
University of Wollongong University of Wollongong

Research Online Research Online

University of Wollongong Thesis Collection
1954-2016 University of Wollongong Thesis Collections

2005

An agent-based peer-to-peer grid computing architecture An agent-based peer-to-peer grid computing architecture

Jia Tang
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong University of Wollongong

Copyright Warning Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University

does not authorise you to copy, communicate or otherwise make available electronically to any other person any

copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act

1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised,

without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe

their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court

may impose penalties and award damages in relation to offences and infringements relating to copyright material.

Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the

conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily

represent the views of the University of Wollongong. represent the views of the University of Wollongong.

Recommended Citation Recommended Citation
Tang, Jia, An agent-based peer-to-peer grid computing architecture, M.Info. Thesis, School of Information
Technology and Computer Science, University of Wollongong, 2005. http://ro.uow.edu.au/theses/410

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/theses
https://ro.uow.edu.au/thesesuow
https://ro.uow.edu.au/theses?utm_source=ro.uow.edu.au%2Ftheses%2F410&utm_medium=PDF&utm_campaign=PDFCoverPages

An Agent-based Peer-to-Peer Grid
Computing Architecture

A thesis submitted in fulfillment of the

requirements for the award of the degree

Master by Research

from

UNIVERSITY OF WOLLONGONG

by

Jia Tang

School of Information Technology and Computer Science

October 2005

c© Copyright 2005

by

Jia Tang

All Rights Reserved

ii

Dedicated to

Yingsheng Tang, Yao Jin, and Lili Ge

iii

Declaration

This is to certify that the work reported in this thesis was done

by the author, unless specified otherwise, and that no part of

it has been submitted in a thesis to any other university or

similar institution.

Jia Tang
8th December 2005

iv

Abstract

Grid computing as an emerging technology has made great achievements in scientific

computation. Leveraged by other technologies, such as cluster computing and web

services, Grid computing for the first time seamlessly integrated large numbers of

interconnected computers and provided Internet-scale computing resource sharing,

selection, and aggregation.

The sheer numbers of desktop systems today make the potential advantages of

interoperability between desktops and servers into a single Grid system quite com-

pelling. However, these commodity systems exhibit significantly different properties

than conventional server-based Grid systems. They are usually highly autonomous

and heterogeneous systems, and their availability varies from time to time. We call

such an environment an open environment.

This thesis aims at bridging the gap between conventional Grid computing and

its potential application in open environments by proposing an agent-based peer-

to-peer Grid computing architecture, whilst also providing reasonable compatibility

and interoperability with conventional Grid systems and clients.

We introduce developments in Grid computing and highlight the targeted re-

search questions concerning Grid computing in open environments. Using these

questions as a basis, we review the architecture of the conventional computing Grid

and related standards. We indicate that the conventional Grid has five problems,

which are barriers to the deployment and application of the Grid in an open envi-

ronment.

Aiming at solving these problems, we propose a hybrid solution, which is a com-

bined solution that employs both client/server computing architecture and peer-to-

peer computing architecture. This solution abandons conventional super-local Grid

architecture, and is more efficient, flexible and robust in open environments. We also

introduce a multi-purpose task model to handle state persistence and provide help

v

for task decomposition. Furthermore, we employ multi-agent technology to con-

struct the underlying components of our Grid architecture, which brings flexibility

and robustness.

Based on the hybrid solution, we develop the architecture to a pure peer-to-peer

architecture. In the new solution, we make improvements to the task model so that it

provides additional support to task decomposition and inter-task communication in

a transparent manner. We develop two frameworks for message passing and routing,

and for resource management respectively. These frameworks, together with various

intelligent and evolving mechanisms, promote the new adaptability and performance

to a higher level.

We widely adopt Web Services and other Grid standards in both solutions to

maintain compatibility and interoperability with existing Grid systems and clients.

Finally, we discuss the remaining problems with Grid computing in open environ-

ments, and outline potential research directions.

In summary, we show that Grid computing architecture, integrating peer-to-

peer computing and multi-agent technologies, presents good scalability, efficiency,

flexibility, and robustness for Grid computing in open environments in comparison

with conventional Grid computing architecture.

vi

Acknowledgements

Studying abroad has been a long and at times arduous journey, and one that could

not have been completed without the support of many people.

I am indebted to my supervisor, Professor Minjie Zhang. Her constant commit-

ment and guidance was instrumental in the completion of this thesis, and in making

it a fulfilling experience. I am also grateful to her for regularly providing me with

insightful comments, and for her kind help, encouragement and understanding in

my everyday life. I would also like to thank the School of Computer Science and

Information Technology and the University of Wollongong for their financial support

towards attending research conferences and their ongoing efforts to create a better

workplace.

My thanks are extended to Juliet Richardson, who helped to find and correct

English errors in this thesis, and Diana Nguyen, for her help in correcting the English

errors in my research papers.

On the personal front, few words can describe the sacrifices that my parents and

wife have made on my behalf. This thesis would not have been possible without

their financial support, encouragement, understanding and love. I would like to

express my deepest gratitude to my mother, who has always made her presence and

support felt, especially when most needed. Thanks too, to my wife, Lili, for her

constant understanding. During our one and a half year separation, she has always

been supportive and understanding. She has constantly tolerated my absence, when

instead she should have received my undivided attention. I hope she will forgive me

for all that lost time. I have dedicated this thesis to my parents, Yingsheng Tang,

Yao Jin, and my wife, Lili Ge, for their patience, understanding, and unconditional

love and generosity throughout the years.

Thanks also go to Xixin Zou, who introduced me to the area of computer sci-

ence at the age of nine. With his enlightenment, I developed a deep interest in

computer science in my boyhood. It was at that point that I started my journey

vii

of study and research in computer science. Since then, Mr Xixin Zou’s original and

insightful views on problem solving still have an indelible influence on me. His sound

knowledge and ongoing guidance in my early years nourished my mind. Without his

support and encouragement, I would never have been able to achieve my research

in computer science.

Last but not least, thanks to all the anonymous viewers of my research papers,

and all my other dear friends and relatives who have supported me.

viii

Publications

Some of the material in this thesis has previously appeared in, or has been adapted

from, the following publications:

• J. Tang and M. Zhang. A Peer-to-Peer Grid Computing Architecture: Con-

vergence of Grid and Peer-to-Peer Computing. In Proceedings of the 4th Aus-

tralasian Symposium on Grid Computing and e-Research (AusGrid 2006), Ho-

bart, Australia: January 2006 (will appear).

• J. Tang and M. Zhang. An Agent-based Peer-to-peer Grid Computing Ar-

chitecture. In Proceedings of the 1st International Conference on Semantics,

Knowledge and Grid (SKG 2005), Beijing, China: December 2005 (will ap-

pear).

• J. Tang and M. Zhang. An Agent-based Grid Computing Infrastructure. In

the 3rd International Symposium on Parallel and Distributed Processing and

Applications (ISPA 2005), Lecture Notes in Computer Science (LNCS), vol.

3758, Nanjing, China: Springer-Verlag, November 2005, pp. 630-644.

• Q. Bai, J. Tang, and M. Zhang. A Coloured Petri Net Based Strategy for

Agent-based Grid Computing. In Proceedings of the 8th Pacific Rim Interna-

tional Workshop on Multi-Agents (PRIMA 2005), Kuala Lumpur, Malaysia:

September 2005, pp. 175-186.

• J. Tang, M. Zhang, and H. Zhang. Scheduling and Resource Management in

Metacomputing System. In Proceedings of the 3rd International Conference on

Computer Science, Software Engineering, Information Technology, e-Business,

and Applications (CSITeA’04), Cairo, Egypt: December 2004, pp. 417-422.

ix

Contents

Abstract v

Acknowledgements vii

Publications ix

1 Introduction 1

1.1 Developments in Grid Computing . 3

1.1.1 Application-oriented Metacomputing 3

1.1.2 Service-oriented Grid Computing 5

1.2 Convergence of Grid and Peer-to-Peer Computing 7

1.3 Research Questions . 9

1.4 Thesis Structure and Outcomes . 11

2 Review of Related Research and Literature 13

2.1 Web Services Architecture . 14

2.2 Web Services Resource Framework 20

2.3 Open Grid Services Architecture and the Grid 21

2.4 Resource Management and Scheduling 24

2.5 An Study of the Grid in terms of Open Environments 25

2.6 Summary . 26

3 A Hybrid Solution to Grid Computing in Open Environments 28

3.1 Overall Architecture and Core Components 29

3.2 Task/Service - A Novel Task Model 34

3.3 Scheduling Process and Evolving Mechanisms 36

3.3.1 Lifecycle of the Task/Service 37

3.3.2 Task-related Scheduling . 39

3.3.3 Request-related Scheduling . 47

x

3.4 Compatibility and Interoperability 49

3.5 Summary . 52

4 A Peer-to-Peer Solution to Grid Computing in Open Environments 53

4.1 A Brief Review of the Hybrid Solution 54

4.2 Overall Architecture and Core Components 55

4.3 Module - An Improved Task Model 59

4.4 Peer-to-Peer Computing Architecture 63

4.5 Resource Management and Scheduling Mechanisms 70

4.6 Compatibility and Interoperability 75

4.7 Summary . 76

5 Conclusions 77

5.1 Discussion and Major Contributions of the Thesis 79

5.1.1 Task Model . 79

5.1.2 Computing Architecture . 81

5.1.3 Resource Management Framework 83

5.2 Future Work . 84

A Glossary of Terms 86

Bibliography 88

xi

List of Tables

3.1 Definitions of Tiers in smartGRID . 29

3.2 Definitions of Trackers and Basic Communication Rules in smartGRID 31

3.3 A Pseudo Implementation of the Aging Algorithm using Monitor . . . 48

4.1 Problems and Related Solutions in smartGRID 55

4.2 Definitions of Tiers in smartGRID2 56

4.3 IModuleContext Interface . 62

4.4 Definitions of smartGRID2’s Connection 63

4.5 A Sample Implementation of Simulated Synapse 64

4.6 Definitions of Attributes of Simulated Synapse and their Associated

Rules . 65

4.7 Operations on Simulated Synapse . 66

4.8 Impulse . 67

4.9 Relay Process . 69

4.10 getReplies Method . 70

4.11 A Sample Resource Matrix of Peer 192.168.2.1 71

4.12 Reference of Module Instance . 73

xii

List of Figures

1.1 Applications of Metacomputing on Computational Science 4

2.1 Web Services Architecture . 16

2.2 A Typical Web Services Implementation 17

2.3 A Typical Web Service Invocation . 18

2.4 A Web Service with File Resources 20

2.5 Schematic View of Globus Toolkit 4 components 22

2.6 Architecture of Globus Toolkit 4 . 23

2.7 The Super-local Scheduling Strategy in Globus Toolkit 4 25

3.1 Tiers in smartGRID . 30

3.2 Self-organising Process in smartGRID 32

3.3 Schematic View of smartGRID Container 33

3.4 Agent Interactions in smartGRID . 34

3.5 Task/Service of smartGRID . 34

3.6 Task Section of the Task/Service Description 35

3.7 States of a Task/Service in smartGRID 38

3.8 Scheduling Process within a Tracker 40

3.9 Profile and Load . 41

3.10 Best-match algorithm . 44

3.11 Push and Pull Operations . 45

3.12 Basic Chaining Mechanism . 46

3.13 Formation of the Simulated Synapse 46

3.14 An Example of the Advanced Chaining Mechanism 49

4.1 Components within a smartGRID2 Computing Node 57

4.2 Schematic View of smartGRID2 Container 58

4.3 Agent Interactions in smartGRID2 Container 59

4.4 smartGRID2 Module . 60

xiii

4.5 Task Section of the Module Description 60

4.6 Hierarchy of the Module Instances in smartGRID2 61

4.7 A Sample Processor Profile Definition 72

4.8 Service Invocation Process . 74

5.1 Research Areas concerning Grid Computing in Open Environments . 85

xiv

Chapter 1

Introduction

In the past decade, many studies have been undertaken to increase the performance

of parallel systems and host-centric enterprise computing centres. However, these

centralised computing technologies have not been able to fulfil the demand for com-

putational power and distributed collaborations by both the scientific area and the

industrial area.

By exploiting existing centralised and distributed computing technologies to har-

ness distributed heterogeneous computing resources, Grid computing for the first

time fulfils the need for super computational capability and resource sharing in

computational science, distributed collaborations and data storage and analysis.

The notion of computing Grid (Grid for short) was inspired by the power Grid

[8, 22]. A computing Grid is “a type of parallel and distributed system that en-

ables the sharing, selection, and aggregation of resources distributed across multiple

administrative domains based on their (resources) availability, capability, perfor-

mance, cost, and users’ quality-of-service requirements” [5]. It is “distinguished

from conventional distributed computing by its focus on large-scale resource shar-

ing, innovative applications, and in some cases, high performance orientation” [23].

A three-point checklist [19] can be used to determine whether a computing system

is a Grid, according to which a Grid is a system that:

1

2

• “Coordinates resources that are not subject to centralised control”- A Grid

integrates and coordinates resources from different control domains. There is

no global centralised structure and the system is totally distributed.

• “Using standard, open, general-purpose protocols and interfaces” - A Grid

must use multi-purpose protocols and interfaces for communications and op-

erations. These protocols and interfaces must be standard and also open, so

that resource-sharing arrangements can be established dynamically with any

interested party. Standards are also important in providing a general-purpose

interface between the Grid and the clients.

• “To deliver nontrivial qualities of service” - A Grid coordinates its constituent

resources to deliver various qualities of service. The utility of the combined

system is significantly greater than that of the simple addition of all its parts.

This chapter aims at providing an overview of Grid computing in open environ-

ments. Section 1.1 describes developments in Grid computing, with some discussion

on computing architectures and metacomputing. Section 1.2 explains the signifi-

cance of the convergence of Grid and peer-to-peer (P2P) computing, and the appli-

cation domain of the new architecture. Section 1.3 presents the research questions

that remain open for Grid computing in open environments. Section 1.4 outlines

this thesis, and describes the outcomes of this research and how these outcomes are

embodied in this thesis.

1.1. Developments in Grid Computing 3

1.1 Developments in Grid Computing

The evolution of computing architecture follows the major technological advances

in PCs and networking. In the mainframe era, almost everything was done by main-

frame computers. Processing in the mainframe quickly became a bottleneck in any

information system. Continuous investment in mainframe upgrades cannot main-

tain efficiency under increased processing demands and are thus not cost effective.

With the miniaturisation of computers and the emergence of computer networks,

the client/server (C/S) architecture [31] was first proposed as an alternative to

conventional mainframe systems. This shifts the processing burden to the client

computer, and therefore improves overall efficiency [2]. Later, we saw the rise of

LAN-based cluster computing [40, 44] in the 1980s, and WAN-based metacomputing

[32, 48] in the 1990s, both of which derive from the client/server architecture, and

aim at further sharing the workload through computer networks. Inspired by the

power grid, Grid computing further exploits cluster computing and metacomputing

to Internet-scale computing resource sharing, selection, and aggregation.

1.1.1 Application-oriented Metacomputing

Metacomputing is the predecessor of Grid computing. The rise of metacomputing

derived from the popularity of parallel processing, which was facilitated by two

major developments: Massively Parallel Processors (MPPs) and the widespread use

of distributed computing. The similarity between distributed computing and MPP

is the notion of message passing, around which two systems were developed - the

Parallel Virtual Machine (PVM) [27] and the Message Passing Interface (MPI) [28].

1.1. Developments in Grid Computing 4

PVM aimed at exploiting a collection of networked computers and the hetero-

geneity of architecture, data format, computational speed, machine load, and net-

work load. From the beginning, it was designed to make programming for a het-

erogeneous collection of machines straightforward, whereas the MPI standard was

not intended to be a complete and self-contained software infrastructure that could

be used for distributed computing. The main purpose of MPI was to establish

a message-passing standard for portability. And indeed, it provided MPP vendors

with a clearly defined set of routines that they could implement efficiently or provide

hardware support for.

�����

�������

	���
������

�����������

�	
����������

�������������

�����

�����������

����
���������

����

�������

��������
��

����������

�������������

���������

��������������������

��������

������������������

����������������

�������

�������

�����
������ �

!�
���������

��
������

"��������#����������

����������
�����

���
������

������������

��
��
��

�����������

����������

�����������������

�������
	���
����������

Figure 1.1: Applications of Metacomputing on Computational Science

The LAN metacomputer at NCSA [48] based on PVM was the earliest exam-

ple of nation-wide metacomputing system. The purpose of building metacomputing

systems was to solve computational science problems. Figure 1.1 shows the appli-

cations of metacomputing on computational science. These applications cut across

three fundamental areas of computation science [48]:

1.1. Developments in Grid Computing 5

• Theoretical simulation, which can be described as using high-performance com-

puting to solve scientific problems numerically by using scientific equations and

mathematical models.

• Instrument/Sensor control, in which a metacomputing system is used to ma-

nipulate real time and interactive visualisation from raw data supplied by

scientific instruments and sensors.

• Data Navigation, the method through which most computational science is

carried out. This involves exploring large databases, and translating numerical

data into human sensory input.

Condor [15] and Legion [33, 34] are the early successes of general-purpose meta-

computing systems. A general-purpose metacomputing system must be responsi-

ble for [33] 1) transparently scheduling application components on processors; 2)

managing data migration, caching, transfer and coercion; 3) detecting and man-

aging faults; and 4) providing adequate protection to users’ data and physical

resources. Other general-purpose metacomputing systems include Charlotte [4],

Javelin [10, 41], WebFlow [1], Gateway [25], CX [7], and the early version of Globus

[21]. Bake et al. have given a comprehensive description of most existing metacom-

puting systems [3].

1.1.2 Service-oriented Grid Computing

The idea of computing Grids come from power grids. It evolved from cluster com-

puting, but with a remarkable distinction - the way of resource management [5]. In

the case of Grid computing, there is no global centralised structure, and the system

is totally distributed. In a cluster environment, however, the resource allocation is

1.1. Developments in Grid Computing 6

performed in a centralised fashion, and a master/slave relationship always exists,

where the master node acts as a load balance proxy or task scheduler.

The first definition of a computing Grid was given by Ian Foster and Carl Kessel-

man in their book “The Grid: Blueprint for a New Computing Infrastructure” [22].

In a subsequent article, they stated that “Grid computing is concerned with coordi-

nated resource sharing and problem solving in dynamic, multi-institutional virtual

organisations (VOs)” [24]. The key concept is to exploit synergies that result from

cooperation - the ability to share and aggregate resources among these VOs, and

then to use the resulting resource pool for a certain purpose. This notion was fur-

ther developed in Open Grid Services Architecture (OGSA) [23], where a Grid was

viewed as an extensible set of Grid services that may be aggregated in various ways

to meet the needs of VOs.

The state of the art in Grid computing is represented by Globus Toolkit [20, 30]

and its related standards. The key standards and outcomes of Globus are listed

below:

1. Open Grid Service Architecture (OGSA) [23], defines the core services of the

Grid. Typical services include a security infrastructure (Grid Security In-

frastructure (GSI) [55] or WS Authentication & Authorization [20]), an ex-

ecution management framework (Grid Resource Allocation and Management

(GRAM) [14] or WS GRAM [20]), an information service framework (Monitor-

ing and Directory Service (MDS) [16] or WS MDS [20]), and the core runtime

libraries (Java/C Core, or Java/C WS Core).

2. The complete adoption of Service Oriented Architecture (SOA) [53] and Web

Services [50], brings the Grid better interoperability with existing industrial

standards and Web Services infrastructure. Employing Web Services standards

1.2. Convergence of Grid and Peer-to-Peer Computing 7

to build its core services and infrastructure improves the versatility of the

implementation, and reduces conflict between the Grid community and the

Web Services community.

3. Web Services Resource Framework (WSRF) [17] / Open Grid Service In-

frastructure (OGSI) [29], defines the services infrastructure of the Grid. WSRF

exploits the Web Services infrastructure for resource management. WS-Resource,

as part of WSRF standards, proposes a standard means of describing resources.

1.2 Convergence of Grid and Peer-to-Peer Com-

puting

Today, the sheer numbers of desktop systems make the potential advantages of inter-

operability between desktops and servers into a single Grid system quite compelling.

Peer-to-Peer (P2P) computing [2], as another emerging computing architecture, is

tackling an overlapping set of problems with Grid computing [38]. Although a par-

allel situation exists, the differences between Grid computing and P2P computing

originate from their usages. Computing Grids were first used for scientific compu-

tation, while P2P computing gained prominence in the context of multimedia file

exchange. Globus [21], the defacto Grid standards, was initially an umbrella project.

It was designed to federate underlying workload management systems to work for

collaborations. This objective destined its role as a middleware and its super-local

architecture. On the other hand, P2P computing aims at the collaboration of mas-

sive commodity computing devices. There are no such constraints on its architecture

as Globus has, which makes P2P computing more flexible. In fact, it uses the com-

puting power at the edge of a connection rather than within the network. The

1.2. Convergence of Grid and Peer-to-Peer Computing 8

client/server architecture does not exist in a P2P system. Instead, peer nodes act

as both clients and servers - their roles are determined by the characteristics of the

tasks and the status of the system. This architecture minimises the workload per

node, and maximises the utilisation of the overall computing resources among the

network.

In contrast to the application domain of Grid computing in the scientific research

area, P2P computing primarily offers file sharing (e.g. Napster and Bittorrent [11]),

distributed computation (e.g. SETI@home [36]), and anonymity (e.g. Publius [54]).

Although the two types of computing architectures have both conceptual and con-

crete distinctions, their convergence is significant - “the vision that motivates both

Grid and P2P computing - that of a worldwide computer within which access to

resources and services can be negotiated as and when needed - will come to pass

only if we are successful in developing a technology that combines elements of what

we today call both P2P and Grid computing” [18].

Despite the wide acceptance of Grid computing in the scientific research area, its

server-based architecture in the local context and middleware nature in the global

context limits its application in open environments, where the computing nodes are

highly autonomous and heterogeneous, and their availability varies from time to

time. An example of an open environment is the Internet, where enormous idle

resources exist, which are normally not organised in terms of providing computing

power for a certain purpose.

This thesis aims at bridging the gap between Grid computing and P2P com-

puting by proposing and implementing an agent-based peer-to-peer Grid computing

architecture which can be deployed in open environments, while providing reason-

able compatibility and interoperability with conventional Grid systems and clients.

1.3. Research Questions 9

1.3 Research Questions

Research questions concerning Grid computing in open environments include:

• What is the best way to support task decomposition, inter-task communica-

tion, and state persistence?

We consider these three features to be essential to the Grid. With task de-

composition support, a computational task, which consists of parallel subtasks,

can be decomposed automatically to achieve parallelism, and therefore leads

to better performance and efficiency than a serial computing model. This sup-

port of inter-task communication and state persistence will save a great deal

of time for the application developers, as they will not need to write their own

frameworks to support the two features.

• What is the best strategy for resource management and scheduling? Open

environments are remarkably different from the application domain of the

conventional Grid. In order to find the best way to manage resources and

schedule tasks, the properties of open environments must be carefully con-

sidered. The autonomy, heterogeneity, intermittent participation and highly

variable behaviour of the constituents of open environments are the major

concerns regarding resource management and scheduling.

• How to provide compatibility and interoperability? To what level?

Today, there are hundreds of production Grids all over the world, and thou-

sands of Grid applications running at this moment. Any new Grid system must

take compatibility and interoperability with existing Grids, Grid clients and

applications into consideration. With the standardisation of Grid computing

1.3. Research Questions 10

and the embrace of Web Services standards, it is easier to achieve compatibility

and interoperability in any new Grid, as long as it follows these standards.

• How to support organisational hierarchy in a distributed system?

We consider organisational hierarchy as one of the research questions, because

logically centralised information, such as identity, access control information,

software repository, and files, will be stored in environments where no global

centralised structure exists, and this information must be accessible whenever

needed in the context of the highly dynamic nature of the resource providers.

• How to secure the Grid?

This entails how to authenticate users, authorise their operations, and secure

data and communications.

• How to handle the different network connectivities of the participants?

This question relates to the network bandwidth, latency, and accessibility. All

these attributes are crucial for the quality of service (QoS) of the Grid.

In this thesis, we address the first three questions by:

1. Proposing multi-purpose programming models to support task decomposition,

inter-task communication, and state persistence.

2. Proposing resource management and scheduling strategies to solve resource

discovery, selection, allocation, and release, load balance, task execution, task

monitoring, fault-tolerance, and how to store data. We divide these issues

into two areas: computing architecture and resource management framework,

where the former probes into the dispatch of tasks and service requests, while

1.4. Thesis Structure and Outcomes 11

the latter works on how to record resources and match them with service

requests.

3. Keeping compatibility and interoperability in mind. The solutions presented

later (see Chapter 3 and Chapter 4) provide good compatibility and interop-

erability with existing Grids, Grid clients and applications.

The rest of the questions are discussed in Chapter 5 as the future work of this

research.

1.4 Thesis Structure and Outcomes

This thesis begins with a presentation and review of developments in Grid com-

puting and its conventional application domains. The emerging application of Grid

computing in open environments leads to the convergence of Grid and P2P comput-

ing, which is the future direction of Grid computing. Research questions regarding

this area are considered to be sixfold, three of which are tackled in this thesis as

part of the full approach to Grid computing in open environments.

The major contributions of this thesis include: 1) a multi-purpose task model

proposed in Chapter 3, with further improvements in Chapter 4, which makes task

decomposition, inter-task communication, and state persistence straightforward; 2)

a hybrid computing architecture, described in Chapter 3 and then its descendant in

Chapter 4, which handles the autonomy, heterogeneity, intermittent participation

and highly variable nature of computing resources; and 3) a resource management

framework, demonstrated in Chapter 4, for resource discovery, matching, and selec-

tion. The remaining chapters of this thesis are organised as follows:

1.4. Thesis Structure and Outcomes 12

Chapter 2 reviews the conventional Grid in regard to our targeted research ques-

tions. Discussion focuses on the service-oriented architecture, the state persistence

mechanism, and the resource management and scheduling strategy of the conven-

tional Grid. Five problems with the conventional Grid are presented as a result of

discussion on the application of computing Grids in open environments.

Chapter 3 introduces a hybrid solution to Grid computing in open environments,

whose architecture is a combination of client/server computing architecture and P2P

computing architecture. A novel task model is also proposed in this chapter for

multiple purposes.

Chapter 4 gives a P2P solution, which derives from the hybrid solution. With an

improved task model, a P2P computing architecture, and a resource management

framework, the new Grid solves the problems outlined in Chapter 2, as well as

presenting an elegant solution to our targeted research questions.

Chapter 5 compares the two solutions and summarises this research, with dis-

cussion on the rest of the research questions.

Chapter 2

Review of Related Research and
Literature

The conventional computing Grid has developed a service-oriented computing archi-

tecture, with a super-local resource management and scheduling strategy. In Globus

Toolkit 4 [30] (GT4, the official implementation of the defacto Grid standards), nine

high-level Grid services, defined by Open Grid Service Architecture (OGSA) [23],

are implemented, using Web Services mechanisms to provide functionalities such as

resource management, scheduling, etc. As these services are required to be stateful,

and because Web Services are usually stateless, Web Services Resource Framework

(WSRF) [17] was introduced so that stateful information can be preserved as WS-

Resources between different service invocations. In this chapter, we review the

research and literature that relate to our targeted research questions (recall Section

1.3).

We first briefly introduce the Web Services architecture, on which GT4 is based,

in Section 2.1. We also discuss the relevant specifications that are adopted in the

Grid community.

In Section 2.2 and Section 2.3, we review the Web Services Resource Framework

and the Open Grid Services Architecture. We present the architecture of GT4,

which is the result of the convergence of OGSA and WSRF.

13

2.1. Web Services Architecture 14

We look into the resource management and scheduling of OGSA in Section 2.4.

We introduce the components used for resource management and scheduling respec-

tively, and then demonstrate how they are integrated to provide services.

At the end of the review, we consider the problems associated with the conven-

tional Grid in terms of open environments. These problems can also be viewed as

the objectives of this research with regard to the targeted questions.

2.1 Web Services Architecture

W3C defines the Service Oriented Architecture (SOA), which is a form of distributed

systems architecture that is typically characterised by the following properties [53]:

• “Logical view: The service is an abstracted, logical view of actual programs,

databases, business processes, etc., defined in terms of what it does, typically

carrying out a business-level operation.”

• “Message orientation: The service is formally defined in terms of the mes-

sages exchanged between provider agents and requester agents, and not the

properties of the agents themselves. The internal structure of an agent, in-

cluding features such as its implementation language, process structure and

even database structure, are deliberately abstracted away in the SOA: using

the SOA discipline one does not and should not need to know how an agent

implementing a service is constructed. A key benefit of this concerns so-called

legacy systems. By avoiding any knowledge of the internal structure of an

agent, one can incorporate any software component or application that can

be ‘wrapped’ in message handling code that allows it to adhere to the formal

service definition.”

2.1. Web Services Architecture 15

• “Description orientation: A service is described by machine-processable meta-

data. The description supports the public nature of the SOA: only those

details that are exposed to the public and important for the use of the service

should be included in the description. The semantics of a service should be

documented, either directly or indirectly, by its description.”

• “Granularity: Services tend to use a small number of operations with relatively

large and complex messages.”

• “Network orientation: Services tend to be oriented toward use over a network,

though this is not an absolute requirement.”

• “Platform neutral: Messages are sent in a platform-neutral, standardised for-

mat delivered through the interfaces. XML is the most obvious format that

meets this constraint.”

A Web Service is [53] “a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface described in

a machine-processable format (specifically WSDL). Other systems interact with the

Web service in a manner prescribed by its description using SOAP messages, typ-

ically conveyed using HTTP with an XML serialisation in conjunction with other

Web-related standards”.

To put it quite simply, Web Services are a distributed computing technology, such

as CORBA, RMI, EJB, etc., which helps programmers to create client/server ap-

plications. An important characteristic that distinguishes Web Services from other

technologies, such as CORBA, is that Web Services are more adequate for loosely

coupled systems, where the client might have no prior knowledge of the Web Service

until it actually invokes it. This advantage of Web Services, together with other

2.1. Web Services Architecture 16

advantages, such as the fact that they are platform-independent, language-neutral,

and transport-agnostic over other technologies, also provides evidence of the wide

acceptance and application of Web Services, and the embrace of Web Services in

Grid computing.

Figure 2.1: Web Services Architecture

Figure 2.1 [53] provides an illustration of the Web Services architecture. The

essential parts of this architecture are:

• Service Processes. This part of the architecture includes service registration,

discovery, etc.

• Service Description. Web Services are self-describing through using Web Ser-

vices Description Language (WSDL) [9]. This means that once a Web Service

is located, it can describe what operations it supports and how to invoke it.

• Service Invocation. Invoking a Web Service involves passing messages between

2.1. Web Services Architecture 17

the client and the server. SOAP (Simple Object Access Protocol) [52] specifies

how the client should format requests to the server, and how the server should

format its responses. The Web Services architecture allows the use of service

invocation protocols. However, SOAP is by far the most popular choice for

Web Services.

• Transport. All the messages must be transmitted between the client and the

server. The most popular choice for this part of the architecture is HyperText

Transfer Protocol (HTTP) [51]. In theory it could be other protocols.

From the client’s perspective, a Web Service is simply a network accessible ser-

vice. On the server side, the situation is more complex. A common Web services

implementation (see Figure 2.2) includes:

Figure 2.2: A Typical Web Services Implementation

• Web Services. Basically, these are pieces of software that expose sets of oper-

ations. They know nothing about how to interpret SOAP requests or how to

create SOAP responses.

• SOAP engine. This is the software component that knows how to handle

2.1. Web Services Architecture 18

SOAP requests and responses. Normally, a generic SOAP engine is used to

manipulate SOAP messages for all Web Services.

• HTTP engine/Web Server. This is the software component that transports

the SOAP messages (typically via HTTP). This part is sometimes called the

application server.

Figure 2.3 displays a typical Web Service invocation.

Figure 2.3: A Typical Web Service Invocation

1. A client may have no knowledge of what Web Service it is going to invoke. The

first step is to discover a Web Service that meets the requirements through a

discovery service (which is itself a Web Service).

2. The discovery service replies with information about what servers can provide

the required service.

2.1. Web Services Architecture 19

3. The client contacts the service provider and asks the Web Service to describe

itself.

4. The Web Service replies in WSDL.

5. The client acquires the description of the service and sends a SOAP request

for a certain operation according to the service contract (i.e. the description).

6. The Web Service replies with a SOAP response that includes the required

information, or an error message if the SOAP request was incorrect.

Web Services specifications that GT4 adopts [20] in regard to the research ques-

tions include:

• XML, which is used extensively within Web services as a standard, flexible,

and extensible data format.

• SOAP [52], which provides a standard, extensible, composable framework for

packaging and exchanging XML messages between a service provider and a

service requester. SOAP is independent of the underlying transport protocol,

but is most commonly carried on HTTP.

• WSDL [9], which is an XML document for describing Web Services. More

specifically, a set of standardised binding conventions define how to use WSDL

in conjunction with SOAP and other messaging substrates.

• Web Services Resource Framework (WSRF) [17], which defines a generic and

open framework for modelling and accessing stateful resources using Web Ser-

vices. This framework comprises mechanisms to describe views on the state to

support management of the state through properties associated with the Web

Services.

2.2. Web Services Resource Framework 20

2.2 Web Services Resource Framework

As discussed in the previous section, the Web Services architecture was chosen as

the underlying distributed technology on which the Grid bases its architecture. Al-

though the Web Services architecture was certainly the best option, it still did not

meet one of the Grid’s most important requirements: the underlying distributed

infrastructure had to be stateful. Although Web services can be either stateless or

stateful in theory, they are usually stateless and there is no standard way of mak-

ing them stateful, hence the introduction of the Web Services Resource Framework

(WSRF) [17].

Figure 2.4: A Web Service with File Resources

WSRF is a joint effort by the Grid and Web Services communities. It specifies

how to make Web Services stateful, which is required by the Grid. The approach

is to keep the Web Service and the state information (called a resource) separately.

Each resource has a unique key. Whenever a stateful interaction with a Web Service

2.3. Open Grid Services Architecture and the Grid 21

is needed, an instruction is given to the Web Service to use a particular resource.

A pairing of a Web service with a resource is called a WS-Resource. Figure 2.4

exhibits a Web Service using file resources.

2.3 Open Grid Services Architecture and the Grid

The Open Grid Services Architecture (OGSA) [23] is a collection of standards that

define a common, standard and open architecture for Grid-based applications. The

goal of OGSA is to standardise practically all the services commonly found in a Grid

application, by specifying a set of standard interfaces for these services. The typical

Grid services include:

• VO Management Service. To manage what nodes and users are part of each

Virtual Organisation.

• Resource Discovery and Management Service. So that applications on the

Grid can discover resources that suit their needs, and then manage them.

• Job Management Service. So that users can submit tasks to the Grid.

• Other services. These include security, data management, etc.

GT4 is a reference implementation of both OGSA and WSRF. More specifically,

it is a set of software components that implement Web Services mechanisms for

building computing Grids [20]. As shown in Figure 2.5 [30], these components are

divided into five categories:

• Common Runtime. Common Runtime components provide a set of funda-

mental libraries and tools which are needed to build both WS and non-WS

services.

2.3. Open Grid Services Architecture and the Grid 22

Figure 2.5: Schematic View of Globus Toolkit 4 components

2.3. Open Grid Services Architecture and the Grid 23

• Execution Management. Execution Management components deal with the

initiation, monitoring, management, scheduling and coordination of executable

programs (i.e. the tasks) in a Grid.

• Information Services. Information Services commonly refer to the monitor-

ing and discovery services, which can streamline the tasks of monitoring and

discovering services and resources in a virtual organisation.

• Data Management. These components enable the management of large sets

of data in a virtual organisation.

• Security. Security components, based on the Grid Security Infrastructure

(GSI) [55], secure the communications in a Grid.

Figure 2.6: Architecture of Globus Toolkit 4

Most of the above services and components in GT4 are implemented on top

of WSRF. GT4 also includes a complete implementation of the WSRF specifica-

tion. The convergence of the Grid and the stateful Web Services is the architecture

displayed in Figure 2.6.

2.4. Resource Management and Scheduling 24

2.4 Resource Management and Scheduling

The term meta-scheduler is used to describe the scheduling and resource manage-

ment components in the Grid [46]. A meta-scheduler consists of two core compo-

nents: a super scheduler, which is in charge of resource discovery, selection and

submission for a certain job [46, 47]; and a local scheduler, which serves as a bro-

ker that “performs resource quoting or resource discovery and selection based on

various strategies, assigns application tasks to those resources, and distributes data

or co-locates data and computations” [46]. Although the local schedulers, such as

Condor-G [26], Nimrod-G [6], and InfoGram [37], are different from system to sys-

tem, many of the Grid systems use Monitoring and Discovery System (MDS) [16]

and Grid Resource Allocation and Management (GRAM) [14] as their high-level

resource management and scheduling services.

In GT4, MDS manages the monitoring and discovery of resources. It obtains

information from several information providers and publishes it to other services.

Three of the information providers are related to job execution: two for gathering

data related to cluster resources, and one for providing information about the local

schedulers.

GRAM manages the submission and execution of jobs. It uses a super-local

scheduling strategy: the super scheduler schedules a job to a suitable local scheduler,

based on the job’s requirements and the local schedulers’ statuses provided by MDS;

the local scheduler then schedules the job to a specific computing node. Figure 2.7

[20] depicts this strategy. The dashed area indicates the service host (i.e. the super

scheduler). The compute element consists of a local scheduler and computing nodes.

2.5. An Study of the Grid in terms of Open Environments 25

Figure 2.7: The Super-local Scheduling Strategy in Globus Toolkit 4

2.5 An Study of the Grid in terms of Open Envi-

ronments

As Web Services provide a standard means for communication and object invocation

between clients and service providers, the embrace of Web Services increases the

interoperability of the Grid. The super-local scheduling strategy is also a success in

high-end computational environments, because of its flexibility in the face of various

widely accepted local schedulers such as Condor [5]. But in order to implement

and deploy a Grid in an open environment, the autonomous, heterogeneous, and

highly dynamic nature of such an environment must be carefully considered. These

properties further lead to the following problems with the conventional Grid:

1. WSRF was developed as a complement to Web Services in order to make state-

less Web Services stateful. However, it can result in significant overheads on

network traffic and object invocations due to transmissions of WS-Resources

between the client and the service host, and conversions between internal states

of a service and their WS-Resource equivalents.

2.6. Summary 26

2. The current service-oriented architecture has poor adaptability in terms of

performance, availability and scalability, as no facility has been provided by

current Grid systems to allow automatic deployment of services according to

the clients’ requests and the load in the Grid.

3. The dependence on local schedulers increases the complexity of application

programming in the Grid environment, as it is difficult to provide various

local schedulers with a uniform programming interface that supports task de-

composition, state persistence and inter-task communications.

4. The super-local resource management and scheduling strategy intensively re-

lies on the underlying local schedulers. This two-level process leads to more

complex handling of resource discovery, selection and allocation compared with

a one-level process. The lack of direct management of the computing nodes

can cause unsuitable selection of resources and unbalanced loads, and there-

fore limits the overall performance. In addition, as new computing nodes can

only join local schedulers, instead of joining the Grid directly, the scalability

of local schedulers greatly affects the overall scalability of the Grid.

5. It is not feasible to introduce local schedulers into our targeted environment, as

local schedulers require a relatively static and non-autonomous environment.

2.6 Summary

This chapter reviews the state of the art of Grid computing in regard to our tar-

geted research questions proposed in Chapter 1. We briefly introduced the Web Ser-

vices architecture and the Web Services Resource Framework, on which the defacto

standard Grid system, GT4, is based. We then discussed the Open Grid Services

2.6. Summary 27

Architecture, followed by a review of the architecture and software components of

its reference implementation - GT4. In particular, we looked into the resource man-

agement and scheduling strategy of GT4, which is one of the key subjects of this

thesis. Finally, we studied the current Grid architecture and relevant standards in

terms of the application of Grid computing in open environments.

In the next chapter, we present our first solution to the problems outlined in

Section 2.5.

Chapter 3

A Hybrid Solution to Grid Computing in
Open Environments

Five problems have been outlined in Chapter 2 in relation to Grid computing in open

environments. Aiming at solving these problem, we propose a hybrid solution using

multiple intelligent agents [39] combined with server-based computing architecture

and P2P computing architecture. We call this solution smartGRID (service-oriented,

microkernel, agent-based, rational, and transparent Grid).

We first present in Section 3.1 a description of the overall architecture of smart-

GRID. We describe the essential components and adaptive mechanisms of smart-

GRID that make it flexible and robust.

We then introduce the novel task model of smartGRID in Section 3.2. We

demonstrate how the new task model can support state persistence, as well as how

the task description can assist the scheduling process.

Section 3.3 focuses on the scheduling process and the evolving mechanisms of

smartGRID. Coloured Petri Nets (CPNs) [35] are extensively used in this section to

describe the agent interactions and communication protocols. All evolving mecha-

nisms are described in detail, followed by an explanation of how these mechanisms

can make smartGRID self-contained.

Finally, we discuss compatibility and interoperability issues in Section 3.4. We

28

3.1. Overall Architecture and Core Components 29

explain why smartGRID is compatible with existing Grid clients. Two methods

are described in regard to how to preserve states, as well as how to use one of the

methods to achieve task decomposition. Lastly, we discuss promising approaches to

the interoperability between smartGRID and existing local schedulers.

3.1 Overall Architecture and Core Components

There are three tiers in smartGRID: the clients, the trackers, and the computing

nodes, which are defined in the table below.

Definition 3.1 A client is a generic computing device that seeks ser-
vices from the Grid using Web Services Standards.

Definition 3.2 A tracker is a computer which performs task schedul-
ing operations in its managed LAN.

Definition 3.3 A computing node is the place where tasks are ex-
ecuted and computing occurs. A client or a tracker can act as a
computing node at the same time.

Table 3.1: Definitions of Tiers in smartGRID

Figure 3.1 shows the tiers in smartGRID. We assume that the tiers discussed in

the following sections of this chapter are in the same LAN.

Table 3.2 defines the trackers and the basic communication rules in smartGRID.

A tracker maintains the following information: 1) the computing resources available

(called profile) on each of the nodes in the tracker’s LAN; 2) all tasks submitted

to the tracker (including the running tasks, and the tasks in its waiting queue); 3)

the overall load of the tracker’s LAN; and 4) the contacts of a limited number of

other trackers. Multiple trackers can exist in the same LAN for performance and/or

fault-tolerance consideration.

3.1. Overall Architecture and Core Components 30

Figure 3.1: Tiers in smartGRID

The detailed self-organising process is explained in Figure 3.2. This process

allows new computing nodes to join smartGRID and enables smartGRID to expand

dynamically, which is essential to the scalability. It also works as one of the evolving

mechanisms that dynamically optimises the configuration of smartGRID by selecting

the most suitable temporary tracker to handle the LAN-based operations, so that

the computing nodes can contribute their computing power to their fullest extent.

3.1. Overall Architecture and Core Components 31

Definition 3.4 A number of computers which have high availability,
good connectivity, and good performance are selected as the top-level
trackers when the Grid is constructed.

Definition 3.5 Any other computer becomes a tracker by registering
itself to an existing tracker. The existing tracker is called the parent
of the new tracker. Any tracker therefore has at least one parent,
except the top level trackers.

Definition 3.6 Trackers such as the top-level trackers that can guar-
antee their availability and serviceability are called dedicated trackers.
To become a dedicated tracker, a computer must register itself to an
existing dedicated tracker, except the top-level trackers.

Definition 3.7 A tracker can communicate with other trackers for
scheduling purposes.

Definition 3.8 The clients or the computing nodes only communi-
cate with the tracker in the same LAN, as long as such a tracker
exists. In case there is no existing tracker, a process called self-
organising is triggered, so that a most suitable tracker can be returned
to the client or the computing nodes.

Definition 3.9 When a new computing node joins smartGRID and
no tracker exists in its LAN, the node will be upgraded to a tempo-
rary tracker as a result of the self-organising process. A new com-
puting node can also become a temporary tracker attributed to the
self-organising process, if the process selects it as the replacement of
an existing temporary tracker in its LAN.

Table 3.2: Definitions of Trackers and Basic Communication Rules in smartGRID

3.1. Overall Architecture and Core Components 32

�������� �	
�������������������������������� ������

���	
��

��������

������������

������������

��

����������

�����

���������������

�� !������

��������

����������

��������

"��

��#����������$��

	
���������

"��

���	
��

��������

������������

������������

��

������

��������
���������
�������

	
���������

��������
�!#����

"��

%!#��������
�������

	����!������

�������

������������

�!#����

��

%!#�����

��������

��

"��

����

�������������

�� !������

��������

��

"��

��&����

"��

'���

�������

��(�#��������
����

���������������

��������

��#��������(�

�������

)���$�������
������ !������

��������

"��

Figure 3.2: Self-organising Process in smartGRID

3.1. Overall Architecture and Core Components 33

A microkernel Grid container runs on every computing node and tracker. The

container serves as the runtime and managerial environment for the tasks. The

smartGRID container consists of four components: the Runtime Environment (RT),

the Management Agent (MA), the Profiling Agent (PA), and the Scheduling Agent

(SA). Figure 3.3 displays its architecture.

��������	�
��������

��������
����

�����������

�����

����������

�����

�����������

�����

Figure 3.3: Schematic View of smartGRID Container

The Runtime Environment provides the runtime libraries and software compo-

nents for both the agents and the tasks. For example, the XML parsing libraries,

and the implementations of the Web Services standards [50], such as SOAP, are in-

cluded in the Runtime Environment. The Management Agent provides the service

and managerial interface within the Grid and for the client. The policies and config-

urations are managed by the MA as well. The Profiling Agent gathers the status of

the network, the trackers, the computing nodes and the running tasks, and provides

dynamic and optimised configurations for the Scheduling Agent. The Scheduling

Agent is responsible for the scheduling and management of the tasks. It manages

the lifecycle of the tasks, and provides scheduling, fault-tolerance, and load balance

services for the Grid. Figure 3.4 depicts the agent interactions within a smartGRID

container.

3.2. Task/Service - A Novel Task Model 34

Figure 3.4: Agent Interactions in smartGRID

3.2 Task/Service - A Novel Task Model

smartGRID has a service-oriented architecture regarding its clients, and conforms to

the Web Services (WS) standards [50]. The adoption of Web Services gives smart-

GRID good interoperability with WS-compatible clients and other WS-compatible

Grids. However, in order to support state persistence and task decomposition,

smartGRID introduces a novel task model, called Task/Service (TS), which is a

hybrid model of the conventional task model and the service model.

��������	
��

��������	
�	�

�����������

����

���	��	���	�

�����
�	��

Figure 3.5: Task/Service of smartGRID

A TS comprises five components: TS description (TSD), executables, the data,

serialisation, and checkpoints. The serialisation and checkpoints are automatically

generated and managed by smartGRID when the TS is rescheduled (i.e. when a

3.2. Task/Service - A Novel Task Model 35

running task is suspended). A TS without the serialisation and checkpoints is called

Raw TS (RTS). Figure 3.5 shows the composition of Task/Service of smartGRID.

The TSD has two sections: the task section and the service section.

������������	

������
�����������	

�������
�����������	�

���������
������	

���	�����
������	

������
��������
�����������	

�	�������
�����������
������

��������
���������
����

��������
���

 �������
������	 �

��!��������

��������"�	
��!��������

����
��!��������

 ���#�����	
��!����������

Figure 3.6: Task Section of the Task/Service Description

Figure 3.6 displays the task section of the TSD. The task section of TSD includes

three subsections, which are described as follows:

• The dependencies subsection defines the runtime components and the services

that the TS depends on.

• The scheduling policies subsection defines (a) the instance policies (the min-

imum number of active instances, the maximum number of active instances,

the minimum number of standby instances, the maximum number of standby

instances) (discussed in Section 3.3); (b) the minimum hardware requirements

for machine type, processor type, the amount of cycles contributed, the amount

of memory contributed, and the amount of storage contributed; (c) the esti-

mated amount of computation; (d) the expected completion time; (e) the

priority level; and (f) the chaining policies (discussed in Section 3.3).

3.3. Scheduling Process and Evolving Mechanisms 36

• The information subsection defines information about the executables, the

data, and the checkpoints.

The service section of the TSD uses the Web Service Description Language

(WSDL) [9] and WS-Resource [17] specifications to define the service interfaces

and the related stateful information.

The executables are Java bytecode files or .NET executables. The data is op-

tional, and may come from multiple sources that are defined in the data information

section of the TSD. The serialisation is equivalent to the object serialisation [49] of

Java. It stores the runtime dynamics of any suspended TS. smartGRID also supports

checkpoints. As not all runtime states can be preserved through the serialisation

process, the checkpoint mechanism is provided to give the TS a chance to save its

additional runtime states as checkpoints when the TS is suspended. When resched-

uled, the TS is deserialised, and then resumed, so that the TS is able to restore its

states from previous checkpoints. Checkpoints are also useful if a TS wants to roll

back to its previous states.

3.3 Scheduling Process and Evolving Mechanisms

The scheduling process in smartGRID mainly involves coordinating the agents’ ac-

tions within and between the Grid containers, and constructing a self-organised

evolving computing network. More specifically, there are two separate processes -

to schedule the TSs to suitable computing nodes, and to balance the requests and

schedule the corresponding TSs to the computing nodes to serve these requests.

It is agreed that CPNs [35] are one of the best ways to model agent interaction

protocols [12, 13, 42, 45]. In the CPN model of an agent interaction protocol, the

protocol structure and the interaction policies are a net of components. The states

3.3. Scheduling Process and Evolving Mechanisms 37

of an agent interaction are represented by CPN places. Each place has an associated

type determining what kind of data the place may contain. Data exchanged between

agents are represented by tokens, whose colours indicate the value of the representing

data. The interaction policies of a protocol are carried by CPN transitions and their

associated arcs. A transition is enabled if all of its input places have tokens, and

the colours of these tokens can satisfy the constraints that are specified on the arcs.

A transition can be fired, which means the actions of this transition can occur when

this transition is enabled. When a transition occurs, it consumes the input tokens as

the parameters, conducts the conversation policy and adds the new tokens into all

of its output places. After a transition occurs, the state of a protocol is changed. A

protocol is in its terminated state when there is no enabled or fired transition. The

detailed principles of CPNs will be discussed, together with their use, in Subsection

3.3.2.

In the rest of this section, we first discuss the lifecycle of the TS, and then explain

respectively the Task-related and request-related scheduling processes mentioned

at the beginning of this section. We use CPNs to describe the agent interaction

protocols. We also describe the detailed algorithms used in these processes.

3.3.1 Lifecycle of the Task/Service

Figure 3.7 shows the states of a TS in its lifecycle. When a Raw TS is submitted

by a client via a tracker’s MA, the MA checks the TS’s validity. If the TS is valid,

it enters the SUBMITTED state. A set of pre-schedule operations are then applied

to the TS by the MA and SA of the tracker. These operations include making a

backup of the submitted TS, and allocating and initialising the internal resources

for the purpose of scheduling that TS, etc. If all operations succeed, the TS enters

3.3. Scheduling Process and Evolving Mechanisms 38

the READY state.

���������

	
���

���������

������

�����

����	����
��

������

� ��!����"

	����
��

� ��!������

��""�"#

	
	����

�����$

�%����&����	�'�

������&����	�'�

Figure 3.7: States of a Task/Service in smartGRID

The READY state means that the TS is ready to be scheduled. In this state, the

SA of the tracker uses a “best-match” algorithm to determine whether the managed

computing nodes of the tracker are suitable for the TS. If a suitable computing node

is found, a schedule operation is applied. Otherwise, the SA (called chaining source)

extracts the TSD from the TS, and passes it to the SAs of other known trackers.

Every time the TSD passes by a tracker, the TTL (Time-to-Live) specified in the

chaining policies of the TSD decreases by 1. If one of the trackers happens to be able

to consume the TS according to the best-match algorithm, it contacts the source SA

to transfer the TS to it. If the tracker is not able to consume the TS, it keeps passing

on the TSD until the TTL equals 0. The above process is called chaining. After

chaining, the TS remains in the READY state. Chaining is the core mechanism in

smartGRID to balance the loads and requests globally. The detailed chaining and

3.3. Scheduling Process and Evolving Mechanisms 39

related protocols are discussed later.

The TS enters the CHECKED-IN state after the schedule operation, which

means that the TS is scheduled to a computing node, the executables are resolved

by the runtime environment of the computing node, and the runtime dynamics and

checkpoint have been restored for a suspended TS. The TS then automatically en-

ters the RUNNING state until the suspend operation is applied, where the TS is

serialised and suspended, and enters the CHECKED-OUT state. Following this, the

TS is automatically transferred to the tracker, where the computing node registers

for rescheduling. A special situation is that if the TS exits, it fires the suspend

operation itself and stores the computing result whilst being suspended.

3.3.2 Task-related Scheduling

In smartGRID’s scheduling strategy, the TSs, requests, and profiles of the trackers

and computing nodes are represented as three kinds of tokens. The transition rules

of these tokens are different when the tokens are placed in different places. The

agents in smartGRID are responsible for allocating the tokens and modifying them

after the transitions are fired.

The task-related scheduling process can be described as three sub-processes:

scheduling within a tracker, scheduling between the tracker and the computing

nodes, and scheduling among the trackers.

Scheduling within a tracker

Figure 3.8 demonstrates the scheduling process with a tracker modelled by a CPN.

There are four types of places defined in the CPN: Task-related places, operation

places, the profile/load place, and the simulated synapse place. They are described

3.3. Scheduling Process and Evolving Mechanisms 40

as follows:

���������

�	
��

��	�

��
������

����

�
������

����������

�
���

������

�	
��

�
�
��
��

��
���
���

��
��
��
��
���
�

���

�
��������

����
����

�� ���
!��	�

��������

"#��������	
������

������
�

��

���
���
��������

"#�
��������

�
��	
��

�	������

���

���

����
����

�
��������

�����
�

����

��	
������

������
�

���$��
��%�����

����
����	
������

������
�

&
��' ���	

 ���	
�

�
���	
�

�	���������
������

����

�� ���
��

������

���

Figure 3.8: Scheduling Process within a Tracker

1. The Raw TS place holds the Raw TS token, which is received from the client.

2. The Rejected TS place holds the Raw TS tokens, which are rejected by the

Check transition.

3. The Legal TS place holds the Raw TS token, which is asserted as legal by the

Check transition. The legal Raw TS token may also come from the tracker

itself due to a reschedule operation.

4. The TS Repository place holds the backup TS tokens. A backup TS token is

removed when the corresponding TS exits or moves to another tracker through

3.3. Scheduling Process and Evolving Mechanisms 41

the chaining process. A backup TS token is updated when the corresponding

TS is rescheduled.

5. The TS place holds the TS token, which is produced by the Copy/Update

transition.

6. The Scheduling Policies place holds the scheduling policies token, which is

extracted from its corresponding TS token. The scheduling policies token may

also come from another tracker through the chaining process.

7. The Profiles and Load place holds the profile tokens and load token. Each

profile token contains the information and status (called profile) of its corre-

sponding computing node. The load token contains the status of the overall

load of its corresponding computing nodes. Figure 3.9 depicts the scheme

represented by the profile token and the load token.

����������	

�������
�	��

���������
�	��

�����������
�	����
������

�����������
�����	
������

�����������
�������
�������

����

������

�����

 �� �������

����!"

���!#

� ��	

Figure 3.9: Profile and Load

8. The Chaining Operation place holds the unmatched scheduling policies token,

which is consumed by the chaining process.

9. The Tagged Scheduling Policies place holds the Tagged Scheduling Policies

token, which is produced by the best-match transition. The tagged token has

3.3. Scheduling Process and Evolving Mechanisms 42

“winner” tags, which contain the identifiers of the best suitable nodes (the

winners).

10. The Synapse place holds the synapse token, which represents the link between

the destination and the source of a chaining process.

11. The Source TS Repository place holds the corresponding TS token of the

scheduling policies token, which is passed through the chaining process.

12. The Tagged TS place holds the Tagged TS token, which is composed of the

TS token and the Tagged Scheduling Policies token.

13. The Push Operation place holds the Tagged TS token, which will be “pushed”

to its corresponding computing node.

14. The TS Queue place holds the Tagged TS tokens, which will be “pulled” by

any of the winner nodes.

There are eight transitions, which represent eight operations. They are described

as follows:

1. The Check transition checks the syntax of the TSD of the Raw TS token. It

also checks whether the dependent bundles and services exist, and whether the

services defined by the Raw TS conflict with the existing services (e.g. conflict

due to the same service name). In addition, the Check transition converts the

Raw TS token into the TS token.

2. The Copy/Update transition either duplicates the TS token, or updates the

TS token in the TS repository place.

3.3. Scheduling Process and Evolving Mechanisms 43

3. The Extract Scheduling Policies transition extracts the scheduling policies

from the TSD.

4. The Best-match transition performs the best-match algorithm. Figure 3.10

explains the algorithm. PAES stands for Profile-Aware Eager Scheduling,

which will be discussed later.

5. The Update Load transition converts the scheduling policies into the comput-

ing load, and adds the load to the overall load of the tracker.

6. The Link transition connects the two endpoints of a chaining process. Schedul-

ing from one node to another node within the same LAN is a special case, as

a tracker is always linked with itself.

7. The Compose transition transfers the TS token from the source TS repository,

updates the local TS repository, and composes the Tagged TS token from the

TS token and the tagged scheduling policies token.

8. The Priority Check transition compares the priority of the tagged TS to-

ken with the current loads of the winners, to determine whether the token is

“pushed” to its corresponding computing node, or stored in a queue for the

“pull” operation.

Scheduling between a tracker and its nodes

smartGRID uses a scheduling algorithm called Profile-Aware Eager Scheduling (PAES),

which is derived from eager scheduling, to schedule the TSs from the trackers to their

managed computing nodes.

The eager scheduling algorithm was first introduced in Charlotte [4]. Its basic

idea is that faster computing nodes will be allocated tasks more often, and if any

3.3. Scheduling Process and Evolving Mechanisms 44

��

������	�
�� ����	
��������	�
��

���	��

�����

������	�

������	
���

������	�

��	��	

	����

����	�
����

 ��

�����	�

������	�

!�	���	

������	�

"	�

��

#	�
������	

$	����

������	

$	����

����	��%

������	�

��������	

����
&

������	

����
������	

�����'�	�

���

����	�%�

������	

"	�

��

(�����

"	�

��������

"	�

��(�

��

Figure 3.10: Best-match algorithm

3.3. Scheduling Process and Evolving Mechanisms 45

task is left uncompleted by a slow node (failed node is infinitely slow), that task will

be reassigned to a fast node. In other words, it uses a “keep the faster nodes busy”

strategy. It also guarantees fault-tolerance by using a redundant task cache with a

time-out mechanism. The PAES algorithm takes the profiles of the computing nodes

provided by the profile agent and the scheduling policies provided by the TSs into

consideration when performing scheduling. In contrast to eager scheduling, it allows

bidirectional scheduling operations, i.e. pull and push. Figure 3.11 demonstrates

the two operations.

���������

	
������

�����

	
������
����

��������

�����

	
������

������

����

Figure 3.11: Push and Pull Operations

The Schedule Operation place holds the TS token, which is scheduled to the

corresponding computing node. The push operation is straightforward. The Push

transition represents the push operation, i.e. to assign the TS to one of the winners.

The Pull Operation place holds the requests from the computing nodes. Whenever

the scheduling agent of a node determines that it is able to run a new task, it sends

a request to the tracker. The Pull transition represents the pull operation, i.e. the

scheduling agent matches the computing node requesting the TSs with the tagged

TS tokens. If the node is the winner of the TS, the TS is assigned to the node.

3.3. Scheduling Process and Evolving Mechanisms 46

Scheduling among the trackers

Trackers are linked by the chaining process, which is the core of the scheduling

process among the trackers.

��������	
�

�������

�����

�������

����	�	
�

�������	
��������	�

�������

Figure 3.12: Basic Chaining Mechanism

Figure 3.12 shows the basic chaining mechanism. The two places are defined

exactly the same as those in Figure 3.8. However, in this case, they represent places

in different trackers. The Check/Send transition checks the TTL in the scheduling

policies token first. If it is greater than 0, the TTL decreases by 1, and the scheduling

policies with the new TTL is sent to all known trackers. If the TTL equals 0, the

scheduling policies token is discarded.

��

�� ��

��

�� ��

Figure 3.13: Formation of the Simulated Synapse

Recalling Figure 3.8, there is a link transition, which makes two chained trackers

3.3. Scheduling Process and Evolving Mechanisms 47

(i.e. if tracker A successfully schedules the chained TS of tracker B, A and B are

chained) learn, and preserve each other’s information for future chaining processes.

However, if the links exist permanently, the performance of the chaining process will

gradually decrease as time goes by because of the explosive numbers of links. A link

must therefore be able to be strengthened and weakened. Such a link is called a

simulated synapse. Figure 3.13 shows the formation of the simulated synapse.

The underlying algorithm used to strengthen and weaken the link can be defined

in the chaining policies. One of the simplest algorithms is the aging algorithm.

In this algorithm, every simulated synapse has an associated weight. A weight is

a numerical value between 0 and 1, which is used to evaluate the strength of its

associated chain (1 representing the strongest link, and 0 representing no link).

Weight is calculated based on the frequency of communication occurring on its

associated chain. When a simulated synapse is created, an initial weight is specified.

Then for each interval I, the weight squares. If the resulting weight is less than the

threshold θ, the simulated synapse is removed. On the other hand, each time the

Link transition is fired, the square root of the weight is calculated. Table 3.3 shows

a pseudo implementation of the aging algorithm using monitor.

To take the advantage of the simulated synapse, the chaining process must take

the strength of the simulated synapse into consideration. Figure 3.14 demonstrates

an example of the advanced chaining mechanism.

3.3.3 Request-related Scheduling

As the TSs are allowed to register services in smartGRID, one of the functions of

scheduling is to balance the requests and schedule the corresponding TSs to the

3.3. Scheduling Process and Evolving Mechanisms 48

/* Global Area */

DEFINE MONITOR M /* monitor */

DEFINE CONSTANT θ /* threshold */

DEFINE CONSTANT I /* interval */

DEFINE OBJECT synapse /* simulated synapse */

/* Link transition thread */

synchronised(M) {

if synapse.weight = 0 THEN

INITIALISE synpase.weight

ELSE

synpase.weight = SQRT(synpase.weight)

END IF

NOTIFY();

}

/* Background daemon thread */

synchronised(M) {

WHILE synpase.weight > θ
WAIT(I)

synpase.weight = synpase.weight * synpase.weight

END WHILE

synpase.weight = 0

}

Table 3.3: A Pseudo Implementation of the Aging Algorithm using Monitor

computing nodes to serve these requests. In fact, the only difference between Task-

related scheduling and request-related scheduling is the objects that are actually

scheduled. In the former case, the object is the TS or the scheduling policies ex-

tracted from the TS. In the latter case, the object is the service request. As the

requests have no common characteristic in terms of the potential load that they may

bring in, it is hard for the scheduling components to make rational decisions. How-

ever, smartGRID still provides two ways to help services achieve high throughputs.

Recalling the TSD, there is a subsection called instance policies, which defines

3.4. Compatibility and Interoperability 49

������

��	
������

������
�

�����

�������

�	������

��
������
�	
��

��
��
��
�

��	
������

������
�
�
��

�������
�������

� �!"

Figure 3.14: An Example of the Advanced Chaining Mechanism

the Minimum number of Active Instances (MINAI), the Maximum number of Active

Instances (MAXAI), the Minimum number of Standby Instances (MINSI), and the

Maximum number of Standby Instances (MAXSI). When a service TS (a TS that

defines services) is scheduled, the instance policies are used to guide the scheduling

components to keep a proper number of service instances. Then, when a client

attempts to invoke these services, it uses the Web Services standards to discover the

service instances. It is at that time that the clients’ requests are distributed to the

pre-allocated service instances, so that these requests are balanced.

Another way to balance service requests is to let the service providers themselves

manage the requests, as only they know about the internals of the requests and the

best way to handle them. The multi-agent architecture of smartGRID allows the

service TSs to use the underlying APIs to provide their own scheduling strategies,

and schedule the requests themselves.

3.4 Compatibility and Interoperability

In this section, we discuss compatibility and interoperability issues with existing

Grid systems and clients, and how the new architecture can operate with existing

3.4. Compatibility and Interoperability 50

local schedulers.

Recalling the Task/Service model (see Section 3.2), it is easy to see that the

TS model enables the modelling of both conventional stateless services and stateful

tasks. As the Web Services standards do not define whether a service is stateless

or not, both stateful TSs and stateless TSs can use WSDL to register their own

interfaces with clients. Therefore, any WS-compatible client is capable of accessing

these interfaces through smartGRID.

There are two means by which stateful information for a conventional service in

smartGRID can be maintained. The client and the service can use agreed methods,

e.g. WS-Resource, to exchange stateful information. smartGRID supports WSRF

standards, hence a WS-Resource based client needs no modification to work with

smartGRID, as long as the service interface is not changed. Another way to pre-

serve the states throughout different service transactions is to dynamically create

transaction-specific service tasks. In smartGRID, a TS can be transaction-specific

(which is specified by the instance policies in the TSD). Whenever a request for

such a TS is received, a TS instance will be created to serve that request. One

variation of this method is that there is a main TS serving as a proxy. Whenever

a request is received by that TS, it delegates the request to a service task, which is

created by the main TS. The use of a proxy task can also be extended to support

task decomposition, by spawning the sub tasks from the proxy task.

As smartGRID conforms to the Web Services and WSRF standards, any TS in

smartGRID is able to operate on the services in other WS-compatible Grids us-

ing these standards. However, being different in its architecture and programming

model, smartGRID has neither the binary compatibility nor the source code com-

patibility for programs running in existing Grids.

3.4. Compatibility and Interoperability 51

With its multi-agent architecture, smartGRID has promising interoperability

with existing local schedulers. There are two approaches. In the first approach,

a local scheduler specific agent can be deployed to the local scheduler. It keeps

the same interface with smartGRID and adapts itself to the scheduling and job

management interface provided by the local scheduler. In the scheduling and job

management process, it works as an intermedium or an adapter to interpret the

scheduling and job management operations and data between smartGRID and the

local scheduler. This approach is straightforward, but different local schedulers need

different adapter agents. In the second approach, a more generic design of smart-

GRID’s agents is required. Instead of hard coding a full version of the scheduling and

management operations and protocols into smartGRID’s agents, a set of predefined

preliminary operations and protocols, which allow the construction of more com-

plex and complete operations and protocols using a uniform scheme, are carefully

selected and implemented into these agents. Hence, the scheduling and manage-

ment operations and protocols of smartGRID itself and the local schedulers can be

represented by these schemes. These schemes are understandable and checkable for

smartGRID’s agents. Once the agents are deployed, they read the schemes in, check

them before any scheduling and management operation occurs, and then use them

in the operations. A promising way to represent the scheme is to use CPN and the

Matrix Equation Method [43], which allows the agents to check whether a scheme

is understandable.

3.5. Summary 52

3.5 Summary

This chapter presented an agent-based hybrid Grid computing architecture, called

smartGRID. This hybrid architecture, which is a combination of server-based com-

puting architecture and P2P computing architecture, is scalable and robust in open

environments.

We introduced the notion of task/service aimed at the programming issue dis-

cussed in Section 2.5. This novel task model can successfully solve the state per-

sistence issue and task decomposition issues (using a proxy task to spawn the sub

tasks).

We abandoned the conventional super-local scheduling strategy, and proposed

a multi-agent based scheduling strategy. The intelligent agents in the system are

able to make rational decisions and exhibit flexibility in the face of uncertain and

changing factors. These advantages make the new architecture more efficient and

flexible when dealing with open systems.

We extended the eager scheduling algorithm to the profile-aware eager scheduling

algorithm, and introduced the best-match algorithm and chaining mechanism, which

achieve local optima and global optima respectively in terms of load balance for both

the tasks and the requests. The policy free best-match algorithm abstracts itself from

decision-making by extracting the scheduling policies from the user configurations

(i.e. the TSD). This enables sophisticated scheduling and resource utilisation.

We clarified how smartGRID preserves compatibility with WS-compatible clients,

and discussed its promising interoperability with existing Grids and local schedulers.

In the next chapter, we develop smartGRID further to a pure P2P Grid com-

puting architecture, which offers better performance and broader applications with

the simplification of the structure.

Chapter 4

A Peer-to-Peer Solution to Grid
Computing in Open Environments

The use of P2P computing architecture with a chaining mechanism and simulated

synapse for Grid computing in open environments has been proposed and discussed

in Chapter 3. This hybrid solution which has a P2P architecture in the global context

and a client/server architecture in the local context has presented its flexibility and

robustness in the face of uncertainty. In this chapter, we develop the hybrid solution

further by applying the P2P computing architecture only. We call this pure P2P

solution, smartGRID2.

In terms of the problems outlined in Chapter 2, a brief review of the hybrid solu-

tion is given in Section 4.1 to identify the remaining open problems that smartGRID

has not solved. The methodologies used in smartGRID are also discussed.

Section 4.2 presents an overview of smartGRID2’s architecture and core com-

ponents. The three major components of smartGRID2 are briefly discussed in this

section. The Grid container and its multi-agent [39] architecture are described as

well.

Section 4.3 defines the improved task model, based on the notion of module. We

demonstrate how the modules can be used to compose tasks, and give details of the

interface between a module and the Grid container.

53

4.1. A Brief Review of the Hybrid Solution 54

Section 4.4 depicts a P2P evolving computing network. We focus on the relay

process, which derives from the chaining process, and explain how the relay process

can bring adaptive and evolving mechanisms to smartGRID2.

The application of the improved task model and the P2P computing architecture

to resource management and scheduling is discussed in Section 4.5, with a resource

management framework. The task execution process and service invocation process

are also discussed, as two examples of the complete applications of the three com-

ponents of smartGRID2.

As in Chapter 3, we examine compatibility and interoperability issues at the end

of this chapter.

4.1 A Brief Review of the Hybrid Solution

Table 4.1 describes the problems (recall Section 2.5) with Grid computing in open

environments and outlines related solutions in smartGRID. Although the hybrid

solution has solved most of the problems, it has the following limits:

• It lacks internal support to transaction-specific service tasks, which are used

in solving the first two problems.

• Task decomposition is supported by using proxy tasks, which is indirect and

not supported in the bottom layer of smartGRID.

• Inter-task communication is not supported in the task model.

• The intention of the use of checkpoints is to preserve the heavyweight states.

However, an extra layer needs to be added between the Grid container and

the tasks, which increases the complexity of the architecture.

4.2. Overall Architecture and Core Components 55

������� �		�� �
����
	

����
���������
����
��������������	�������

��
����

���
�

���������������������	�
������
����� �

������������ ����	����������

��
!�����!

"
����
���	���
����
���	�����
��
	���
 �

	��������	�	���� ��������#��	��

�
��������

�������	���
����

������
��	$���
%����	�

�����#�
����

��������!

&
����%�������������������!�!�

���������	
����	$����������
���������

���!�����
�������
�����!�
��	������	�

����
�����������
���������	����������

'������#��	����
����

	�������!��	�!���(�

����

(���
���	
����	������
����
������
����	��������	

����#�
#������������������

��
!������������	$�

�����!�������	�����

	���������	���	�

'��	����
#	��������	�������

��	�	��������	�����	�	�����

	���
�����������	���
���$�

	���#
�!��	�!���
��		

Table 4.1: Problems and Related Solutions in smartGRID

• It lacks a uniform message passing and routing framework. Both the self-

organising process and the chaining process have their own mechanisms of

passing and handling messages, which is redundant and unnecessary.

• Although the hybrid architecture does have direct management of the com-

puting nodes, the server-based computing architecture, which is used between

the tracker and its managed nodes, can cause unsuitable selections of resources

and unbalanced loads due to the tracker’s limited view over the whole system.

4.2 Overall Architecture and Core Components

smartGRID2 consists of three major components: an improved task model, which

derives from the task model of smartGRID; a P2P computing architecture, which

develops the chaining mechanism and simulated synapse into a message passing

4.2. Overall Architecture and Core Components 56

and routing framework; and a resource management framework, which uses profiles

to match computing resources with requests, and provides up-to-date information

about matched resources. In this section, we present an overview of these compo-

nents, and discuss each component in turn.

There are two tiers in smartGRID2: the clients and the computing nodes (or

peers). Table 4.2 defines these tiers.

Definition 4.1 A client is a generic computing device that seeks ser-
vices from the Grid using Web Services Standards.

Definition 4.2 A computing node is the place where tasks are ex-
ecuted and computing occurs. A client or a tracker can act as a
computing node at the same time.

Definition 4.3 A computing device can serve as a client and a com-
puting node at the same time.

Table 4.2: Definitions of Tiers in smartGRID2

A microkernel Grid container runs on every computing node. These containers

serve as the runtime and managerial environment for the tasks. A task (i.e. a job

or a service) is described as a group of linked modules in smartGRID2. A module

is a fundamental unit that can be scheduled among the peers. All modules run on

peers, or more specifically, within the smartGRID2 containers. Figure 4.1 shows the

relationship between the modules and the container.

The smartGRID2 container allows modules to register to the service portal as

Web Services. The service portal conforms to Web Services standards [50], and al-

lows clients to interact with the Grid using SOAP messages. Figure 4.2 demonstrates

the overall architecture of the smartGRID2 container.

Inside the container, there are four components: the Runtime Environment (RT),

4.2. Overall Architecture and Core Components 57

�����������	
��	

���������

���	��	����	���������

������

�����	 	���!�"��#

Figure 4.1: Components within a smartGRID2 Computing Node

the Management Agent (MA), the Profiling Agent (PA), and the Computing Agent

(CA). The Runtime Environment provides fundamental routines and runtime li-

braries for both the agents and the modules. For example, XML parsing libraries,

and implementations of Web Services standards [50], such as SOAP and WSDL

[9], are included in the Runtime Environment; the service portal is also part of

the Runtime Environment. The Management Agent provides the managerial in-

terface between the container and the Grid Management Service. It manages the

container, the policies and the configurations as well. The Profiling Agent gathers

the status of the network, the peers and the running modules, and provides op-

timised dynamic configurations for the Computing Agent. The Computing Agent

is responsible for managing the lifecycle of modules, locating resources and mod-

ules, discovering services, and scheduling modules and service invocations among

the peers, while providing fault-tolerance and load balance. Figure 4.3 shows the

agent interactions within the Grid container.

4.2. Overall Architecture and Core Components 58

���������	�
����������

�
�

�
�
�

��
��
�
��

�

�
	

���
�
�

�
�
�
�
�
�
�
�
�
��

�
�
��
��
�

�
�

�
�
�

��
��
�
��

��
�
��
�

�

��
�

��
�
��
�

�

��
�

�
�
�
�

�
�

�
�
�

��
��
�
��

�
��
�
�

�
�
�
�
�
�
�
�
�
��

�
�
��
��
�

���������	�
����������

�
�
�
�
�
�
�
�
�
��

�
�
�
�
�

�
�

���
��
�
��
�
�
�
�

��
��
��
�
��	
�

�
�
�

��
��
�
��

�

�
	

���
�
�

�
�
�
�
�

��
��
��
��
�	
�

��
�
��
��
� �
�

���������
����

�
�
���

�
���
�
��
��
�
�

��
��
��
�
��	
�

�
�
�

��
��
�
��

�
��
�
�
�

�
�
�
��
��
�
	

�
�
�
��
�
�
�
�
��

��
��
��
�
��

�
��

�
��
��

��
��

�
�
�

��
��
�
��
��
��

��
�

�
�

�
�
�

��
��
�
��

�
�
�
�
�
�
�
�
�

�

��
��
��
�
��

�
��
�
��
�
�
�
�

��
�
��
�
��
��
�
�	

��
�
���
�
�
�

��
�
�
�
�
��
�

�

��

!�

�
��
�
�
��
�
�
�
�
�
��

�

�

��
��
�
�
��
��
��
�

�

�
�
��
�
��
��
�
�
��

��
�
�
�

��
��
��
�
�	

��
�
��

F
ig

u
re

4.
2:

S
ch

em
at

ic
V

ie
w

of
sm

ar
tG

R
ID

2
C

on
ta

in
er

4.3. Module - An Improved Task Model 59

���������	

�
	���

����	�����

�
	���

���������	

�
	���
��������	

������������	���������

����	������������������

�����������������

������
���������������

��������	�

������������	���������

����	������������������

Figure 4.3: Agent Interactions in smartGRID2 Container

Besides these components, there are two predefined modules, which register as

Grid Management Service (GMS) and Computing Management Service (CMS) re-

spectively. GMS allows users who have certain privileges to manage the Grid, e.g.

specifying the computing policy/configuration, and monitoring the status of the

Grid. CMS provides interfaces for clients to manage the computing resources. In

smartGRID2, all objects involved in the computing process are regarded as re-

sources. These resources include the executables of the modules, the service de-

scriptions that the modules register, data files, storage, computational cycles, etc.

4.3 Module - An Improved Task Model

As mentioned in the previous section, smartGRID2 uses modules to describe tasks.

A module consists of the module description, the executables, the serialisation and

the module-owned files. Figure 4.4 displays the composition of a module.

The Module Description (MD) has two sections: the task section and the service

section.

Figure 4.5 shows the task section of the MD. This section defines the task-related

information and consists of two subsections, which are listed as follows:

• The deployment description subsection defines information about a module’s

4.3. Module - An Improved Task Model 60

������

���������	
������

���
������	

�������	�����

�������������

����	

Figure 4.4: smartGRID2 Module

executables (e.g. what is the entry point of the module if it is a startup

module), and the dependencies of that module. A module’s dependency is

another module or a service that the module depends on.

• The computing policy subsection defines a module’s (a) minimum hardware

requirements on a peer’s machine type, processor type, and contributed cy-

cle/memory/storage amount; (b) estimated amount of computation; (c) ex-

pected completion time; (d) priority level; and (e) relay policies (see Section

4.4).

���������	
�������
��	

���������
�����������
��	
���������������	��	���

����������������	��	����

������
�	���������

������	�����������������������	

�����
���
��������
�
��	�����	

���������
���������
��	�
���

����������
�������

���� ������������ ��

Figure 4.5: Task Section of the Module Description

The service section of the MD is optional and is only needed if the module

registers one or more services to the Grid. It uses WSDL to define the service

interfaces.

4.3. Module - An Improved Task Model 61

The executables are Java bytecode files or .NET executables. When a running

module is suspended by a user, or if it is relocated (see Section 4.5), it will be

serialised. This process is equivalent to the object serialisation [49] of Java. It allows

the Grid container to store the runtime dynamics of the module, and restore them

when the execution of the module is resumed. The module-owned files (MOFs) are

files that tightly bind to the module. These files are regarded as part of the module,

and migrate, together with the module’s description, executables and serialisation.

���������

	��
�����������

�������

���������

�����������������

���� ����

����������
����

��������

����������
����

��������

��
����
��������

��
����
��������

��
����
��������

��
����
��������

Figure 4.6: Hierarchy of the Module Instances in smartGRID2

A group of linked modules consists of a complete task. Each module implements

a fraction of the overall task. As these modules can be executed at the same time

on different peers, load balance and parallelism are achieved. Each task has a

startup module. After all the modules of a task have been deployed to the Grid, the

client can start the task through CMS. CMS then uses the create method of the

IModuleContext interface to create an instance of the startup module. Once the

4.3. Module - An Improved Task Model 62

startup module is instantiated and runs, it can start instances of other modules by

using the same interface. Figure 4.6 depicts the hierarchy of the modules’ instances

in smartGRID2.

public interface IModuleContext {

public ModuleInstance create(String moduleName,

Object... args)

throws ModuleException;

public Object invoke(ModuleInstance moduleInstance,

String method,

Object... args)

throws ModuleException;

public void delete(ModuleInstance moduleInstance)

throws ModuleException;

/**

* For static method only

*/

public Object invoke(String moduleName,

String method,

Object... args)

throws ModuleException;

}

Table 4.3: IModuleContext Interface

When a module is instantiated, it gains access to the IModuleContext interface,

which is provided by the Computing Agent. This interface defines three kinds of

methods, which respectively allow a module’s instance (a) to create instances of

other modules, (b) to perform procedure calls (i.e. invoke methods of other mod-

ules), and (c) to delete the instances which are not in use in order to release their

occupied resources. Table 4.3 lists the IModuleContext interface. The internals of

the creation process, the subsequent procedure calls, and the deletion process are

4.4. Peer-to-Peer Computing Architecture 63

discussed in Section 4.5.

4.4 Peer-to-Peer Computing Architecture

A number of interconnected peers comprise smartGRID2. Table 4.4 defines the

notion of connection in smartGRID2.

Definition 4.4 A connection represents a message passing route
from one peer to another, and is not equivalent to a network con-
nection. A connection from peer A to peer B means peer A has the
information to send messages to peer B successfully, where A is the
source of the connection, and B is the destination of the connection.

Definition 4.5 A connection is directional, i.e. “peer A connects
to peer B” does not presume “peer B connects to peer A”. “Peer A
connects to peer B” is represented as A 7→B. If peer B also connects to
peer A, then A and B have a two-way connection, which is represented
as A↔B.

Definition 4.6 A peer’s connections are the connections whose
source is the peer. When recording these connections, only the desti-
nation peers (destinations for short) are recorded.

Definition 4.7 Each connection has an associated strength. De-
pending on the strength, a connection can be permanent or tempo-
rary.

Table 4.4: Definitions of smartGRID2’s Connection

The peers which have a relatively large number of connections are called hubs.

When the Grid is constructed, a number of computing nodes which have high avail-

ability, good connectivity and good performance are selected as the backbone of the

Grid. Each of them permanently has at least two two-way connections with the

others. As new nodes appear, they register to at least one of the backbone nodes,

so that a two-way connection can be established between them.

4.4. Peer-to-Peer Computing Architecture 64

public class Synapse {

public double strength;

public double deathThreshold;

public double activateThreshold;

public double permThreshold;

public static Synapse createPermSynapse() {

Synapse synapse = new Synapse();

synapse.strength = 1;

return synapse;

}

public static Synapse createTempSynapse() {

Synapse synapse = new Synapse();

synapse.deathThreshold =

SynapseManager.deathThreshold +

deathRange * random.nextDouble();

synapse.permThreshold =

SynapseManager.permThreshold +

permRange * random.nextDouble();

synapse.activateThreshold =

synapse.permThreshold -

(synapse.permThreshold -

synapse.deathThreshold) * GOLDEN_SECTION;

synapse.strength =

Math.pow(synapse.activateThreshold, 2);

return synapse;

}

}

Table 4.5: A Sample Implementation of Simulated Synapse

4.4. Peer-to-Peer Computing Architecture 65

In smartGRID2, the connections of a peer are recorded in a hash table, where

the destinations of the connections are the keys, and the objects representing the

strength of the connections (called simulated synapses) are the values. Table 4.5

shows a sample implementation of simulated synapse (synapse for short).

Definitions of the above fields are described in the table below.

Definition 4.8 strength, whose range is (0, 1], represents the cur-
rent strength of the connection. A value “1” means that the connec-
tion is a permanent connection. A random initial value which is less
than activeThreshold is given to strength, when a connection is
created.

Definition 4.9 deathThreshold, whose value is randomly selected
from a user configured range, when a connection is created. When
strength is less than deathThreshold, the connection is removed
from the hash table, which means the connection breaks up.

Definition 4.10 activateThreshold. When a connection is cre-
ated, a random value is selected from a user configured range
as activateThreshold. At that stage, the connection is in-
active. Afterwards, if strength grows to a value greater than
activateThreshold, the connection becomes active, and the
activateThreshold is set to 0.

Definition 4.11 permThreshold. If an active connection’s
strength continues growing to a value greater than permThreshold,
then strength is set to 1, and the connection becomes a permanent
connection.

Table 4.6: Definitions of Attributes of Simulated Synapse and their Associated Rules

Two operations can be applied to a synapse: the grow operation, which increases

the strength of the connection; and the decay operation, which decreases the strength

of the connection. Table 4.7 shows the internals of these operations.

4.4. Peer-to-Peer Computing Architecture 66

private static Hashtable<Peer, Synapse> synapses;

public static void grow(Peer peer) {

Synapse synapse = synapses.get(peer);

if(synapse == null)

synapses.put(peer, Synapse.createTempSynapse());

else {

if(synapse.strength == 1)

return;

if(synapse.activateThreshold == 0) {

synapse.strength =

Math.pow(synapse.strength, 0.5);

if(synapse.strength > synapse.permThreshold)

synapse.strength = 1;

}

else {

synapse.strength +=

Math.pow(synapse.activateThreshold, 2);

if(synapse.strength >

synapse.activateThreshold) {

synapse.strength =

synapse.deathThreshold +

(synapse.permThreshold -

synapse.deathThreshold) *

GOLDEN_SECTION;

synapse.activateThreshold = 0;

}

}

}

}

public static void decay(Peer peer) {

Synapse synapse = synapses.get(peer);

if(synapse.strength == 1)

return;

if(synapse.activateThreshold == 0)

synapse.strength = Math.pow(synapse.strength, 2);

else

synapse.strength -=

Math.pow(synapse.activateThreshold, 2);

if(synapse.strength < synapse.deathThreshold)

synapses.remove(peer);

}

Table 4.7: Operations on Simulated Synapse

4.4. Peer-to-Peer Computing Architecture 67

There are three kinds of computing operations in smartGRID2, i.e. deploying

resources, locating the resources, and utilising the resources. In order to achieve

load balance, and allocate the most suitable peer to perform a computing operation

or a series of computing operations, or to locate certain resources, various messages

are generated by the peer which receives the client’s instruction, and then delivered

to other peers before performing the operation(s). These messages and the replied

messages are encapsulated into impulses, and transmitted among the peers. This

process is called relay. Table 4.8 shows the definition of Impulse.

public class Impulse {

public int type_ttl;

public long serial;

public Peer from;

public Message message;

}

Table 4.8: Impulse

Assume that O represents the peer which generates the message, and R represents

any of the peers which reply to O. An impulse transmitted from O to R is called

an outbound impulse. An impulse transmitted from R to O is called an inbound

impulse. For any outbound message, the value of type_ttl indicates the Time-To-

Live (TTL) of the impulse, and is set by O when O creates the impulse; the serial

field contains a unique number generated by O; the from field is set to O; and the

message field contains the actual message carried by the impulse. When R replies

to O, it resets type_ttl to -1 to indicate that the impulse carries a replied message;

serial is not changed; from is reset to R; and message is set to the replied message.

4.4. Peer-to-Peer Computing Architecture 68

When a peer starts, a fixed-size queue, which is used to cache the impulses

relayed by the peer, is created. Hashtable<Long, List<Impulse>> impulses is

also created to store the inbound impulses, where the key (whose type is Long)

denotes the serial of the impulse, and the value (which is a list of Impulse) denotes

the inbound impulses. When a relay process starts, an outbound impulse is created

by O with its fields being set, and an empty list is created and put into the hash

table. Then O transmits the impulse to all of its active connections. When any

of the peers receives the impulse, it checks whether the impulse is already in its

queue. If it is, it discards the impulse; otherwise it decreases the TTL by one, and

then checks whether TTL equals 0. If it does, the impulse is discarded; otherwise

the peer appends the impulse to the end of the queue, and relays the impulse to

all of its active connections. Finally, it checks whether it is able to respond to the

message carried by the impulse. If it can, an outbound impulse will be generated

and transmitted directly to O. Table 4.9 demonstrates the relay process.

After O transmits the impulse, it suspends the calling thread for a period of time

specified before the transmission or until the number of replies reaches a threshold.

Whenever a reply comes back from R to O, and there exists a corresponding list

in the hash table, it is added to the list, and the grow operation is performed on

the connection to R. When the thread is resumed, the replies are retrieved from the

corresponding list in the hash table. Then O goes through all its connections, and

performs the decay operation on the connections without a reply. Afterwards, all

replies are returned to the thread for selection. Table 4.10 shows the getReplies

method, which is implemented in CA.

4.4. Peer-to-Peer Computing Architecture 69

impulse = CA.receiveImpulse();

if(impulse.isReply()) {

List<Impulse> list =

impulses.get(impulse.getSerial());

if(list != null) {

list.add(impulse);

grow(impulse.getFrom());

}

}

else if(queue.indexOf(impulse) == -1) {

Handler handler =

Container.getHandler(impulse.getMessage());

if(--type_ttl > 0) {

appends impulse to the queue

CA.relay(impulse);

}

if(handler != null) {

Message reply =

handler.handle(impulse.getMessage());

impulse.type_ttl = -1;

Peer dest = impulse.from;

impulse.from = Container.getLocal();

impulse.message = reply;

CA.send(impulse, dest);

}

}

/**

* else

* Discard impulse

*/

impulse.destroy();

Table 4.9: Relay Process

4.5. Resource Management and Scheduling Mechanisms 70

public static List<Impulse> getReplies(Impulse impulse) {

List<Impulse> list =

impulses.remove(impulse.getSerial());

ArrayList<Peer> peers =

new ArrayList<Peer>(synapses.size());

peers.addAll(synapses.keySet());

for(Impulse i : list)

peers.remove(i.getFrom());

for(Peer peer : peers)

decay(peer);

return list;

}

Table 4.10: getReplies Method

With the selection process (see Section 4.5), the relay process enables load bal-

ance and the election of the most suitable peer for a certain payload (i.e. the

message). In the long run, the connections between the peers are optimised accord-

ing to the characteristics of the payload. News hubs are also developed, so that

the Grid will gain better connectivity and a higher ratio of resource utilisation, and

work more efficiently.

4.5 Resource Management and Scheduling Mech-

anisms

smartGRID2 uses resource matrices to track the status of computing resources.

Table 4.11 displays a sample of the matrix. It defines the type of resource, where

the resource resides, and the resource’s status (called profile) or the description of

the resource. A peer’s local resources are registered by the profiling agent when the

peer starts. The profiling agent also updates the profiles of the local resources when

4.5. Resource Management and Scheduling Mechanisms 71

they change. Figure 4.7 shows a sample definition of the processor profile.

���������	
�� ������������ ���������������������������� ����������

��������� �����������

�������������� ������
�

������!����������������

�����

"�#

$���%�� �����������

�&��'�(����$�%����	�%������

$������&'!�����&'!���

)��%�*����+

"�#

'�����

,���%���
����������� �%���-����
������-���.�

����������/

�����������

(��� ����������� �����������
����%� �����������

$��0��� �����������

����1�����
����'�����

������������2��3�$��0����

$������

�����������

Table 4.11: A Sample Resource Matrix of Peer 192.168.2.1

When a module requires a resource, its container C may match the required

resource with those in the resource matrix first. If none of them matches the re-

quirement, the container starts a relay process. Alternatively, the container may

start the replay process immediately upon receiving the module’s request. How the

container behaves is determined by the type of resource. For example, local ser-

vice resources have precedence over remote service resources, but there is no such

difference in terms of processor resources.

During the relay process, the participating peers look up the required resource in

their resource matrices. If matching resources exist, the references to these resources

are returned to C. If multiple replies exist, C starts a resource selection process to

determine which resource is the most suitable one. The outcome is then returned

to the module for its subsequent operations. And if the type of resource located has

local precedence, it will be cached in the resource matrix of C. A resource matrix

4.5. Resource Management and Scheduling Mechanisms 72

only caches a limited number of references. Each time a cached reference is retrieved,

it is regarded as “updated”. The least updated entry will be removed if the cache

is full and a new reference comes in.

����������	

�������
�	��

���������
�	��

�����������
�	����
������

�����������
�����	
������

�����������
�������
�������

����

���������

��������

�����

Figure 4.7: A Sample Processor Profile Definition

Once the reference to a resource is obtained, the resource is accessible to the

module through smartGRID2. Each time a resource is accessed, its reference is

quoted and passed to the resource’s residing peer R. Then R will perform the actual

operations and send the results back to the module. When the module finishes using

the resource, it notifies R so that the resource can be released on R.

A peer also keeps records of other peers which have cached references to its local

file, service, and module instance resources, so that the references can be updated

when the actual resources migrate to other peers.

In smartGRID2, files can be uploaded to the backbone nodes through CMS.

Unlike other resources, local files never appear in the resource matrix. When a

file is located and used, it can be cached by the peer that uses the file, if there is

sufficient storage on that peer.

The executables of any modules are regarded as files, and need to be uploaded to

4.5. Resource Management and Scheduling Mechanisms 73

the Grid before the execution of the module. smartGRID2 has a two-stage schedul-

ing mechanism. Once a module is uploaded, its residing peer O will trigger a relay

process, informing other peers of the potential workload. Other peers will reply to

O if they can execute the module. O then determines the suitability of these peers

(including O). The module will be moved to the winner if the winner is a backbone

node; otherwise it is transferred to the winner and cached there. At the second stage,

when the module is about to be created, a relay process will be started to locate the

module. Once it is located, it will be scheduled and executed by its residing peer.

Table 4.12 shows the reference to the instance of the module used in the procedure

calls.

public class Resource {

private Peer peer;

}

public final class ModuleInstance extends Resource

implements Serializable {

public String name;

public String id;

}

Table 4.12: Reference of Module Instance

The only difference in a service’s execution process is that the service has to

be discovered before its module execution process. Figure 4.8 demonstrates that

process.

4.5. Resource Management and Scheduling Mechanisms 74

��������	

�	���
������
������������

�������
���

���
��

��������

������

���������

���

���

���

��

��������

����

����������

�����
���

��������

�������

����

���
�������

 �!

���

����������

���

������

�������

�������"

�������

����

��

������

��������

������

����

������
����"

#��������

�� ���

������
���
$����

Figure 4.8: Service Invocation Process

4.6. Compatibility and Interoperability 75

4.6 Compatibility and Interoperability

In this section, we discuss compatibility and interoperability issues with existing

Grid systems and clients.

Recalling the task model (see Section 4.3), it is easy to see that the new model

enables the modelling of both the conventional stateless services and stateful tasks.

A module is allowed to register its own services to the service portal using Web

Services standards. Hence, any WS-compatible client is capable of accessing these

services through smartGRID2.

There are two means by which maintain stateful information for a service in

smartGRID2 can be maintained. The client and the service can use agreed methods,

e.g. WS-Resource, to exchange stateful information. smartGRID2 supports WS-

Resource standards, hence a WS-Resource based client needs no modification to

work with smartGRID2, as long as the service interface is not changed. Another

way to preserve the states throughout different service invocations is to create a

transaction-specific service module. In this case, a token representing a certain

transaction is passed in the service invocations. When a new transaction starts, the

startup module of the service creates a new service module to serve the transaction.

The stateful information is maintained by the service modules. The tokens act

as the identifiers for the startup module to dispatch the service invocations to an

appropriate service module. Once the transaction is done, the client implicitly

notifies the service’s startup module, so that the startup module can delete the

corresponding service module and release the resources.

As smartGRID2 conforms to Web Services and WS-Resource standards, any

module in smartGRID2 is able to operate on the services provided by other WS-

compatible Grids using these standards. However, being different in its architecture

4.7. Summary 76

and programming model, smartGRID2 has neither the binary compatibility nor the

source code compatibility for programs running in existing Grids.

4.7 Summary

Based on the hybrid solution proposed in Chapter 3, we developed smartGRID2

to tackle the limits and remaining problems presented by smartGRID. Aiming at

solving these problems, we proposed our novel task model. With the serialisation

and module-owned files, the internal states of a task are easy to maintain, and the

process is totally transparent to the users. As for the adaptability of the services,

the freedom of how to approach it is left to the programmers. The simplest solution

is to spawn more service modules to accommodate new service requests. With

the help of the relay process and resource matrices, the new task model provides a

common programming interface that supports task decomposition, state persistence,

and inter-task communication. All the support is through the IModuleContext

interface. Instead of using the super-local strategy, which can cause several problems

in open environments, we applied the P2P computing architecture to the Grid, and

innovatively proposed a multi-purpose message passing and routing mechanism and

a generic resource selection mechanism to achieve load balance, a high ratio of

resource utilisation, and fault-tolerance. These mechanisms also allow the Grid to

intelligently reconstruct and utilise computing resources. Finally, we clarified how

smartGRID2 preserves compatibility with WS-compatible clients, and discussed its

promising interoperability with existing Grids.

Chapter 5

Conclusions

Hundreds of thousands of computers in the Internet form a computing resource pool

with tremendous computational power and storage, as well as a great variety of ser-

vices and contents. For years, computer scientists have been chasing after the vision

of a worldwide computer that can utilise all these resources and services. Comput-

ing Grids, as one of the emerging technologies that aim at making the above vision

reality, have “generated” enormous computing power for scientific research and have

“incrementally scaled the deployment of relatively sophisticated services and appli-

cation, connecting small numbers of sites into collaborations engaged in complex

scientific applications” [18]. As the scale of systems increases, Grid computing is

now facing and addressing problems relating to high autonomy and heterogeneity,

intermittent availability, and dynamic and variable factors, which we call open en-

vironments.

The primary objective of this thesis was to solve the fundamental issues relat-

ing to the architecture of Grid computing in open environments. More specifically,

we investigated conventional Grid computing architecture and proposed new archi-

tectures with a number of self-configuring, adaptive and evolving mechanisms, by

answering the following targeted research questions.

77

78

• What is the best way to support task decomposition, inter-task communica-

tion, and state persistence?

• What is the best strategy for resource management and scheduling?

• How can compatibility and interoperability be provided? And to what level?

Using these questions as a basis, we reviewed the state of the art of Grid comput-

ing, and pointed out that five problems obstruct the application of the conventional

Grid in open environments:

• WSRF can result in significant overheads on network traffic and object invo-

cation.

• Current service-oriented architecture has poor adaptability in terms of perfor-

mance, availability, and scalability.

• The dependence on local schedulers increases the complexity of application

programming.

• The super-local resource management and scheduling strategy limits overall

performance and scalability.

• It is not feasible to introduce local schedulers into open environments.

In the rest of this chapter, we present the major contributions of this thesis with

a comparison of the two solutions. We then discuss the remaining questions of Grid

computing in open environments, and outline potential research directions.

5.1. Discussion and Major Contributions of the Thesis 79

5.1 Discussion and Major Contributions of the

Thesis

In Chapter 3 and Chapter 4, we proposed smartGRID and smartGRID2 as two

solutions to the problems mentioned in the previous section. Although smartGRID2,

as the development of smartGRID, solves the remaining problems presented by

smartGRID (see Section 4.1), they have different concerns from the practical point

of view. We explain these differences and outline our contributions in the following

subsections.

5.1.1 Task Model

Both the task model of smartGRID and its client/server computing architecture in

the local context is based on the notion of “job”. Hence, there is almost no difference

conceptually between the conventional Grid and smartGRID in how computations

are carried out - the user submits jobs to the Grid, the Grid runs the jobs and finally

gives the results back to the user. The major difference between smartGRID and

the conventional Grid is in their architectures, where the former allows deployment

and application in open environments.

The task model of smartGRID2 was designed from the beginning based on the

view of a “virtual machine” that consists of computing nodes in an open envi-

ronment, and therefore requires tasks to run across distributed and heterogeneous

computing nodes. The notion of “module” is used as the atomic “job” that can

be scheduled to any single node, yet the real job or task that a user executes in

smartGRID2 is represented by a group of modules. The advantages of the new task

model are:

5.1. Discussion and Major Contributions of the Thesis 80

• It solves the issues of task decomposition, inter-task communication, and state

persistence. Furthermore, it provides a transparent programming interface

that frees the developers from having to take care of the above issues.

• Each module can represent a software component that provides a certain func-

tionality, hence allowing the construction of new tasks based on existing mod-

ules.

• By developing general-purpose fundamental programming utilities based on

the novel task model, larger and more complex programs and applications can

be built. For example, imagine a program that requires a hash table contain-

ing hundreds of thousands of entries. An immediate solution is to implement a

distributed hash table. But without underlying support, such a solution have

to consider several issues, such as the organisation of the distributed nodes,

message passing, fault-tolerance, etc. Normally, the practical solution to such

problems is some sort of “workaround”, where the task is decomposed into

small, “handleable” tasks, each of which only requires ordinary hash table

implementation. However, if the task is simple enough, and cannot be de-

composed, the only solution is the distributed hash table. With the current

module-based task model, such a distributed hash table is easy to implement.

• The module-based task model allows more interactions between the users and

the applications. In contrast to the conventional task model, where the only

interaction is the submission of jobs and the retrieval of results, the users of

smartGRID2 can run their applications interactively without being aware of

the distributed environment. This is because the modules that comprise an

5.1. Discussion and Major Contributions of the Thesis 81

application can immediately be scheduled and executed according to their pri-

ority levels (recall Section 4.3), and can therefore provide intermediate results

that are essential for interactions in most cases. Besides, the IModuleContext

interface allows client programs to invoke other modules directly, hence the

client can provide more diverse user interfaces than those used in the conven-

tional Grid.

5.1.2 Computing Architecture

The different computing architectures of smartGRID and smartGRID2 are partially

attributed to their different task models. Another factor that determines their com-

puting architectures is how they schedule the tasks.

smartGRID schedules a task in the LAN first, and if the task cannot be sched-

uled, it is transferred to another suitable LAN. The major consideration of this

design is based on the fact that conditions of a LAN are always better than those of

a WAN, hence scheduling in a LAN gains better performance and efficiency in most

cases. Since LAN-based scheduling is the first choice, there must be a place to store

the tasks, and forward them to other LANs if they cannot be scheduled. The sim-

plest and most effective way is to use client/server computing architecture, part of

which are the trackers. As the trackers are physically connected through WANs, the

use of client/server architecture among the trackers will lose its advantage, because

there is no guarantee of good network connections to the server, and the limited

computational power of the server will become a bottleneck sooner or later, when

the scale of the system increases. That is why P2P architecture is selected.

The major issues that P2P architecture introduces are the method of decision-

making as well as the dynamic and changing factors. The chaining mechanism

5.1. Discussion and Major Contributions of the Thesis 82

and the simulated synapse are introduced to tackle these issues. In a peer group,

voting is often used as the decision-making strategy, where each participant can vote

according to a set of pre-agreed criteria, and the result is collected and processed by

an authority. The strategy used in smartGRID is a variant of the voting strategy,

where the conceptually-connected peers “vote” and make decisions directly, without

the participation of an “authority”. The tracker which starts the “voting” follows

the “first come, first served” rule, hence the first respondent is chosen to schedule

the task. Obviously, without the votes of all the peers, a decision might not be

the best. However, in smartGRID’s scenario, this solution is the most effective one,

because no tracker has full knowledge of the rest of the trackers, and therefore there

is no way to gather all the “votes”. The main purpose of the simulated synapse is to

maintain the efficiency of the P2P computing network. As stated in Section 3.3, it

guarantees that each tracker will not have too many links with others, and with the

help of the advanced chaining mechanism, it guarantees the balance of load and the

response speed, since the messages are always sent to the trackers with relatively

lower strength, which means they have less load in all probability.

The scheduling architecture is changed in smartGRID2. The design of smart-

GRID2 avoids using any type of client/server computing architecture. The concern

that is different from smartGRID is that WAN can still be robust enough to accom-

plish scheduling. Consequently, the chaining mechanism and the simulated synapse

are extended to the whole structure, and the computing architecture evolves into a

message multicast and routing framework. In the meantime, the decision-making

strategy is changed. The system does not use the “first come, first served” rule any

more. Instead, choices are given to the message sender - the decision is not made

until there are enough “votes”, or until one of the “votes” is good enough, or until

5.1. Discussion and Major Contributions of the Thesis 83

the prescribed response time is up. The reason for doing this is based on the belief

that the message sender is most suitable entity to determine the decision-making

strategy according to its requirements.

Both the hybrid architecture and the P2P architecture have various advantages

over the conventional Grid architecture:

• Both solutions have direct management of the computing nodes, and load

balance is guaranteed by various mechanisms.

• The adaptability of the services can easily be achieved by spawning subtasks

to serve increased requests.

• Both solutions are resilient to faults by keeping redundant copies of tasks and

their intermediate results.

• The P2P solution transparently supports inter-task communication to the de-

velopers through the IModuleContext interface.

5.1.3 Resource Management Framework

There is no generic resource management framework in smartGRID. It does, how-

ever, have a resource selection algorithm called the best-match algorithm (recall

Section 3.3). The best-match algorithm is based on the profiles of computing re-

sources. By comparing the description of a message and the profiles of the required

resources, the algorithm helps the scheduling process to select the most suitable

computing nodes.

In smartGRID2, this idea is developed further. smartGRID2 takes everything as

resources, e.g. files, storage, services, even the instances of modules. Every resource

has a profile or description, and every type of resource has a resource handler, which

5.2. Future Work 84

is used in the resource selection process to match certain types of resources with mes-

sages. The benefits are that 1) the framework takes care of how to store the profiles

and descriptions of resources, and maintains valid references to resources; 2) the

framework allows developers to define their own types of resources with user-defined

resource handlers, so that the applications can take advantage of the framework;

and 3) the process of handling a message can be represented by a very simple logic

with the resource operations and the relay process(recall Figure 4.8). Compared

with the centralised resource management framework of the conventional Grid, the

distributed resource management framework used in smartGRID2 is therefore more

efficient and robust.

5.2 Future Work

A full solution to Grid computing in open environments relies on answering the six

questions outlined in Chapter 1. Figure 5.1 shows the research areas that these

questions belong to.

In this thesis, we have solved problems in the area of the programming model, and

resource management and scheduling. We have also addressed related compatibility

and interoperability issues. The remaining three areas are considered to be the

future work of this research:

• Organisational Hierarchy. The major concerns of this area include how to

organise and manage the physically distributed computing resources to model

the hierarchy of an organisation, and how to store the logically centralised

information/resources, such as identity, access control information, software

repository and files.

5.2. Future Work 85

�
�
��
�
���

	
�

�
������

����������������

	
�
�
�
�
���
���
��
��
�

�

��
��
�
�
��
�
���
��

��������	
����

����	���

������������

�
��
�

��
�
���

�
�

�
��
��
��
�
�

���������
��

�� ��

!
�
��
�
���

��
�

�
�
�
�
�

�

�
��
��
�

�
��

�

�
�
��
�
���

	
�

�
������

����������������

	
�
�
�
�
���
���
��
��
�

�

��
��
�
�
��
�
���
��

��������	
����

����	���

������������

�
��
�

��
�
���

�
�

�
��
��
��
�
�

���������
��

�� ��

!
�
��
�
���

��
�

�
�
�
�
�

�

�
��
��
�

�
��

�

Figure 5.1: Research Areas concerning Grid Computing in Open Environments

• Security and Trust Model. This area investigates issues of authentication and

authorisation, as well as encryption of data and communications.

• Network Connectivity. This area solves connectivity problems between par-

ticipants in the Grid. For example, two computing nodes behind different

firewalls should be able to communicate with each other.

Appendix A

Glossary of Terms

C/S Client/Server

CA Computing Agent

CMS Computing Management Service

CPNs Coloured Petri Nets

GMS Grid Management Service

GRAM Grid Resource Allocation and Management

GSI Grid Security Infrastructure

GT4 Globus Toolkit 4

MA Management Agent

MAXAI Maximum Number of Active Instances

MAXSI Maximum Number of Standby Instances

MD Module Description

MDS Monitoring and Directory Service

MINAI Minimum Number of Active Instances

MINSI Minimum Number of Standby Instances

MOFs Module-Owned Files

MPI Message Passing Interface

MPPs Massively Parallel Processors

86

87

OGSA Open Grid Services Architecture

OGSI Open Grid Service Infrastructure

P2P Peer-to-Peer computing

PA Profiling Agent

PAES Profile-Aware Eager Scheduling

PVM Parallel Virtual Machine

QoS Quality of Service

RT Runtime Environment

RTS Raw Task/Service

SA Scheduling Agent

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

TS Task/Service

TSD Task/Service Description

TTL Time-to-Live

VOs Virtual Organisations

WS Web Services

WSDL Web Serivces Description Language

WSRF Web Services Resource Framework

Bibliography

[1] E. Akarsu, G. C. Fox, W. Furmanski, and T. Haupt. WebFlow: High-level Pro-

gramming Environment and Visual Authoring Toolkit for High Performance

Distributed Computing. In Proceedings of the 1998 ACM/IEEE Conference on

Supercomputing, San Jose, California: IEEE Computer Society Press, Novem-

ber 1998, pp. 1–7.

[2] W. L. Alfred. The Future of Peer-to-Peer Computing. Communications of the

ACM, 46(9): 56–61, September 2003.

[3] M. Baker, R. Buyya, and D. Laforenza. Grids and Grid Technologies for Wide-

area Distributed Computing. Software: Practice and Experience, 32(15): 1437–

1466, November 2002.

[4] A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing

on the Web. In Proceedings of the 9th Conference of Parallel and Distributed

Computing Systems (PDCS-96), Dijon, France: September 1996, pp. 181–188.

[5] R. Buyya. Grid Computing Info Centre: Frequently Asked Questions (FAQ).

2002. http://www.gridcomputing.com/gridfaq.html.

88

BIBLIOGRAPHY 89

[6] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An Architecture for a Re-

source Management and Scheduling System in a Global Computational Grid.

In Proceedings of the 4th International Conference on High Performance Com-

puting in Asia-Pacific Region (HPC ASIA’2000), vol. 1, Beijing, China: IEEE

Computer Society Press, May 2000, pp. 283–289.

[7] P. Cappello and D. Mourloukos. A Scalable, Robust Network for Parallel Com-

puting. In Proceedings of the 2001 joint ACM-ISCOPE Conference on Java

Grande, Palo Alto, California: ACM Press, June 2001, pp. 78–86.

[8] M. Chetty and R. Buyya. Weaving Computational Grids: How Analogous

Are They With Electrical Grids. Computing in Science and Engineering, 4(4):

61–71, July-August 2002.

[9] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services

Description Language (WSDL) 1.1. 2001. http://www.w3.org/TR/wsdl.

[10] B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser,

and D. Wu. Javelin: Internet-based Parallel Computing using Java. Concur-

rency: Practice and Experience, 9(11): 1139–1160, November 1997.

[11] B. Cohen. Incentives Build Robustness in BitTorrent. May 2003.

http://www.bittorrent.com/bittorrentecon.pdf.

[12] R. S. Cost. Modeling Agent Conversations with Coloured Petri Nets. In Proceed-

ings of the Workshop on Specifying and Implementing Conversation Policies,

Seattle, Washington: May 1999, pp. 59–66.

BIBLIOGRAPHY 90

[13] S. Cranefield, M. Purvis, M. Nowostawski, and P. Hwang. Ontology for Interac-

tison Protocols. In Proceedings of the 2nd International Workshop on Ontologies

in Agent Systems (AAMAS’02), Bologna, Italy: July 2002, pp. 15–19.

[14] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and

S. Tuecke. A Resource Management Architecture for Metacomputing Systems.

In Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for

Parallel Processing, Orlando, Florida: March-April 1998, pp. 62–82.

[15] D. H. J. Epema, M. Livny, R. vanDantzig, X. Evers, and J. Pruyne. A World-

wide Flock of Condors: Load Sharing among Workstation Clusters. Future

Generation Computer Systems, 12(1): 53–65, May 1996.

[16] S. Fitzgerald, I. Foster, C. Kesselman, G. v. Laszewski, W. Smith, and

S. Tuecke. A Directory Service for Configuring High-Performance Distributed

Computations. In Proceedings of the 6th IEEE Symposium on High Perfor-

mance Distributed Computing, Portland, Oregon: IEEE Press, August 1997,

pp. 365–375.

[17] I. Foster, K. Czajkowski, D. Ferguson, J. Frey, S. Graham, T. Maguire,

D. Snelling, and S. Tuecke. Modeling and Managing State in Distributed Sys-

tems: the Role of OGSI and WSRF. Proceedings of the IEEE, 93(3): 604–612,

March 2005.

[18] I. Foster and A. Iamnitchi. On Death, Taxes, and the Convergence of Peer-

to-Peer. In Proceedings of the 2nd International Workshop on Peer-to-Peer

Systems (IPTPS 2003), Lecture Notes in Computer Science (LNCS), vol. 2735,

Berkeley, California: Lecture Notes in Computer Science (LNCS), Springer-

Verlag, Feburary 2003, pp. 118–128.

BIBLIOGRAPHY 91

[19] I. Foster. What is the Grid? A Three Point Checklist. Grid Today, 1(6), July

2002. http://www.gridtoday.com/02/0722/100136.html.

[20] I. Foster. A Globus Toolkit Primer. 2005.

http://www-unix.globus.org/toolkit/docs/4.0/key/GT4 Primer 0.6.pdf.

[21] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

International Journal of Supercomputer Applications and High Performance

Computing, 11(2): 115–128, Summer 1997.

[22] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing In-

frastructure. Morgan Kauffman, San Francisco, California, 1st ed., 1999.

[23] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration. June

2002. http://www.globus.org/research/papers/ogsa.pdf.

[24] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, 15(3): 200–222, Fall 2001.

[25] G. Fox, T. Haupt, E. Akarsu, A. Kalinichenko, K.-S. Kim, P. Sheethalnath,

and C.-H. Youn. The Gateway System: Uniform Web Based Access to Remote

Resources. In Proceedings of the ACM 1999 Conference on Java Grande, San

Francisco, California: ACM Press, June 1999, pp. 1–7.

[26] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A

Computation Management Agent for Multi-Institutional Grids. In Proceed-

ings of the 10th IEEE Symposium on High Performance Distributed Computing

(HPDC10), San Francisco, California: IEEE Press, August 2001, pp. 55–63.

BIBLIOGRAPHY 92

[27] A. Geist, A. Beguelin, J. J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine - A Users’ Guide and Tutorial for Networked

Parallel Computing. MIT Press, Cambridge, Massachusetts, 1994.

[28] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. PVM and MPI: a Comparison

of Features. Calculateurs Paralleles, 8(2): 137–150, June 1996.

[29] Global Grid Forum. Open Grid Services Infrastructure (OGSI) Version

1.0, June 2003. http://www-unix.globus.org/toolkit/draft-ggf-ogsi-gridservice-

33 2003-06-27.pdf.

[30] Globus Alliance. Globus Toolkit 4.0 (GT4). 2005.

http://www-unix.globus.org/toolkit/docs/4.0/GT4Facts/.

[31] J. Goldman, P. Rawles, and J. Mariga. Client/Server Information Systems.

Wiley, Hoboken, New Jersey, 1999.

[32] A. Grimshaw, A. Ferrari, G. Lindahl, and K. Holcomb. Metasystems. Commu-

nications of the ACM, 41(11): 46–55, November 1998.

[33] A. S. Grimshaw and W. A. Wulf. Legion: Flexible Support for Wide-area

Computing. In Proceedings of the 7th workshop on ACM SIGOPS European

Workshop, Connemara, Ireland: ACM Press, September 1996, pp. 205–212.

[34] A. S. Grimshaw, W. A. Wulf, and Corporate. The Legion Vision of A Worldwide

Virtual Computer. Communications of the ACM, 40(1): 39–45, January 1997.

[35] K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practi-

cal Use, vol. 1, Basic Concepts. EATCS Monographs in Theoretical Computer

Science, Springer-Verlag, Berlin, Germany, 1992.

BIBLIOGRAPHY 93

[36] E. Koepela. SETI@home: Massively Distributed Computing for SETI. Com-

puting in Science and Engineering, 3(1): 78–83, January 2001.

[37] G. v. Laszewski, J. Gawor, C. J. Pena, and I. Foster. InfoGram: A Grid Service

that Supports Both Information Queries and Job Execution. In Proceedings of

11th IEEE International Symposium on High Performance Distributed Com-

puting (HPDC’02), Edinburgh, Scotland: IEEE Computer Society Press, July

2002, pp. 333–342.

[38] J. Ledlie, J. Shneidman, M. Seltzer, and J. Huth. Scooped, Again. In Pro-

ceedings of the 2nd International Workshop on Peer-to-Peer Systems (IPTPS

2003), Lecture Notes in Computer Science (LNCS), vol. 2735, Berkeley, Cali-

fornia: Springer-Verlag, Feburary 2003, pp. 129–138.

[39] V. Lesser. Cooperative Multiagent Systems: A Personal View of the State

of the Art. IEEE Transactions on Knowledge and Data Engineering, 11(1):

133–142, January 1999.

[40] E. Marcus and H. Stern. Blueprints for High Availability: Designing Resilient

Distributed Systems. John Wiley & Sons, New York, 1st ed., 2000.

[41] M. O. Neary, B. O. Christiansen, and P. Cappello. Javelin: Parallel Comput-

ing on the Internet. Future Generation Computer Systems, 15(5-6): 659–674,

October 1999.

[42] M. Nowostawski, M. Purvis, and S. Cranefield. A Layered Approach for Model-

ing Agent Conversations. In Proceedings of the 2nd International Workshop on

Infrastructure for Agents, MAS, and Scalable MAS, Montreal, Canada: May-

June 2001, pp. 163–170.

BIBLIOGRAPHY 94

[43] J. Peterson. Petri Net Theory and the Modeling of Systems. Prentice Hall,

Englewood Cliffs, New Jersey, 1981.

[44] G. Pfister. In Search of Clusters. Prentice Hall, 2nd ed., 1997.

[45] D. Poutakidis, L. Padgham, and M. Winikoff. Debugging Multi-agent System

Using Design Artefacts: The Case of Interaction Protocols. In Proceedings of

the 1st International Joint Conference on Autonomous Agents and Multi Agent

Systems, Bologna, Italy: July 2002, pp. 960–967.

[46] M. Roehrig, W. Ziegler, and P. Wieder. Grid Scheduling Dictionary of Terms

and Keywords. Global Grid Forum, Nov 2002.

http://www.ggf.org/documents/GWD-I-E/GFD-I.011.pdf.

[47] J. Schopf. The Actions When SuperScheduling, Jul 2001.

http://www.ggf.org/documents/GFD/GFD-I.4.pdf.

[48] L. Smarr and C. E. Catlett. Metacomputing. Communications of the ACM,

35(6): 44–52, June 1992.

[49] Sun Microsystems Inc. Java Object Serialization Specification. 2004.

http://java.sun.com/j2se/1.5/pdf/serial-1.5.0.pdf.

[50] W3C. Web Services. 2002. http://www.w3.org/2002/ws/.

[51] W3C. HTTP - Hypertext Transfer Protocol. 2003.

http://www.w3.org/Protocols/.

[52] W3C. Simple Object Access Protocol. 2003. http://www.w3.org/TR/soap/.

[53] W3C. Web Services Architecture. 2003. http://www.w3.org/TR/ws-arch/.

BIBLIOGRAPHY 95

[54] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius: A Robust, Tamper-

Evident, Censorship-Resistant, Web Publishing System. In Proceedings of the

9th USENIX Security Symposium, Denver, Colorado: August 2000, pp. 59–72.

[55] V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor,

C. Kesselman, S. Meder, L. Pearlman, and S. Tuecke. Security for Grid Services.

In Proceedings of the 12th International Symposium on High Performance Dis-

tributed Computing (HPDC-12), Seattle, Washington: IEEE Press, June 2003,

pp. 48–57.

	An agent-based peer-to-peer grid computing architecture
	Recommended Citation

	Abstract
	Acknowledgements
	Publications
	1 Introduction
	1.1 Developments in Grid Computing
	1.1.1 Application-oriented Metacomputing
	1.1.2 Service-oriented Grid Computing

	1.2 Convergence of Grid and Peer-to-Peer Computing
	1.3 Research Questions
	1.4 Thesis Structure and Outcomes

	2 Review of Related Research and Literature
	2.1 Web Services Architecture
	2.2 Web Services Resource Framework
	2.3 Open Grid Services Architecture and the Grid
	2.4 Resource Management and Scheduling
	2.5 An Study of the Grid in terms of Open Environments
	2.6 Summary

	3 A Hybrid Solution to Grid Computing in Open Environments
	3.1 Overall Architecture and Core Components
	3.2 Task/Service - A Novel Task Model
	3.3 Scheduling Process and Evolving Mechanisms
	3.3.1 Lifecycle of the Task/Service
	3.3.2 Task-related Scheduling
	3.3.3 Request-related Scheduling

	3.4 Compatibility and Interoperability
	3.5 Summary

	4 A Peer-to-Peer Solution to Grid Computing in Open Environments
	4.1 A Brief Review of the Hybrid Solution
	4.2 Overall Architecture and Core Components
	4.3 Module - An Improved Task Model
	4.4 Peer-to-Peer Computing Architecture
	4.5 Resource Management and Scheduling Mechanisms
	4.6 Compatibility and Interoperability
	4.7 Summary

	5 Conclusions
	5.1 Discussion and Major Contributions of the Thesis
	5.1.1 Task Model
	5.1.2 Computing Architecture
	5.1.3 Resource Management Framework

	5.2 Future Work

	A Glossary of Terms
	Bibliography

