x

S(C)
Studentized Contrast

SDM
Spatial Data Modeler

SMP
Subsidence Management Plan

T
Area of study

t
Unit cell area

W^-
Negative weight calculated for evidential theme

WofE
Weights-of-evidence

W^+
Positive weight calculated for evidential theme