2007

Study of Oxygen Incorporation in PLD MgB2 Films by Rutherford Backscattering Spectroscopy

Y. Zhao
University of Wollongong, yue_zhao@uow.edu.au

M. Ionescu
University of Wollongong, mionescu@uow.edu.au

S X. Dou
University of Wollongong, shi@uow.edu.au

Hua-Kun Liu
University of Wollongong, hua@uow.edu.au

Publication Details
This article was originally published as Zhao, Y, Ionescu, M, Dou, SX and Liu, HK, Study of Oxygen Incorporation in PLD MgB2 Films by Rutherford Backscattering Spectroscopy, IEEE Transactions on Applied Superconductivity, 17(2), 2007, 2875-2878.
Study of Oxygen Incorporation in PLD MgB₂ Films by Rutherford Backscattering Spectroscopy

Yue Zhao, M. Ionescu, S. X. Dou, and H. K. Liu

Abstract—The Rutherford backscattering (RBS) method has been employed to study the incorporation of oxygen into MgB₂ films during their fabrication by pulsed-laser deposition (PLD). A series of MgB₂ thin film samples were analyzed, including two films produced in situ on Al₂O₃ – c substrates (with higher Tc and lower Tc_e) with an on-axis geometry, one film produced in situ with an off-axis geometry, and one film produced ex situ, with a bulk-like Tc_e. The amount of oxygen detected by RBS, which is stable in the form of MgO, appears to be correlated with the Tc and lower the oxygen content. The superconducting properties of the thin films are discussed in the context of the RBS results.

Index Terms—MgB₂ thin films, Rutherford backscatter.

I. INTRODUCTION

OXYGEN has been gradually revealed as playing an important role in MgB₂ superconductors. As early as 2001, Eom et al. reported that the exposure of an MgB₂ sample to a low level of oxygen could “alloy” the ex situ annealed MgB₂ film to form a Mg(B−O)₂ alloy, resulting in a much improved Jc and a slightly suppressed Tc of 35 K [1]. MgO phase with a grain size of about 10 nm was also observed in the oxygen “alloyed” film by selected area electron diffraction (SAED). Klie et al. studied the grain boundaries of MgB₂ bulk samples prepared by a sintering process with z-contrast STEM scans [2]. Periodical Mg-B-O layers were found at the grain boundaries. Furthermore, intra-grain Mg-B-O precipitates were reported later on by the same group [3]. Liao et al. observed precipitates inside the MgB₂ grains of solid state sintered MgB₂ samples with high-resolution transmission electron microscopy (HRTEM) [4]. Two types of precipitations were determined. One type has a coherent Mg(B−O)₂ structure with small sizes of about 5–30 nm, while the other type is f.c.c. MgO precipitates with much larger sizes of 15–100 nm. The MgO precipitates were also observed by Zhu et al. [5]. These studies suggest that oxygen-rich precipitates could provide pinning centers, as the precipitates and oxygen-incorporated grain boundaries are of favorable dimensions, between 5–100 nm, which is comparable with the coherence length (ξ = 5 nm [6], [7]) of MgB₂.

Idrobo et al. calculated the electron-phonon coupling parameters for two possible oxygen-ordered MgB₂ compounds with the composition Mg₂B₃O and Mg₂B₃O₂ [8]. The calculation suggests that the incorporation of oxygen reduces the transition temperature. The calculated Tc values of Mg₂B₃O and Mg₂B₃O₂ are 18.3 and 1.6 K, respectively. This result is in accordance with the reported suppression of Tc in some oxygen enriched MgB₂ samples, especially in situ prepared thin films [9]–[11].

In MgB₂ device applications, the existing form of oxygen and its distribution will strongly influence the device performance. Therefore, a comprehensive knowledge of the existence of oxygen in MgB₂ films is necessary. In this paper, we report a RBS study on the microscopic oxygen distribution in different kinds of MgB₂ films prepared by the PLD method.

II. EXPERIMENTAL DETAILS

The MgB₂ target used in this experiment was produced from Mg and B commercial powders by hot isostatic pressing in Ar. The density of the target was around 84%. The X-ray phase purity of the target was high, with all peaks assigned to the MgB₂ phase. For ex situ MgB₂ film, the precursor film was deposited from a 40% density boron compact made from 99%-purity powder.

A number of MgB₂ films were grown by PLD on single crystal Si substrate with (001) orientation and Al₂O₃ – c substrates. The pulsed laser (248 nm) was focused to an elliptical spot with dimensions of 7 mm × 1.5 mm on the target. Two deposition geometries were applied. For on-axis deposition, the substrate normal was perpendicular to the target, and for the off-axis geometry, the substrate normal was parallel to the target surface. For in situ films, a Mg cap layer was deposited on the film surface after the deposition to compensate for the Mg loss during the in situ annealing. After the annealing, the Mg cap layer was fully evaporated away. In the preparation of the ex situ film, a boron precursor film was first deposited by PLD and then the sample was wrapped in Ta foil, sealed in a stainless steel tube, together with Mg pellets, and annealed in a tube furnace. For more details on preparation, see [12], [13]. Table I shows the preparation parameters and properties of these samples. The thicknesses of the films are similar, about 350 nm.

For the RBS experiment we used He⁺ ions of 2 MeV. Around this energy, the scattering cross sections of He with Mg, O and Si do not present steep variations. Also, at this energy there are no specific nuclear reactions between He and the target atoms.
TABLE I
FABRICATION CONDITIONS FOR THE PLD FILMS USED IN THIS RBS STUDY.
The T_c’s were determined by dc Magnetization

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>Substrate</td>
<td>Deposition conditions</td>
<td>Annealing conditions</td>
</tr>
<tr>
<td>1</td>
<td>Si (001)</td>
<td>On-axis PLD</td>
<td>MgB_2 target</td>
</tr>
<tr>
<td>2</td>
<td>Al_2O_3</td>
<td>On-axis PLD</td>
<td>MgB_2 target</td>
</tr>
<tr>
<td>3</td>
<td>Al_2O_3</td>
<td>Off-axis PLD</td>
<td>MgB_2 target</td>
</tr>
<tr>
<td>4</td>
<td>Al_2O_3</td>
<td>On-axis PLD</td>
<td>Boron target</td>
</tr>
</tbody>
</table>

Fig. 1. RBS spectrum of the MgB_2 target.

The experiment was carried out at ANSTO on a 2MV Tandemtron accelerator, and Si-surface barrier detectors with standard detection electronics were used. The incident angle (α) of the He ions was 0°, the exit angle (β) was 20°, and the scattering angle (θ) was 160°. The total charge measured on each sample was 10 µC. Simulation software SIMNRA was used for experimental data analysis and simulation purposes.

III. RESULTS AND DISCUSSIONS

The RBS spectrum of the 6 mm-thick MgB_2 target is presented in Fig. 1. The Channel No. represents the number of energy channels of the Multi Channel Analyzer, and it is equivalent to the energy of the He projectiles (4 keV/channel) scattered from the Mg and B atoms in the target. The yield represents the number of He projectiles scattered off the Mg and B atoms for 10 µC of charge.

At the applied energy of the He projectiles, the target can be considered infinitely thick. As the result, the RBS spectra of Mg and B appear like steps, with the front edges positioned at characteristic energies for Mg-He and B-He interaction. A close inspection of Fig. 1 reveals that only Mg and B atoms are present in the target, with no significant presence of oxygen.

In Fig. 2 is shown the RBS spectrum of an MgB_2 film grown by PLD on Si as described in the Experimental section. In this case the He ions fully penetrate the MgB_2 film, and as a result the signatures of the atoms present in the film appear like distinct peaks in the spectrum. The presence of oxygen and Mg is clearly visible, in the form of broadened peaks. The width of these peaks is similar, and both are an indication of the thickness of the MgB_2 film.

If we assume a uniform distribution of oxygen inside the MgB_2 film, the modeling result shows a symmetric peak. On the other hand, the experimental curve shows that the peak of oxygen is skewed. This suggests that oxygen is not uniformly distributed in the film, but a higher amount is present near the surface of the film.

It is interesting to know the origin of this rather large amount of oxygen present in the film. Quantitative analysis of the result shows that the film stoichiometry is close to MgB_2 (MgO)_{5.7}. As the oxygen is not present in the target, the only remaining possibilities for its provenance are the deposition atmosphere or an oxidation of the film after it was exposed to ambient atmosphere. Although there is slightly more oxygen present at the surface of the film, it appears less likely that the oxidation of the film could take place by exposing to the ambient atmosphere, because once the MgB_2 film is formed it is stable in air. If, however, during the deposition and in situ annealing not all Mg is used up to form the MgB_2 phase or evaporated, then the excess Mg could easily be oxidized by exposing it to air. So the protective Mg cap layer on top of the film before annealing could also be a cause of the higher level of oxygen near the film surface. On the other hand, a strong argument in support of the deposition atmosphere being the source of the oxygen in the film is the fact that, if the base pressure in the deposition chamber prior to the deposition is higher than approximately 1 x 10^{-6} Torr, then the resultant film is not superconducting, and presumably all Mg is oxidized before the MgB_2 phase is formed.

When the MgB_2 film was grown on Al_2O_3, the presence of oxygen in the film is again visible, as shown in Fig. 3, as a distinct peak. This is clearly separate from the oxygen signal coming from the substrate, which appears as a step at a slightly lower energy. The sharp front edge of the O step is an indication that the oxygen in the substrate is not diffusing into the MgB_2.
Fig. 3. RBS spectrum of an MgB$_2$ film grown by on-axis PLD on Al$_2$O$_3$ and annealed in situ.

Fig. 4. RBS spectrum of an MgB$_2$ film grown by off-axis PLD on Al$_2$O$_3$ and annealed in situ.

Fig. 5. RBS spectrum of an MgB$_2$ film deposited by PLD on Al$_2$O$_3$ and annealed ex situ.

The last sample analyzed was an MgB$_2$ film grown on Al$_2$O$_3$ and annealed ex situ as described in the experimental section. The RBS result is presented in Fig. 5.

In this case there is no oxygen present in the film, but small amounts of Fe (\(\sim 1.5\) at\%) and Ta (\(\sim 0.05\) at\%) are clearly visible. Their origins are most probably the Fe tube and the Ta foil used to protect the sample during the ex situ annealing. As described above, the fabrication process for this film involved the deposition of only B by PLD, and the reaction of the B film with Mg vapors ex situ. Taking into account all the results obtained in this study, it appears that the source of oxygen in the MgB$_2$ film fabricated by PLD is the oxygen present inside the deposition chamber. It is likely that once the Mg-B bond in the target is broken by the \(\sim 5\) eV photons and the plume is formed, a large number of Mg ions in the plasma react with the oxygen present in the deposition atmosphere before they reach the substrate, forming MgO. This scenario is also consistent with the fact that the PLD-fabricated MgB$_2$ films are polycrystalline, with a small grain structure, as shown by X-ray diffraction.

A correlation between the T_c and the distribution of the constituents, especially for the oxygen in each film, is seen in this study. The film with the highest T_c of 37 K was achieved by ex situ annealing of the boron precursor film, and the RBS detection does not show any obvious oxygen signal in the film. The on-axis and off-axis in situ films on Al$_2$O$_3$ substrates have similar T_cs of 29 K, and they both show significant oxygen content. The magnesium and boron contents are much smaller in the films grown on Si, and the amount of Mg is larger still, suggesting better conditions for the formation of MgB$_2$ phase. TEM study has revealed the fine grain character of the in situ films, and the existence of oxygen is predominantly in the form of magnesium oxide, as indicated in the SAED pattern [14]. This is in accordance with the microscopic studies mentioned in the introduction section. The MgO phase, especially when concentrated at the surface layer of the MgB$_2$ film, will degrade the performance of the in situ MgB$_2$ film in a RF field, due to its negative effects on the surface impedance and non-linear response [15].
in situ films in a previous study [14]. The oxygen-enriched grain boundaries and MgO precipitates, especially those concentrated in the top layer of the film surface, are potential weak links in microwave fields. These weak links could be responsible for a sharp increase in the surface impedance with peak surface field in a 6 GHz RF field measured in our in situ films [16]. These oxygen-enriched phases would also present problems for an accurate thickness control of the insulator interlayer for Josephson Junctions. Further work to eliminate oxygen in the in situ films is necessary to achieve desirable performances in MgB$_2$-based microwave devices.

IV. CONCLUSION

Using RBS analysis, we have shown in this work that a considerable amount of oxygen was incorporated in the in situ PLD MgB$_2$ films. By contrast, no oxygen was detected in the ex situ film. The presence of oxygen in the MgB$_2$ films is independent of the substrate type (Si or Al$_2$O$_3$), or the deposition geometry (on-axis or off-axis). The distribution of oxygen in the in situ films is not homogeneous. The oxygen is concentrated in the near-surface region according to the known oxygen peak in the experimental RBS curves and is most likely in the form of MgO precipitates and inter-grain weak links judging from previous studies, which is not favorable for the RF applications.

ACKNOWLEDGMENT

The authors thank T. Silver for useful discussions.

REFERENCES

