
University of Wollongong University of Wollongong

Research Online Research Online

Faculty of Engineering and Information
Sciences - Papers: Part B

Faculty of Engineering and Information
Sciences

2017

ID-based Encryption with Equality Test against Insider Attack ID-based Encryption with Equality Test against Insider Attack

Tong Wu
University of Wollongong, tw225@uowmail.edu.au

Sha Ma
University of Wollongong, sma@uow.edu.au

Yi Mu
University of Wollongong, ymu@uow.edu.au

Shengke Zeng
University of Wollongong, shengke@uow.edu.au

Follow this and additional works at: https://ro.uow.edu.au/eispapers1

 Part of the Engineering Commons, and the Science and Technology Studies Commons

Recommended Citation Recommended Citation
Wu, Tong; Ma, Sha; Mu, Yi; and Zeng, Shengke, "ID-based Encryption with Equality Test against Insider
Attack" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 414.
https://ro.uow.edu.au/eispapers1/414

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eispapers1
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers1?utm_source=ro.uow.edu.au%2Feispapers1%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers1%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers1%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ro.uow.edu.au/eispapers1/414?utm_source=ro.uow.edu.au%2Feispapers1%2F414&utm_medium=PDF&utm_campaign=PDFCoverPages

ID-based Encryption with Equality Test against Insider Attack ID-based Encryption with Equality Test against Insider Attack

Abstract Abstract
Testing if two ciphertexts contain the same plaintext is an interesting cryptographic primitive. It is usually
referred to as equality test of encrypted data or equality test.

Keywords Keywords
insider, equality, against, encryption, attack, test, id-based

Disciplines Disciplines
Engineering | Science and Technology Studies

Publication Details Publication Details
Wu, T., Ma, S., Mu, Y. & Zeng, S. (2017). ID-based Encryption with Equality Test against Insider Attack.
Lecture Notes on Computer Science, 10342 168-183. Auckland, New Zealand 22nd Australasian
Conference on Information Security and Privacy (ACISP 2017)

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers1/414

https://ro.uow.edu.au/eispapers1/414

ID-based Encryption with Equality Test against
Insider Attack

Tong Wu1, Sha Ma1,2, Yi Mu1 and Shengke Zeng1,3

1 Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, University of Wollongong

Wollongong, NSW, Australia
2 College of Mathematics and Informatics, South China Agricultural University,

Guangzhou, Guangdong 510640, China
3 School of Computer and Software Engineering, Xihua University,

Chengdu, 610039, China.
{tw225,sma,ymu,shengke}@uow.edu.au

Abstract. Testing if two ciphertexts contain the same plaintext is an
interesting cryptographic primitive. It is usually referred to as equality
test of encrypted data or equality test. One of attractive applications
of equality test is for encrypted database systems, where the database
server hosts the encrypted databases and users can query if the plaintext
embedded in a ciphertext on a database is equal to that in the queried
ciphertext without decryption. Although it is not hard to achieve with
the pairing-based cryptography, the security against the insider attack
(by the database server) is a challenging task. In this paper, we propose
a novel equality test scheme aiming to solve the problem. Our scheme
adopts the identity-based cryptography. We prove the security of our
scheme in the random oracle model.

Keywords: ID-based encryption, equality test, insider attack

1 Introduction

The probabilistic public key encryption with equality test (PKEET) [14] is an
interesting technique with wide applications such as in outsourced database sys-
tems, which host and manage encrypted data for clients. The merit of the equal-
ity test scheme is that one can check whether two ciphertexts contain the same
plaintext without decrypting them.

In the original equality test scheme [14], outsourced database servers are
usually considered to be semi-trusted because of its curiosity on user data. We
call it an “Honest but Curious” (HBC) server. It is practical for the server
to obtain the illegal profit from peddling users’ private data by simple brute
force attacks on the encrypted message. Our scheme should resist this kind of
adversaries, even we assume that the adversary has access to all ciphertexts and
can test their equality, which is called “insider attack” [11]. An HBC server (the
insider), who runs the test algorithm correctly and continuously, can perform

any polynomial time computation and then obtain the information beyond its
own.

1.1 Related Work

Boneh et al. first proposed a public key encryption with keyword search scheme
(PEKS) in the random oracle model [2]. When a user conducts a search, he can
generate a trapdoor with a keyword and his private key. Taking the generated
trapdoor and a ciphertext, the test algorithm will output “accept” if they contain
the same keyword; otherwise, “reject”. Their work provides a solution to the
equality test on encrypted keywords in public key encryption.

To provide a general equality test scheme, Yang et al. proposed the first public
key encryption with equality test (PKEET) [14]. In PKEET, given two tags Ti
and Tj on ciphertexts Ci and Cj generated with PKi and PKj corresponding
to message Mi and Mj , respectively, there is a function Test(·, ·), which outputs
1 iff Mi = Mj . Their work achieves the security against the One-way Chosen
Ciphertext Attack (OW-CCA). There are some extensions of PKEET which
offer the fine or flexible grain authorization and stronger security [13, 12, 6, 9, 10,
8]. To achieve the stronger security, the authorization mechanism is adopted to
these PKEET schemes. Some of them utilize trapdoors generated from private
keys which are used to the authorization process. As an instance, Ma et al. in [9],
proposed a PKEET with the flexible authorization according to four scenarios.
In [10], Ma et al. provided a solution to the PKEET in multi-user setting by
delegating the equality test to a fully trusted proxy. Later, Ma [8] proposed an
identity-based PKEET (IBEET). These works improved the security of PKEET
to IND-CCA security, while private keys are kept secret. However, none of their
works can resist the insider attack.

Mayer et al. [11] proposed a verifiable private equality test (VPET) for multi-
party computation. The protocol resists attacks launched by HBC entities and
active malicious entities who can behave active malicious actions. However, it
requires that all users are online during testing and generate a proof for each
equality test. It is therefore impractical for the cloud storage management and
outsourced database services, which require users to be offline. Constructions
presented in [7, 3] also provide solutions to insider attacks for the PEKS schemes,
but not for the general equality test. Chen et al. in [3] proposed a PEKS scheme
based on the dual-server framework. Peng et al. [7] proposed a PEKS scheme to
prevent the trapdoor generated globally by containing identity set in trapdoors
by keeping this set secret, so that the insider attack is eliminated.

1.2 Our Contribution

The probabilistic public key encryption with equality test was proposed by Yang
et al. [14]. However, their scheme is vulnerable to the above insider attack. Since
the ciphertext can be generated publicly, the HBC server can test the embed-
ded message in the target ciphertext on its guess. To address this problem, we
propose an efficient identity-based equality test scheme with resistance against

the insider attack as our contributions. We define a novel security model for the
confidentiality of IBEET which allows the adversary to conduct the equality test
on all ciphertexts but can not generate ciphertexts. We refer it to as Weak-IND-
ID-CCA (W-IND-ID-CCA). Nevertheless, it is stronger than security models for
previous works under the same attack.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we provide some pre-
liminaries for our construction. In Section 3, we formulate the notion of IBEET-
IA. In Section 4, we present the construction of IBEET-IA and prove its security
in Section 5. In Section 6, we construct a secure outsourced database applica-
tion based on IBEET-IA and present the experimental results. In Section 7, we
conclude our paper.

2 Preliminaries

2.1 Bilinear Pairing

Definition 1 (Bilinear Group [5]). G1, G2 and GT constitute a bilinear group
if there exists a bilinear map e : G1 ×G2 → GT , where |G1| = |G2| = |GT | = p.

The bilinear pairing is an operation conducted on bilinear groups. Informally,
two elements in such group are linearly related to the pairing result. The formal
description of the bilinear paring is given as follows.

Bilinear Pairing Suppose that G1, G2 and GT are three cyclic groups with
the same prime order p. Suppose that g and h are generators of G1 and G2,
respectively. A bilinear pairing e : G1 ×G2 → GT holds properties as follows:

1. Bilinearity: For any x ∈ G1, y ∈ G2 and a, b ∈ Z∗p, e(xa, yb) = e(x, y)ab.
2. Non-degeneration: e(g, h) 6= 1GT

, where 1GT
is the generator of GT .

3. Computability: There exists an efficient algorithm to compute e(x, y), for
any x ∈ G1 and y ∈ G2.

We say that a pairing is symmetric if G1 = G2. Our construction is built on such
groups.

Bilinear Diffie-Hellman Problem (BDHP). Let G1, G2 be two groups of
prime order p. Let e : G1×G1 → G2 be a bilinear map and let g be a generator of
G1. The BDH problem in (G1,G2, e) is as follows: Given (g, ga, gb, gc) for some
a, b, c ∈ Z∗p compute e(g, g)abc ∈ G2. An polynomial algorithm A has advantage
ε(·) in solving BDH in (G1,G2, e) if

Pr[A(g, ga, gb, gc) = e(g, g)abc] ≤ ε(λ),

where the probability is over the random choice of (a, b, c) ∈ Z∗p, the random
choice of g ∈ G1, and the random bits consumed by A.

Definition 2 (Bilinear Diffie-Hellman Assumption). We say that the BDH
assumption holds if for any randomized polynomial time in λ for some sufficiently
large λ algorithm A solves the BDH problem with the negligible advantage ε(λ).

2.2 Short Signature without Random Oracle

Recall that the short signature scheme in plain model is proposed by Boneh and
Boyen [1]. The security of their scheme depends on the q-Strong Diffie-Hellman
assumption.

q-Strong Diffie-Hellman Problem (q-SDHP) The q-SDHP in (G1,G2, e)

is as follows: Given q + 2-tuple (g1, g2, g
x
2 , g

x2

2 , · · · , gxq

2) as input, output a pair

(c, g
1

x+c

1), where c ∈ Z∗p. An polynomial algorithm A has advantage ε(·) in solving
q-SDHP in (G1,G2, e) if

Pr[A(g1, g2, g
x
2 , g

x2

2 , · · · , gx
q

2) = (c, g
1

x+c

1)] ≤ ε(λ),

where the probability is over the random choice of x in Z∗p and the random bits
consumed by A.

Definition 3 (q-Strong Diffie-Hellman Assumption). We say that the q-
SDH assumption holds if for any randomized polynomial time in λ for some
sufficiently large λ algorithm A solves the q-SDH problem with the negligible
advantage ε(λ).

Construction. We adopt the weak construction of their short signature. It’s
sufficient to guarantee the secure of our scheme from the attack by forging an
invalid pair of elements and testing with other valid ciphertexts. We recall their
construction which consists of three algorithm (KeyGen, Sign, Vefiry).

– KeyGen. Pick random x ∈ Zp, and compute v = gx2 ∈ G2. The public key is
(g1, g2, v). The secret key is x.

– Sign. Given a secret key x and a message m ∈ Zp, output the signature

σ ← g
1/(x+m)
1 ∈ G1. Here 1/(x + m) is computed modulo p. By convention

in this context we define 1/0 to be 0 so that in the unlikely event that
x+m = 0 we have ← 1.

– Verify. Given a public key (g1, g2, v), a message m ∈ Zp, and a signature
σ ∈ G1, verify that

e(σ, v · gm2) = e(g1, g2)

If equality holds output valid. If σ = 1 and vgm2 = 1 output valid. Otherwise,
output invalid.

3 Definitions

In this section, we give formal definitions of our scheme and security model.
Our scheme achieves chosen ciphertext security (i.e. W-IND-ID-CCA) under the
defined security model.

3.1 ID-based Encryption with Equality Test against Insider Attack

We propose an ID-based encryption with equality test. The scheme Ω consists
of a set of algorithms: Ω = (Setup,Extract, Join,Enc,Test,Dec).

– Setup(1λ): It takes the secure parameter λ and outputs the system public
parameters pp, the master secret key msk.

– Extract(ID,msk): It takes (ID,msk) and pp and outputs the private key dID.

– Join({ID}): It takes a set of identities {ID} and outputs a group token tok
via a secure protocol.

– Enc(m, ID, Ppub, tok): It takes (m, ID, tok, Ppub) and outputs the ciphertext
C = (c1, c2, c3, c4).

– Test(CA, CB): It takes ciphertexts CA and CB produced by user A and user
B, respectively. It outputs 1 if messages associated with CA and CB are
equal. Otherwise, it outputs 0.

– Dec(C, dID, tok): It takes the ciphertext C, dID and tok and outputs the mes-
sage m, if C is a valid ciphertext under ID. Otherwise, it outputs ⊥ .

Note: pp refers to public parameters and hash functions used in our scheme.

3.2 Security Models

Definition 4 (Weak-IND-ID-CCA (W-IND-ID-CCA)). Let Ω = (Setup,
Extract, Join,Enc,Test, Dec) be the scheme and A be a polynomial time adversary.

– Setup: The challenger runs the Setup algorithm to initialize the system and
obtains Ppub, msk and the challenged group token tok. It gives Ppub to the
adversary A.

– Phase 1: The adversary issues queries q1, q2, · · · , qm where qi is one of:

• H1 Query (IDi). The challenger responds by running H1(·) to generate
gIDi . It sends gIDi to the adversary.

• Extract Query (IDi). The challenger responds by running Extract algo-
rithm to generate the private key dIDi

corresponding to the public key
IDi. It sends dIDi to the adversary.

• H2 Query (G3
1 ×G2). The challenger responds by running H2(·) to gen-

erate the corresponding hash value. It sends the hash value to the ad-
versary.

• Encryption Query (mi, IDi). The challenger responds by running Enc
to generate the ciphertext Ci corresponding to (mi, IDi). It sends the
ciphertext Ci to the adversary.

• Decryption Query (Ci, IDi). The challenger responds by running Extract
algorithm to generate dIDi

corresponding to IDi. It then runs Dec to
decrypt the ciphertext Ci using dIDi

. It sends the resulting plaintext to
the adversary.

– Challenge:
Once A decides the Phase 1 is over, it sends two equal-length messages
m0,m1 and ID∗ to be challenged to the challenger, where bothm0,m1 are not
issued in the Encryption Query and ID∗ is not issued in the Extract Query
in the Phase 1. The challenger randomly picks b ∈ {0, 1}, and responds with
C∗ ← Enc(mb, ID

∗, Ppub, tok).
– Phase 2:The adversary issues queries qm+1, qm+2, · · · , qn where qi is one

of:
• H1 Query (IDi). The challenger responds as in Phase 1.
• Extract Query (IDi) where IDi 6= ID∗. The challenger responds as in

Phase 1.
• H2 Query (G3

1 ×G2). The challenger responds as in Phase 1.
• Encryption Query (mi, IDi) where mi /∈ {m0,m1}. The challenger re-

sponds as in Phase 1.
• Decryption Query (Ci, IDi) where (Ci, IDi) 6= (C∗, ID∗). The challenger

responds as in Phase 1.
– Output: Finally, A gives a guess b′ on b. If b′ = b, we say A wins the game.

We define A’s advantage on breaking the scheme as

AdvW-IND-ID-CCA
Ω,A(H1,H2,Extract,Enc,Dec) =

∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ = ε(λ),

where ε(λ) is a polynomial of λ. Ω is W-IND-ID-CCA secure if ε(λ) is a negligible
function. In the W-IND-ID-CCA model, the adversary has access to ciphertexts
without any valid tok.

4 The Proposed Scheme

4.1 ID-based Encryption with Equality Test against Insider Attack

Our scheme aims to provide the service for designated senders. That is, the
receiver and its designated senders form a group of users. tok denotes a secret
information shared among group members. The server and other users can only
conduct the equality test. Our protocol consists of the following five algorithms:

– Setup(1λ): Initially, the system takes a security parameter λ and returns
public system parameters pp, the master secret key msk.
1. The system generates two multiplicative groups G1 and G2 with the same

prime order p of λ-length bits and a bilinear map e : G1 × G1 → G2.
The system selects an arbitrary generator g ∈G1.

2. The system selects α
$← Z∗p as msk and sets Ppub = gα.

3. The system chooses three hash functions:

H : {0, 1}t → Z∗p, H1 : {0, 1}∗ → G1, H2 : G3
1 ×G2 → {0, 1}t+l,

where l is the length of random numbers and t is the length of messages.
It publishes pp = {λ, p, t, l, g, Ppub, e,H,H1, H2}.

– Extract(ID,msk): PKG generates dID for each user’s ID.

gID = H1(ID), dID = gαID,

where dID is distributed via a secure channel.

– Join({ID}). Users organize a small group and share a common secret token
tok = β via a secure protocol.

– Enc(m, ID, Ppub, tok): To encrypt m, it selects two random numbers r1, r2
$←

Z∗p, with |r1| = l. Then it computes

c1 = g
r1

H(m)+tok

ID , c2 = gr1ID , c3 = gr2 ,

c4 = (m ‖ r1)⊕H2(c1 ‖ c2 ‖ c3 ‖ e(Ppub, gID)r2).

Finally, it returns C = (c1, c2, c3, c4).

– Test(CA, CB): Suppose that

CA ← Enc(mA, IDA, Ppub, gIDA
)

and

CB ← Enc(mB , IDB , Ppub, gIDB
)

are generated by user A and user B, respectively. With CA = (cA,1, cA,2,
cA,3, cA,4) and CB = (cB,1, cB,2, cB,3, cB,4), the test algorithm on CA and
CB runs as follows:

e(cA,1, cB,2) = e(cB,1, cA,2). (1)

If the equation holds, it explains the equality between mA and mB , then
outputs 1. Otherwise, outputs 0.

– Dec(C, dID, tok): To decrypt the ciphertext C with dID and tok, it computes:

m ‖ r1 = c4 ⊕H2(c1 ‖ c2 ‖ c3 ‖ e(c3, dID)).

If

c1 = g
r1

H(m)+tok

ID ∧ c2 = gr1ID ,

it returns m. Otherwise, ⊥.

4.2 Correctness

We say that Ω has the ciphertext comparability with error µ, for some function
µ(·). For instance, we run the equality test on CA ← Enc(mA, IDA, Ppub, tok),
CB ← Enc(mB , IDB , Ppub, tok) generated by user A and user B, respectively.

CA = (cA,1, cA,2, cA,3, cA,4), CB = (cB,1, cB,2, cB,3, cB,4)

We compute the left hand side (L) and the right hand side (R) of Eq. (1) in
the Test algorithm, respectively. We analyze it in two cases: mA = mB and
mA 6= mB .

L := e(cA,1, cB,2)

= e(g
rA,1/(tok+H(mA))
IDA

, g
rB,1

IDB
)

= e(g
rA,1/(tok+H(mA))
IDA

, g
rB,1

IDB
)

= e(gIDA
, gIDB

)rA,1rB,1/(tok+H(mA))

R := e(cB,1, cA,2)

= e(g
rB,1/(tok+H(mB))
IDB

, g
rA,1

IDA
)

= e(g
rB,1/(tok+H(mB))
IDB

, g
rA,1

IDA
)

= e(gIDB
, gIDA

)rA,1rB,1/(tok+H(mB))

Case 1: If mA = mB , the equation holds with the probability of 1;
Case 2: If mA 6= mB , the equation holds when the collision occurs in hash
function H(m), that is H(mA) = H(mB) while mA 6= mB . We define H(m) is a
collision resistant hash function. Pr[H(mA) = H(mB)|mA 6= mB] is a negligible
function.

5 Security

Our scheme is a chosen ciphertext secure IBEET (i.e. W-IND-ID-CCA), assum-
ing BDH is hard in groups generated by a BDH parameter generator.

Theorem 1. Let A be a W-IND-ID-CCA adversary on IBEET-IA that making at
most qe times extract queries and qd times decryption queries achieves advantage
at least ε. Then there is a BDH algorithm B solving the BDH problem with the
advantage at least ε

e(qe+qd+1) .

Proof. Suppose there is a probabilistic polynomial time (PPT) adversary A who
achieves the advantage ε on breaking Ω = (Setup, Join, Extract,Enc, Test,Dec).
Given a BDH instance, a PPT adversary B will take advantage of A to solve the
BDH problem with the probability of ε′. Hence, if the BDH assumption holds,
then ε′ is negligible and consequently ε must be negligible.

Assume B holds a BDH tuple (g, U, V,R), where x = logg U , y = logg V and
z = logg R are unkown. Let g be the generator of G1. Finally, B is supposed to
output e(g, g)xyz ∈ G2. The game between B and A runs as follows:

Setup: B sets Ppub = gx·r = Ur, where r
$← Z∗p and sets tok = β

$← Z∗p. B gives
Ppub to A.

Phase 1:

– H1 Query. A can query the random oracle H1 at any time. A queries
IDi to obtain gIDi . B responds with gIDi if IDi has been in the H1 table,
(IDi, gIDi

, ai, coini). Otherwise, for each IDi, B responds as follows:
• B tosses a coin with Pr[coini = 0] = δ. If coini = 1, responds to A with

gIDi = gai , ai
$← Z∗p. Otherwise, B sets gIDi = gaiy = V ai .

• B responds with gIDi
, then adds (IDi, gIDi

, ai, coini) in the H1 table,
which is initially empty.

– Extract Query. A queries the private key of IDi. B responds as follows:
• B obtains H1(IDi) = gIDi

in the H1 table. If coini = 0, B responds with
⊥ and terminates the game.

• Otherwise, B responds with dIDi = P aipub = Ur·ai , where ai, gIDi is in the
H1 table.

• B sends dIDi
to A, then stores (dIDi

, ai, IDi) in the private key list, which
is initially empty.

– H2 Query. A queries Di ∈ G3
1×G2. B responds with Wi ∈ H2(Di) in the H2

table. Otherwise, for every Di, B selects a random string Wi = {0, 1}t+l as
the H2(Di). B responds A with H2(Di) and adds (Di,Wi) in the H2 table,
which is initially empty.

– Encryption Query. A queries mi encrypted with IDi. B responds as follows:
• B searches the H1 table to obtain the gIDi .

• Then B selects ri,1, ri,2
$← Z∗p and computes:

ci,1 = g
ri,1/(tok+H(mi))
IDi

, ci,2 = g
ri,1
IDi

, ci,3 = gri,2 ,

Di = ci,1 ‖ ci,2 ‖ ci,3 ‖ e(Ppub, gIDi
)ri,2 .

• B queries OH2 to obtain Wi = H2(Di).
• B computes ci,4 = (mi ‖ ri,1)⊕Wi.
B responds with Ci = (ci,1, ci,2, ci,3, ci,4).

– Decryption Query.A queries Ci to be decrypted in IDi. B responds as follows:
• B searches the H1 table to obtain the gIDi

. If coini = 1, obtain dIDi
of

IDi in the private key list to decrypt Ci. Then B computes the bilinear
map with dIDi

:

e(ci,3, dIDi
) = e(gri,2 , gaixr) = e(g, U)ri,2air.

• After that, B computes Di = ci,1 ‖ ci,2 ‖ ci,3 ‖ e(Ppub, gIDi)
ri,2 and

obtains Wi in the H2 table. B obtains mi and ri,1 by ci,4 ⊕Wi.
• Eventually, B computes c′i,1, c

′
i,2 with mi and ri,1 decrypted from Ci. If

it is a valid ciphertext that c′i,1 = ci,1 and c′i,2 = ci,2, B responds with
mi. Otherwise, ⊥.

Challenge: Once A decides the Phase 1 is over, A outputs two equal-length
messages m0, m1 and ID∗ to be challenged, where both m0, m1 are not issued
in Encryption Query and ID∗ is not queried in Extract Query in Phase 1. B
responds as follows:

– B encrypts m0 and m1 and gets C0 and C1.
– If B searches the H1 table. If coin∗ = 1, then B responds with ⊥ and

terminates the game, since gID∗ = ga
∗
.

– Otherwise, B randomly selects b ∈ {0, 1}. Since gID∗ = gya
∗

= V a
∗
, B can

calculate

c∗1 = g
r∗1/(tok+H(mb))
ID∗ , c∗2 = g

r∗1
ID∗ , c∗3 = R = gz, c∗4 = (mb||r∗1)⊕W ∗,

whereW ∗ = H2(D∗) andD∗ = c∗1 ‖ c∗2 ‖ c∗3 ‖ e(Ppub, gID∗)z (that e(Ppub, gID∗)z

is unknown which B wants A to compute). C∗ = (c∗1, c
∗
2, c
∗
3, c
∗
4) is a valid

ciphertext for mb.

– B responds A with C∗.

Phase 2:

– H1 Query. A queries as in Phase 1.
– Extract Query. A queries as in Phase 1, except that IDi 6= ID∗.
– H2 Query. A issues the query as in Phase 1.
– Encryption Query. A queries as in Phase 1, except that the message mi /∈
{m0,m1}.

– Decryption Query. A queries as in Phase 1, except that the ciphertext
(Ci, IDi) 6= (C∗, ID∗).

Output: A gives a guess b′ on b. If b′ 6= b, B responds with failure and terminates
the game. If b′ = b, then B gets the result of the BDH tuple by guessing the inputs
of H2 Query. Suppose Dout = D∗, B obtains e(Ppub, gID∗)z directly from Dout by
removing first 3k bits (the elements in G1 and G2 is k bits length.) that is c∗1 ‖
c∗2 ‖ c∗3. Then B obtains e(g, g)xyz = e(Ppub, gID∗)z

(a∗r)−1

= (e(U, V)za
∗r)(a

∗r)−1

.

Claim. If the algorithm B does not abort during the simulation then the algo-
rithm A’s view is identical to its view in the real attack. Furthermore, if B does
not abort then

∣∣Pr[b′ = b]− 1
2

∣∣ ≥ ε
e(qe+qd+1) . The probability over the random

bits used by A, B and the challenger.

It remains to bound the probability that B aborts during the simulation. The
algorithm B could abort for three reasons: (1) a bad private key extraction query
from A during the phase 1 or 2, (2) A chooses a bad ID to be challenged on,
or (3) a bad decryption query from A during the phase 1 or 2. We define three
corresponding events:

ε1: B aborts at the Extract Query step.
ε2: B aborts at the Decryption Query step.
ε3: B aborts at the Challenge step.

We have
Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] ≥ (1− δ)qe+qdδ.

We provide the proof on Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] by induction on the maximum
number of queries qe + qd made by the adversary. Let ε0···i be the event that
ε1∨ε2∨ε3 happens after A queries at most i times and let i = qe+qd. Similarly,
let εi be the event that ε1 ∨ ε2 ∨ ε3 happens for the first time when A queries
the ith item. For i = 0, it is trivial that Pr[¬ε0···0] = δ. Suppose that for i − 1
the Pr[¬ε0···i−1] = (1− δ)i−1δ holds. Then for i, it holds

Pr[¬ε0···i] = Pr[¬ε0···i|¬ε0···i−1] Pr[¬ε0···i−1]
= Pr[¬εi|¬ε0···i−1] Pr[¬ε0···i−1]
≥ Pr[¬εi|¬ε0···i−1](1− δ)i−1δ.

Hence, we bound the probability of εi not to happen with A’s ith query. The
query is either an Extract Query for IDi or a Decryption Query for (Ci, IDi).
Recall that if coini = 1 it cannot cause ε1 and ε2 to happen. We consider three
cases:

Case 1 The ith query is the first time A queries IDi. In this case, Pr[coini =
1] = 1− δ and hence

Pr[¬εi|¬ε0···i−1] ≥ 1− δ.

Case 2 IDi was queried in previous Extract Query. Assuming the previous query
did not cause ε0···i−1 to happen we have coini = 1. Hence,

Pr[¬εi|¬ε0···i−1] = 1.

Case 3 IDi was queried in the previous Decryption Query. Similarly to Case 2,
we have coini = 1, Hence,

Pr[¬εi|¬ε0···i−1] = 1.

To summarize, we have

Pr[¬εi|¬ε0···i−1] ≥ 1− δ

whatever the ith query is. Therefore,

Pr[¬εi] ≥ (1− δ)iδ

is as required. Since

Pr[¬ε1 ∧ ¬ε2 ∧ ¬ε3] ≥ (1− δ)qe+qdδ,

the success probability is maximum at δopt. Using δopt = 1
qe+qd+1 , the probability

that B does not abort is at least 1
e(qe+qd+1) . This shows that B’s advantage is at

least ε
e(qe+qd+1) as required.

Remark 1. Suppose the q-SDH assumption holds in (G1,G2). Then the signature
scheme above is secure against existential forgery under a weak chosen message
attack. The proof is referred to [1]. The security of the simple construction in
[1] implies the security of our construction. If the construction is secure against
existential forgery under a weak chosen message attack, our construction is secure
under the W-IND-ID-CCA.

Remark 2. Responses to H1 queries are as in the real attack since responses
are uniformly and independently distributed in G∗1. All responses to the private
key extraction queries and decryption queries are valid. Finally, the challenge
ciphertext C∗ given to A is the encryption of mb for some random b ∈ {0, 1}.
Therefore, by the definition of A we have that∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ ≥ ε

e(qe + qd + 1)
.

6 Experiments on A Database

6.1 Setup of Experiments

The purpose of our experiments is to demonstrate the efficiency and feasibility
of our scheme. The instantiation of our novel IBEET-IA scheme is implemented
in Java with the Java Pairing Based Cryptography library (JPBC) [4]. In our
experiments, type A pairing is invoked for the configuration of our IBEET-IA
program, which is symmetrically built from type A super-singular elliptic curve
with the embedding degree of two. Precisely, the length of elements is 512 bits
for G1 and 1024 bits for G2. For the database, MySQL on a virtual machine with
1024MB memory and one processing core is used as the experimental environ-
ment. Detailed parameters of our experiments are shown in Table 1. In addition,

Table 1. Experimental environment

Hardware Parameter

Computer Mac Pro 13’ 2015

Processor 2.7 GHz Intel Core i5

Operation System OS X El Capitan 10.11.6

Memory 8 GB 1867 MHz DDR3

Cores 2

Software Parameter

Virtual Machine VMware Fusion 7

VM OS Ubuntu 14.04.3

VM Memory 1024 MB

VM Core 1

Database MySQL

Development Java 1.8 + Eclipse + JPBC

experiments were conducted on the practical database with eight tables, which
are constructed with columns over rows on 4 × 273, 8 × 23, 6 × 326, 5 × 2996,
9× 7, 4× 273, 8× 110 and 3× 7, respectively. After running three experiments
on three algorithms, Enc, Dec and Test, the efficiency of those algorithms are
analyzed. The results are shown in the following subsections.

6.2 Performance Evaluation

In the following three experiments, the total time cost is linear with the size of
entities to be encrypted, decrypted or tested. In Enc and Dec algorithms, they
conduct a pairing and three exponents, simultaneously. Therefore, the average
time consumption is the same, 0.3 second (or 0.3s) to 0.2s for each entity in
the encryption and the decryption containing the reading and writing time. The
average time consumption is 0.1s for each equality test, which is a reasonable
result and can be accepted by practice applications.

Encryption Performance The encryption encrypted with the user’s ID. For
the ith encryption on mi, it inputs ID and the value of the current cell and
computes

ci1 = g
ri1/(tok+H(mi))
ID , ci2 = g

ri1
ID , ci3 = gr

i
2 ,

ci4 = (mi ‖ ri1)⊕H2(ci1 ‖ ci2 ‖ ci3 ‖ e(Ppub, gID)r
i
2),

where ri1, r
i
2

$← Z∗p, with |ri1| = l. Finally, it returns Ci = (ci1, c
i
2, c

i
3, c

i
4). Results

on the total time consumption over the encryption in each experiment are shown
as Table 2.

Table 2. Encryption performance

Cells RT [ms]

7 3297
58 19789
183 57940
880 296337
1092 343131
1384 584450
1942 654629
14980 4715098

0 3 6 9 12 15
0

1000

2000

3000

4000

5000

Cell (1000 units)

R
u
n
n
in
g
T
im

e
[s
]

The time consumption of the Enc algorithm is linear with the number of cells
to be encrypted. Enc contains one pairing and three exponent computations.

Decryption Performance We conducted the decryption operation on the ran-
dom selected column to evaluate the performance of our decryption algorithm.
For the ith decryption on captured (ci1, c

i
2, c

i
3, c

i
4), it takes ID and the value of

the set and computes

mi ‖ ri1 = ci4 ⊕H2(ci1 ‖ ci2 ‖ ci3 ‖ e(c3, dID)).

If

ci1 = g
r1/(tok+H(mi))
ID ∧ ci2 = g

ri1
ID ,

it returns mi. Otherwise, it returns ⊥. The results on the total time consumption
over the decryption in each experiment are shown as Table 3.

The time consumption of the Dec algorithm is linear with the number of cells
to be decrypted. Dec contains one pairing and two exponent computations.

Table 3. Decryption performance

Cells RT [ms]

7 1640
23 5432
110 27181
122 32544
273 64894
326 74367
2996 715763

0 600 1200 1800 2400 3000
0

200

400

600

800

1000

Cells (unit)

R
u
n
n
in
g
T
im

e
[s
]

Equality Test Performance We conducted the equality test between two
tables who have the same column. For the ith equality test, it takes IDs and
two ciphertexts which are Ci = (ci1, c

i
2, c

i
3, c

i
4) and Cj = (cj1, c

j
2, c

j
3, c

j
4), respec-

tively, and checks whether e(ci1, c
j
2) is equal to e(cj1, c

i
2). Results on the total time

consumption over the equality test in each experiment are shown in Table 4.

Table 4. Equality test performance

Cells RT [ms]

161 16083
1540 149746
33306 2821123
39772 2898100
329560 23247358

0 60 120 180 240 300 360
0

50

100

150

200

250

300

350

400

Cells [Thousand Units]

R
u
n
n
in
g
T
im

e
[m

in
]

The time consumption of the Test algorithm is linear with the number of cells
to be conducted the equality test. Test contains only two pairing computations.
The deviation of the performance might be caused by the instability of the CPU
used in our simulation.

6.3 Comparison

There are some PKEET variants. We made a comparison on the efficiency of
algorithms adopted in these schemes. “Exp” refers to the exponent computation.
“P” refers to the pairing computation. “Auth.” refers to the authorization.

Table 5. Comparing the efficiency of algorithms of variant PKEETs with our scheme

PKEETs IA Enc Dec Test Auth. Security

[14] N 3Exp 3Exp 2P N/A OW-CCA

[12] N 4Exp 2Exp 4P 3Exp OW/IND-CCA

[13] N 5Exp 2Exp 4Exp N/A OW/IND-CCA

[6] N 4Exp 4Exp 6Exp+2P 5Exp OW/IND-CCA

[10] N 1P+5Exp 1P+4Exp 4P+2Exp 3Exp OW/IND-CCA

[8] N 6Exp 2P+2Exp 4P 2Exp OW-ID-CCA

Ours Y 1P+3Exp 1P+2Exp 2P N/A W-IND-ID-CCA

The extended PKEET schemes cost three to four steps to conduct the equal-
ity test including analyzing trapdoor and inverse-computing trapdoor. In the
contrast, our scheme only needs two pairing computations to conduct the equal-
ity test. The results in Table 5 indicate the improvement on efficiency in our
scheme comparing with other schemes. In addition to efficiency, our scheme has
shown the improvement on security and achieved the first W-IND-ID-CCA which
is stronger than OW-ID-CCA.

7 Conclusions

The probabilistic public key encryption with equality test proposed by Yang et al.
in 2010 at CT-RSA and its extended works are vulnerable to the insider attack
launched by the semi-trusted server by guessing on the embedding message.
The server can test whether the guessed message is equal to that contained
in the target ciphertext. To solve this problem, we proposed a novel IBEET-IA
scheme which a reasonable efficiency. In order to prove that our scheme is chosen
ciphertext secure, we proposed a novel W-IND-ID-CCA security model under the
defined insider attack. We also demonstrated its efficiency by experiments on a
real database.

Acknowledgement.

This work was partially supported by the National Natural Science Foundation
of China (grant numbers: 61402184 and 61402376).

References

1. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Advances in
Cryptology - EUROCRYPT 2004, International Conference on the Theory and
Applications of Cryptographic Techniques, Interlaken, Switzerland, May 2-6, 2004,
Proceedings. pp. 56–73 (2004)

2. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Advances in Cryptology - EUROCRYPT 2004, Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Interlaken, Switzerland, May 2-6, 2004, Proceedings. pp. 506–522 (2004)

3. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-key encryption
with keyword search for secure cloud storage. IEEE Trans. Information Forensics
and Security 11(4), 789–798 (2016)

4. De Caro, A., Iovino, V.: jpbc: Java pairing based cryptography. In: Proceed-
ings of the 16th IEEE Symposium on Computers and Communications, ISCC
2011. pp. 850–855. IEEE, Kerkyra, Corfu, Greece, June 28 - July 1 (2011),
http://gas.dia.unisa.it/projects/jpbc/

5. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Applied Mathematics 156(16), 3113–3121 (2008)

6. Huang, K., Tso, R., Chen, Y., Rahman, S.M.M., Almogren, A., Alamri, A.: PKE-
AET: public key encryption with authorized equality test. Comput. J. 58(10),
2686–2697 (2015)

7. Jiang, P., Mu, Y., Guo, F., Wang, X., Wen, Q.: Online/offline ciphertext retrieval
on resource constrained devices. Comput. J. 59(7), 955–969 (2016)

8. Ma, S.: Identity-based encryption with outsourced equality test in cloud comput-
ing. Inf. Sci. 328, 389–402 (2016)

9. Ma, S., Huang, Q., Zhang, M., Yang, B.: Efficient public key encryption with
equality test supporting flexible authorization. IEEE Trans. Information Forensics
and Security 10(3), 458–470 (2015)

10. Ma, S., Zhang, M., Huang, Q., Yang, B.: Public key encryption with delegated
equality test in a multi-user setting. Comput. J. 58(4), 986–1002 (2015)

11. Mayer, D.A., Wetzel, S.: Verifiable private equality test: enabling unbiased 2-party
reconciliation on ordered sets in the malicious model. In: 7th ACM Symposium on
Information, Compuer and Communications Security, ASIACCS ’12, Seoul, Korea,
May 2-4, 2012. pp. 46–47 (2012)

12. Tang, Q.: Public key encryption schemes supporting equality test with authoriza-
tion of different granularity. International Journal of Applied Cryptography 2(4),
304–321 (2012)

13. Tang, Q.: Public key encryption supporting plaintext equality test and user-
specified authorization. Security and Communication Networks 5(12), 1351–1362
(2012)

14. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Topics in Cryptology - CT-RSA 2010, The Cryptographers’
Track at the RSA Conference 2010, San Francisco, CA, USA, March 1-5, 2010.
Proceedings. pp. 119–131 (2010)

	ID-based Encryption with Equality Test against Insider Attack
	Recommended Citation

	ID-based Encryption with Equality Test against Insider Attack
	Abstract
	Keywords
	Disciplines
	Publication Details

	tmp.1522025864.pdf.gX3vw

