2018

Reproductive control via the threat of eviction in the clown anemonefish

T Rueger
Boston University

T Barbasch
Boston University

Marian Y. L Wong
University of Wollongong, marianw@uow.edu.au

Madhavi Srinivasan
James Cook University

Geoffrey P. Jones
James Cook University

See next page for additional authors

Publication Details

Reproductive control via the threat of eviction in the clown anemonefish

Abstract
In social groups, high reproductive skew is predicted to arise when the reproductive output of a group is limited, and dominant individuals can suppress subordinate reproductive efforts. Reproductive suppression is often assumed to occur via overt aggression or the threat of eviction. It is unclear, however, whether the threat of eviction alone is sufficient to induce reproductive restraint by subordinates. Here, we test two assumptions of the restraint model of reproductive skew by investigating whether resource limitation generates reproductive competition and whether the threat of eviction leads to reproductive restraint in the clown anemonefish Amphiprion percula. First, we use a feeding experiment to test whether reproduction is resource limited, which would create an incentive for the dominant pair to suppress subordinate reproduction. We show that the number of eggs laid increased in the population over the study period, but the per cent increase in fed groups was more than twice that in unfed groups (205% and 78%, respectively). Second, we use an eviction experiment to test whether the dominant pair evicts mature subordinates, which would create an incentive for the subordinates to forgo reproduction. We show that mature subordinates are seven times more likely to be evicted than immature subordinates of the same size. In summary, we provide experimental support for the assumptions of the restraint model by showing that resource limitation creates reproductive competition and a credible threat of eviction helps explain why subordinates forego reproduction. Transactional models of reproductive skew may apply well to this and other simple systems.

Publication Details

Authors
T Rueger, T Barbasch, Marian Y. L Wong, Madhavi Srinivasan, Geoffrey P. Jones, and Peter M. Buston

This journal article is available at Research Online: https://ro.uow.edu.au/smhpapers1/389
Reproductive control via the threat of eviction in the clown anemonefish

T. Rueger1*, T. A. Barbasch1, M. Y. L. Wong2, M. I. Srinivasan3, G.P. Jones3,4, P. M. Buston1

1. Department of Biology and Marine Program, Boston University, 5 Cummington Mall, Boston 02215, MA, USA
2. Centre for Sustainable Ecosystems Solutions, School of Biological Sciences, University of Wollongong, Wollongong 2522, NSW, Australia
3. College of Science and Engineering, James Cook University, Townsville 4811 QLD Australia
4. Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville 4811 QLD Australia.

*author to whom correspondence should be addressed: theresa.rueger@gmail.com

Abstract

In social groups, high reproductive skew is predicted to arise when the reproductive output of a group is limited, and dominant individuals can suppress subordinate reproductive efforts. Reproductive suppression is often assumed to occur via overt aggression or the threat of eviction. It is unclear, however, whether the threat of eviction alone is sufficient to induce reproductive restraint by subordinates. Here we test two assumptions of the restraint model of reproductive skew by investigating whether resource limitation generates reproductive competition and whether the threat of eviction leads to reproductive restraint in the clown anemonefish \textit{Amphiprion percula}. First, we use a feeding experiment to test whether reproduction is resource limited, which would create an incentive for the dominant pair to suppress subordinate reproduction. We show that the number of eggs laid increased in the population over the study period, but the percent increase in fed groups was more than twice that in unfed groups (205\% and 78\% respectively). Second, we use an eviction experiment to test whether the dominant pair evict mature subordinates, which would create an incentive for the subordinates to forgo reproduction. We show that mature subordinates are seven times more likely to be evicted than immature subordinates of the same size. In sum, we provide experimental support for
the assumptions of the restraint model by showing that resource limitation creates reproductive competition and a credible threat of eviction helps explain why subordinates forego reproduction. Transactional models of reproductive skew may apply well to this and other simple systems.

Keywords: reproductive skew, reproductive control, resource limitation, threat of eviction, Amphiprion.

Introduction

A central focus of research on social evolution is to understand the causes of variation in reproductive skew (Vehrencamp 1983; Keller & Reeve 1994; Hager & Jones 2009). Theoretical models often assume that the group’s reproductive output is limited, due to limited availability of critical breeding resources such as nutrition and nest sites, and that individuals compete for reproduction (Clutton-Brock et al. 2010; Bell et al. 2011; Raihani and Clutton-Brock 2011; Nichols et al. 2012). When such reproductive competition exists, dominant individuals may suppress subordinate reproductive efforts by interfering with mating, inducing stress, or killing offspring (Bennett et al. 1996; Creel & Waser 1997; Faulkes & Bennett 2001; Gilchrist 2006; Young et al. 2006). Such interactions have the appearance of being costly and inefficient for both parties, and one might predict that natural selection would favour more efficient solutions if the parties were to have complete information on the outcome (Buston & Zink 2009; Cant & Johnstone 2009).

Under such conditions of complete information, it may be possible for dominants and subordinates to come to a more efficient, negotiated settlement, whereby the dominant uses the threat of eviction and the subordinate shows reproductive restraint because of this threat (Johnstone & Cant 1999; Johnstone 2000; Fitzpatrick et al. 2005; Cant 2006; Buston et al. 2007; Bruintjes & Taborsky 2008; Buston & Zink 2009; Wong et al. 2012; Cant & Young 2013). While the threat of eviction does not seem to be effective in inducing reproductive restraint in mammal groups with multiple subordinates that can respond retroactively to eviction (Cant et al. 2010), theory suggests that it will be more effective in dyadic relationships or linear hierarchies where the threat is targeted and eviction is non-reversible.
(Boyd & Richardson 1992, Cant et al. 2010). Still, it remains unclear whether the threat of eviction is used to induce reproductive restraint in nature.

The clown anemonefish, *Amphiprion percula*, provides a tractable system to investigate these ideas. Groups of *A. percula* are found in close association with sea anemones *Heteractis magnifica* (Fautin 1992a; Elliott & Mariscal 2001; Buston 2003a). Each group is composed of a dominant breeding pair and a small number of unrelated non-breeders (Buston 2004a; Buston 2004b; Buston et al. 2007). Correlational evidence suggests that the reproductive output of the group is influenced by territory quality (Buston & Elith 2011). Within each group, there is a size-based dominance hierarchy: the female is largest, the male is second largest, and the non-breeders get progressively smaller (Buston 2003b; Buston & Cant 2006). Evidence suggests that the size hierarchy emerges because subordinates show growth restraint to avoid eviction by their immediate dominants (Buston 2003a,b).

Here, we test the hypothesis that subordinate *A. percula* will show reproductive restraint because of reproductive competition and the threat of eviction. Specifically, we test two assumptions of the restraint model of reproductive skew. First, reproduction is food limited, leading to reproductive competition within groups and providing an incentive for the breeding pair to evict other mature group members. Food limitation is tested by a food supplementation experiment and comparing the number of eggs laid between fed groups unfed groups. Second, the breeding pair will evict other mature individuals, but not immature individuals, providing an incentive for some individuals to forgo their own reproduction. This is tested by an eviction experiment and comparing the response of a breeding pair to the introduction of new mature and immature group members.

Materials and Methods

(a) *Study population*

This study was conducted in May-August 2017 on inshore reefs near Mahonia Na Dari Research and Conservation Centre, in Kimbe Bay, Papua New Guinea. All fieldwork was conducted using SCUBA. From May 26th-June 23rd, we identified 52 breeding groups occupying the anemone *Heteractis magnifica* on 10 reefs. Groups consisted of a breeding pair and zero to three non-breeders. Individuals
were ranked (1-5) based on their size relative to other individuals within their anemone, with the largest being rank 1. Individuals were also photographed, and the photographs were used to identify individuals and confirm that they survived the entire study and did not move between anemones during the study (Nelson et al. 1994; Elliott & Mariscal 2001; Buston 2003b, 2003c).

We monitored the reproduction of all groups, every two days for three lunar months (May 26th – August 21st). Our monitoring spanned three lunar months rather than calendar months, because A. percula breed on a lunar cycle (Seymour et al. 2018). Breeding was readily detectable. In the days before spawning, the male selected a nest site next to the base of the anemone and cleaned it, and in the days after spawning the male spent much of his time tending the eggs (Barbasch & Buston 2018). The age of the eggs was determined using the colour of the yolk and the presence and developmental stage of the embryos’ eyes (Buston 2004b). The eggs hatched after 7 days. Each clutch was photographed on day 1 or 2 to provide an estimate of the number of eggs laid, and the number of eggs was determined using the Cell Counter plugin for ImageJ.

The study began shortly after a severe mass bleaching event. Many of the anemones studied were visibly affected by unusually high temperatures in Kimbe Bay from March to May 2017. We bore this in mind when it came to designing our two experiments: 1) a feeding experiment (see below) and 2) an eviction experiment (see below). For the feeding experiment, the same number of bleached and unbleached anemones were included in both treatment and control groups. For the eviction experiment, bleached anemones were not included in the experiment.

(b) Feeding experiment

To test the hypothesis that food resources for reproduction are limiting, we conducted a feeding experiment with all 52 breeding groups. We collected one lunar month of baseline data (May 26th- June 23rd), then two months of data in which we manipulated (fed) half of the groups (N=25) while keeping the other half (N=27) as controls (June 24th-August 21st). These groups were randomly stratified to ensure equal amounts of fed/control groups for the reefs closer to shore (n = 4 reefs, n= 32 anemones) vs the reefs further from shore (n = 6 reefs, n= 20 anemones), for bleached anemones (n =
10 anemones) vs unbleached anemones (n = 42 anemones). See Saenz-Agudelo et al. (2011), Beldade et al. (2017) and Chausson et al. (2018) for the rationale for stratifying by these two factors. Consequently, distance from shore and bleached status were not included as covariates in the analysis.

The treatment groups received one vial (3ml) of food pellets (New Life Spectrum, Marine fish food 1mm pellets) and one vial (3ml) of dried brine shrimp (Omega One, Freeze dried brine shrimp). The food was kept dry in capped tubes until delivery. Brine shrimp (positively buoyant) were delivered first, by squirting the shrimp onto the anemone with a pipette. The pellets (negatively buoyant) were delivered second by opening the vial and tipping them onto the anemone. Through this method, most food was either immediately consumed by the fish, or it was stuck among anemone tentacles, where the fish could consume it. Some food was consumed by the anemone and other fish species present around the anemone. The control groups were treated in the same manner, by squirting water from an empty vial into the anemone and opening and tipping out another empty vial over the anemone, to control for the possible disturbance caused by feeding.

(c) Eviction experiment

To test the hypothesis that the breeding pair will evict other mature individuals but not immature individuals, we conducted an eviction experiment between August 21st and 26th. Thirteen focal groups, which all consisted of at least three individuals and had bred in the preceding months, were chosen. Only groups consisting of at least three individuals were chosen, to ensure that the dominant breeders were predisposed to tolerating a non-breeding subordinate. Only groups that were observed breeding in the preceding months were chosen, to ensure the two dominant individuals were indeed breeding adults. All individuals in each group were caught and measured to the nearest 0.1mm.

At the beginning of the experiment, the rank 3 and other smaller individuals (if present) were removed from the focal group, leaving only the two dominant individuals, rank 1 and rank 2 (Figure 1). Then, a rank 2 (reproductively active male) or a rank 3 (non-breeding subordinate) from different groups were introduced, one at a time, on different days, in random order (Figure 1). While rank 3 are not reproductively active, they are capable of reproduction (Buston 2004a). The introduced rank 2 and
rank 3 were smaller than the original rank 3 and they were size matched, within 1mm standard length of each other, so evictions would not be driven by size (Buston 2003b).

Introductions were left overnight and the following day we noted the presence/absence of the introduced individual and 5 min of observations were conducted. Introducees were considered evicted if they had either disappeared overnight or if they spent most of the observed time (≥3min) outside the anemone, i.e. with their full body length outside of the range of anemone tentacles (Figure 1). If present, the introduced individual was then removed from the focal anemone and returned to its host anemone.

![Experimental procedure](image)

Figure 1. Schematic diagram of the eviction experiment. a) Focal groups consisted of a breeding pair (R1 & R2) and at least one non-breeding subordinate (R3). The rank three individual was removed from the focal group and a size-matched rank three (R3’) and rank two (R2’) from other groups were introduced to the focal group one at a time, on separate days and in random order. b) After one day the introduced individual was scored as either evicted or not evicted. The individual was considered not evicted if it spent the majority of the 5 min observation period among the anemone’s tentacles. The individual was considered evicted if it was either not present, or spent the majority of the 5min observation outside of the anemone’s tentacles.
(d) Statistical analysis

All analyses were done in R version 3.4.2 ‘Short Summer’ (R Core Team 2017). To test the hypothesis that reproduction is resource limited, we fitted a mixed linear model (package ‘lme4’) using the number of eggs laid per lunar month as the response variable. Month (Month 1: baseline; Month 2: first treatment month, Month 3; second treatment month) and treatment (fed or control) were used as predictor variables. The interaction between month and treatment was included, to determine whether the effect of the treatment varied with month. Pair ID was used as a random factor, to control for the lack of independence between multiple measures of reproduction from the same pair. This was nested in reef ID, which was used as another random factor, to control for the potential lack of independence between multiple measures of reproduction from the same reef. Assumptions of normal distribution and homogeneity were checked using q-q plots and Bartlett’s test, respectively (Bartlett 1954).

Using the ‘MuMIn’ package (Nakagawa and Schielzeth 2013, Johnson 2014), marginal R^2, the variance explained by fixed factors, was calculated as follows:

$$R_{GLMM(m)}^2 = \frac{(\sigma_f^2 + \sigma_e^2 + \sigma_d^2)}{\sigma_f^2 + \sum(\sigma_l^2) + \sigma_e^2 + \sigma_d^2}$$

Conditional R^2, the variance explained by both fixed and random factors, was calculated as follows:

$$R_{GLMM(c)}^2 = \frac{(\sigma_f^2 + \sum(\sigma_l^2))}{\sigma_f^2 + \sum(\sigma_l^2) + \sigma_e^2 + \sigma_d^2}$$

Post-hoc pairwise comparisons were conducted using least-squares means, implemented in the ‘lsmeans’ package.

To test the hypothesis that the breeding pair will evict other mature individuals but not immature individuals, we used Fisher’s exact tests for contingency tables. Specifically, we tested whether the number of introduced rank two that were evicted differed from the number of introduced rank three that were evicted. We also used Fisher’s exact test to investigate whether there was an effect of being introduced first or introduced second.
Results

(a) Feeding experiment

The number of eggs laid increased significantly over time and significantly more so in the fed anemones than in the control anemones (Figure 2). The mean number of eggs laid was greater in month 3 compared to month 1 in both the fed and control groups (Mixed linear model: Month, F2, 85 = 33.05, p < 0.001; Tukey’s HSD: Control, q85 = -284.54, p < 0.001, Fed, q85 = -525.421, p < 0.001; Figure 2). Treatment alone had no significant effect on the number of eggs laid throughout the experiment (Mixed linear model: Treatment; F1, 41 = 0.01, p = 0.482). However, there was a significant interaction between treatment and month (Mixed linear model: Treatment x Month; F2, 85 = 3.51, p = 0.031, Figure 2): the mean number of eggs laid by fed groups increased by 205% between month one and month three, whereas the mean number of eggs laid by the control groups increased by just 78% in the same period (Figure 2). The fixed (treatment and month) and random (reef and site) factors together explained 58% of the variance in the data (R²_m = 0.23, R²_c = 0.58).

Figure 2. Least squares means (± SE) of number of eggs laid per month by control and fed groups of *Amphiprion percula* over three months. Month 1: N_control = 27, N_fed = 25; Month 2: N_control = 24, N_fed = 22; Month 3: N_control = 25, N_fed = 18.
(b) Eviction experiment

Both males and females were observed being aggressive toward introduced individuals. The individual introduced first was neither more likely nor less likely to be evicted than the individual introduced second (Fisher’s exact test, p=1). Rank two individuals (mature males) were significantly more likely to be evicted than rank three individuals of the same size (Fisher’s exact test, p=0.03), with 54.5% of introduced rank two evicted and only 7.7% of introduced rank three evicted (Figure 3).

![Proportion of trial outcomes](image)

Figure 3. Proportion of rank 2 (R2) and rank 3 (R3) individuals which were evicted by the dominant pair after being introduced to an anemone. N= 13 trials per treatment.

Discussion

Our experiments using the clown anemonefish, *Amphiprion percula*, provide support for two key assumptions of the restraint model of reproductive skew: i) there is reproductive competition due to resource limitation; and ii) dominant individuals readily evict reproductive active subordinates. This helps explain why subordinates exercise reproductive restraint in this system. These results complement similar findings in a similar system — the emerald goby, *Paragobiodon xanthosomus*, which is found in close association with the coral *Seriatopora hystrix* — where reproduction was also food limited and eviction was also dependent on subordinate reproductive state (Wong et al. 2008).

We consider that there are two reasons for the success of the threat of eviction inducing reproductive
restraint in these systems. First, subordinates that are evicted cannot regain access to the group — sea anemones and coral heads are small (less than 1 meter across), can be patrolled quickly and easily, and there are few places for subordinates to hide. Second, dominants are able to accurately target specific individuals — not only do subordinates differ markedly in size (Buston 2003b; Buston & Cant 2006; Wong et al. 2007), but they have highly variable markings, in visible and UV spectrum, that have all of the characteristics of individual recognition signals (Dale et al. 2001; Buston 2003c; Tibbetts & Dale 2007; Maytin et al. 2018). These findings suggest that, as predicted by Cant et al. (2010), in relatively simple, linear hierarchies the threat of eviction by the dominant is sufficient to induce pre-emptive reproductive restraint by subordinates.

It is instructive to compare these findings to others where the threat of eviction does not seem to be sufficient to induce reproductive restraint. In banded mongooses, *Mungos mungo*, for example, there is evidence of reproductive competition, that dominants can evict subordinates, but no evidence that subordinates exhibit reproductive restraint to avoid eviction (Cant et al. 2010). The reasons given for the failure of eviction to induce restraint in that system are that subordinates are able to re-enter the group post-eviction and that dominants cannot perfectly discriminate among subordinates, both of which reduce the incentive to subordinates of cooperating and pre-emptively restraining their own reproduction (Cant et al. 2010). Another, less well-known example that supports these ideas is that of the pink anemonefish, *Amphiprion perideraion*, which inhabits the same species of sea anemone as *A. percula*, on the same reefs in PNG (Fautin 1992b; Elliot & Mariscal 2001). Compared to *A. percula*, *A. perideraion* have little variation in their markings and are better swimmers, likely making it harder for dominants to target and evict specific individuals. In this system, it seems that subordinates do not show the same level of growth or reproductive restraint, and dominants eventually lose control of their group. Following loss of control, dominant *A. perideraion* leave their anemone for a nearby anemone occupied by *A. percula*, and evict and kill the *A. percula* group en masse (Buston, Barbasch & Rueger pers obs). This latter example highlights how a small difference in biology can influence the social system that emerges, even in closely related species in the same ecological context.
Our study shows that clown anemonefish subordinates (as well as emerald goby subordinates) will forgo their own reproduction due to the threat of eviction, and dominants will embrace subordinates that are not reproductively active. Two outstanding questions remain for this system. First, why do non-breeders then tolerate their situation rather than pursuing alternative options? On the one hand, non-breeders stand to inherit the territory within which they reside, so they gain future genetic benefits (Fricke 1979, Buston 2004b, Wong et al. 2007). On the other hand, evidence suggests that non-breeders will neither disperse to breed elsewhere due to ecological constraints, i.e., habitat saturation and risk of movement (Mariscal 1972, Emlen 1982, Fautin 1992b, Buston 2003a, 2004a, Wong 2010), nor contest for a breeding position due to social constraints (Buston 2003c, 2004b, Wong et al. 2007, Buston & Wong 2014). Second, why do breeders embrace non-breeders rather than evict them? Evidence suggests that breeders do not benefit from the presence of non-breeders in terms of survival, growth, reproduction, rapid mate-replacement (Buston 2004a) or by passing on their territory to their offspring (Buston et al. 2007). It’s plausible that breeders might benefit from the presence of non-breeders due to indirect effects mediated via the anemone: non-breeders may enhance anemone growth and reproduction (Godwin and Fautin 1992, Porat 2004, Holbrook and Schmitt 2005, Cleveland et al. 2011, Szczebak et al. 2013, Schmiege et al. 2017); large anemones may enhance fish growth and reproduction (Buston 2002, Buston and Elith 2011, Verde et al. 2015).

Our results may also provide a different perspective on the role of monogamy in social evolution. There is a widely-recognized association between monogamy and the formation of social groups in which some individuals forgo their own reproduction (Hughes et al. 2008; Cornwallis et al. 2010; Lukas & Clutton-Brock 2012). One hypothesis to explain this association is that monogamy together with delayed dispersal gives rise to groups in which there are high degrees of relatedness among group members, and in such groups, individuals will gain indirect genetic benefits by helping their relatives (Hamilton 1964; Boomsma 2007). Under this scenario, monogamy causes high relatedness among group members, which predisposes some individuals to forgo their own reproduction and help others to reproduce. This hypothesis for the association between monogamy and social group formation must be incomplete, however, because there are monogamous social groups composed of
non-relatives in many taxa (Reyer 1984; Queller et al. 2000; Buston et al. 2007; Griesser et al. 2017). Here, we show that, at least for *A. percula*, resource limitation and the threat of eviction can explain why some individuals forgo reproduction, leading to the formation of monogamous social groups. Under this scenario, reproductive competition and the threat of eviction cause some individuals to forgo their own reproduction, and a social group composed of a monogamous breeding pair and a small number of non-breeders emerges as a result. In other words, monogamy is not the cause of social group formation, rather it’s an emergent by-product of the interactions of individuals.

This study can be considered to provide experimental support for the assumptions of the restraint model of reproductive skew (Johnston & Cant 1999). In the clown anemonefish, breeding resources are limited and the threat of eviction leads to subordinates foregoing reproduction. Further, by comparison with other systems, this study provides support for the idea that specific conditions need to be met for the threat of eviction to be effective (Cant & Johnstone 2006; Cant et al. 2010; Cant 2011; Cant & Young 2013). In groups with reproductive competition and the threat of eviction, but where it is hard for dominants to target individuals and sustain evictions, subordinates do not seem to pre-emptively restrain their reproduction or growth, as has been observed for the dwarf mongoose (Cant et al. 2010) and pink anemonefish (Buston, Barbasch & Rueger pers obs). In sum, our study suggests that transactional models might be well suited to explain reproductive skew in some, simple systems (e.g., Buston & Zink 2009).

Author contributions: TR, TB, MW & PB designed the research; TR, TB & PB performed data collection, using the study population of MS & GJ; TR, TB & PB conducted data analysis; TR, TB, MW, MS, GJ & PB wrote the manuscript.

Funding: The field portion of this project was supported by a grant from the University of Wollongong and a grant from Boston University. TR was supported by funds from PB, TB was supported by NSF GRFP, MW was supported by the University of Wollongong, MS and GJ were
supported by the ARC Centre of Excellence for Coral Reef Studies at James Cook University, and PB was supported by the Trustees of Boston University.

Acknowledgements: We thank the communities of Tamare and Kulu, the traditional owners of the reefs; the staff of Mahonia Na Dari Research and Conservation Centre and Walindi Plantation Resort for logistical support in the field; Chancey Macdonald for help with the artwork and two anonymous reviewers for their critique of an earlier version of this manuscript.

Ethics statement: This work was conducted with the approval of Boston University IACUC and the Government of Papua New Guinea.

Data accessibility statement: The datasets supporting this article can be accessed at Datadryad: https://doi.org/10.5061/dryad.sv2k6s2

Competing interests statement: We declare we have no competing interests.

References

