Neural correlates of successful encoding in schizophrenia: an event-related potential study

Amity Green
Monash University

Paul Fitzgerald
Monash University

Patricia T. Michie
University of Newcastle

Pradeep Nathan
University of Cambridge

Rodney J. Croft
University of Wollongong, rcroft@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/ihmri

Part of the Medicine and Health Sciences Commons

Recommended Citation

Green, Amity; Fitzgerald, Paul; Michie, Patricia T.; Nathan, Pradeep; and Croft, Rodney J., "Neural correlates of successful encoding in schizophrenia: an event-related potential study" (2013). *Illawarra Health and Medical Research Institute*. 430.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Neural correlates of successful encoding in schizophrenia: an event-related potential study

Abstract

Disciplines
Medicine and Health Sciences

Publication Details

This conference paper is available at Research Online: https://ro.uow.edu.au/ihmri/430
Neural correlates of successful encoding in schizophrenia: An event-related potential study

Amity E. Green1*, Paul B. Fitzgerald1, Patricia T. Michie2, Pradeep J. Nathan3, 4 and Rodney J. Croft5, 6

1Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Australia
2School of Psychology, University of Newcastle, Australia
3School of Psychology and Psychiatry, Monash University, Australia
4Brain Mapping Unit, Department of Psychiatry, University of Cambridge, United Kingdom
5Illawarra Health & Medical Research Institute, University of Wollongong, Australia
6School of Psychology, University of Wollongong, Australia

Aims: Individuals with schizophrenia demonstrate pronounced deficits in cognitive processing with particular impairments in episodic memory. This may reflect a difficulty in the ability to encode new information. The subsequent memory paradigm has been used in the study of memory formation to segregate neural processes responsible for successful encoding. In healthy controls subsequently remembered items are associated with a more positive ERP waveform than those later forgotten. The aim of the study was to investigate neural correlates of encoding in schizophrenia using a subsequent memory paradigm. Method: EEG was recorded in 20 patients and 19 healthy controls during the semantic encoding of single words. ERPs were sorted according to whether words were subsequently recognised. Group differences were determined in late positivity (LPP; area under the curve 450-750 ms), as well as for N1, P2 and N400 ERP peak amplitudes, as a function of subsequent recognition. Results: Patients tended to perform poorer than controls on the recognition test (slower [p=0.069] and less accurate [p=0.006]). Mean amplitude of the encoding-related LPP was greater for recognised than not-recognised words (p=0.035, eta-squared=0.12), with patients showing reduced mean amplitude compared to controls regardless of whether the word was recognised (p=0.018, eta-squared=0.15). Further, compared to controls, patients showed significantly reduced P2 (p=0.032, eta-squared=0.11) and frontal N400 peak amplitudes (p=0.012, eta-squared=0.15) during encoding. Conclusions: The results suggest that reduced activation of encoding processes contributes to poorer recognition memory performance in schizophrenia, however the relative importance of early attentional (P2) and later semantic processing (N400 and LPP) alternations cannot be determined from the present study.

Acknowledgements: This research was funded by the National Health & Medical Research Council of Australia, Project Grant #502910

Keywords: Schizophrenia, episodic memory, encoding, event-related potential (ERP), subsequent memory paradigm

* Correspondence: Ms. Amity E. Green, Monash Alfred Psychiatry Research Centre, Monash University and the Alfred Hospital, Melbourne, Australia, amity.green@monash.edu