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Abstract

This work deals with audio-visual video recognition using machine learning. A

general audio-visual video recognition system first extracts auditory and visual

feature descriptors, then represents the extracted bi-modal features using feature

encoding techniques, and finally performs recognition using a machine learning

classifier. This work adapts a similar pipe-line, contributing to the first two major

components: visual feature extraction and global feature representation.

Visual feature extraction is a vital step in video recognition. In general, the

visual feature extraction starts by detecting spatio-temporal interest points where

the features are most discriminative in a video. There are a few problems associ-

ated with existing spatio-temporal interest point detectors. Firstly, the detectors

are either too sparse, which leads to loss of information, or too dense, which re-

sults in additional noise and complexity. Secondly, in case of dynamic background

and moving camera, the detectors may extract irrelevant interest points that do

not belong to an actual motion. To address these problems, a spatio-temporal

interest point detector is designed to extract salient interest points within a region

of interest where there is motion. In addition, a video stabilization is integrated

in the detector to handle camera motion and dynamic background.

There are many approaches to represent local features e.g., traditional bag-of-

words and super vector models. These approaches concatenate the features from

multiple descriptors to get a large single vector for an entire video sequence. This

concatenation does not retain spatio-temporal structure among the local feature

descriptors. In addition, massive amount of data is generated using multiple fea-

ture descriptors from multiple modalities. This increases complexity and limits
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Abstract

many practical applications. To solve these problems, a tensor decomposition

followed by a feature selection is applied. Tensor decomposition provides an effi-

cient tool for discriminative feature extraction and model reduction by capturing

multi-linear structures in high-order large-scale data.

In this work, firstly, we present a new method for visual feature extraction

named refined dense trajectories. The refined dense trajectories method extracts

salient interest points in a region of interest where there is motion, and discards

the noisy and redundant interest points. The interest points are then tracked to

form refined trajectories and visual features are computed along those trajectories.

Secondly, we propose a novel spatio-temporal interest point detector based on a

low-rank and group-sparse matrix approximation. The detector yields a set of

salient spatio-temporal interest points which is neither too dense nor too sparse.

To handle camera motion, a short-window video stabilization is integrated in

the above visual feature extraction methods. The global motion is compensated

by realigning of the video frames during interest point detection and trajectory

formation. Thirdly, a unique super descriptor tensor decomposition model is

presented for global feature representation. The local feature descriptors are

first encoded through super descriptor vector coding and arranged in the form

of tensors. Then discriminative features are obtained for classification through

decomposition of rank-3 tensors followed by feature ranking. This approach

retains the spatio-temporal structure among features from multiple descriptors

and provides a significant dimensionality reduction.

The proposed visual feature extraction and bi-modal feature representation

methods are evaluated through a detailed experimentation on multiple datasets:

Maryland, YUPPEN, KTH, UCF, YouTube, TVHID, and Parliament. The proposed

visual and audio-visual recognition systems are tested for the tasks of dynamic

scene recognition, action recognition, human interaction recognition, and violent

scene detection. The experimental results show that the proposed recognition

systems outperform many state-of-the-art methods for visual and audio-visual

recognition.
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This research work addresses the problem of bi-modal audio-visual video un-

derstanding using computer vision and machine learning techniques. There are

three major components in a general video recognition system: audio and visual

feature extraction, global representation of the extracted features, and video clas-

sification. We focus on two important aspects in audio-visual video recognition:

i) visual feature extraction from videos; and ii) global feature representation of

local features for classification.

In this chapter, significance of the study, gaps in literature, and potential

solutions are discussed in Section 1.1. The specific objectives of the thesis are

given in Section 1.2. The contributions of this work are presented in Section 1.3.

The thesis organization is given in Section 1.4. Finally, the publication outcomes

of this research are listed in Section 1.5.
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1.1. Thesis Significance

1.1 Thesis Significance

Video recognition depends highly on efficient visual feature extraction. Existing

feature extraction methods are based mostly on spatio-temporal interest points

detection in videos. The interest points are the key points where motion infor-

mation is most discriminative. Local descriptors extract visual features within a

volume, either around the interest points or along trajectories formed by tracking

those interest points. The extracted local features are then encoded to obtain a

global and meaningful representation for classification.

There are a few limitations associated with existing interest point detectors

and global feature representation methods:

• The interest point detectors are either too sparse, which leads to loss of

information, or too dense, which results in additional noise and complexity.

• In case of dynamic background and moving camera, the detectors may

extract irrelevant interest points that do not belong to an actual motion.

• The exiting global feature representation methods simply concatenate the

features from multiple feature descriptors and modalities, to get a large

single vector for an entire video sequence. This destroys the spatio-temporal

structure among the features and affects the classification accuracy.

• The concatenation of features from multiple descriptors and modalities

yields a massive amount of data, which increases complexity and hinders

many practical applications.

To address these problems, a spatio-temporal interest point detector is de-

signed to extract salient interest points from regions where motion is the most

dominant. Video stabilization is integrated into the detector to handle camera

motion and dynamic background. Furthermore, a tensor decomposition fol-

lowed by a feature selection is employed for discriminative feature extraction

and dimensionality reduction by capturing multi-linear structures in high-order

large-scale data. It is more efficient to arrange data from multiple descriptors in

multi-dimensional arrays (i.e., tensors) instead of forming a large single vector.
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1.2 Research Objectives

The specific aims of this research project are to:

1. Provide a review of audio-visual feature extraction, global feature represen-

tation, and video classification approaches for audio-visual video recogni-

tion problem.

2. Develop methods for visual feature extraction from videos to provide salient

and discriminative features in presence of camera motion. Evaluate and

compare performance of the developed visual feature extraction methods

with existing methods for video recognition.

3. Develop a model for global representation of audio-visual features from

multiple descriptors to preserve the spatio-temporal information among

the features. Evaluate and compare performance of the developed global

feature representation model with other methods for video recognition.

4. Test and evaluate the proposed recognition systems for applications of visual

and audio-visual video recognition, and compare the performance with the

state-of-the-art methods for the same tasks.

1.3 Thesis Contributions

The principal contributions of this thesis are listed as follows:

• A literature review on audio-visual recognition system is presented involv-

ing its individual components: audio-visual feature extraction, global fea-

ture representation, and video classification.

• A new method is proposed for visual feature extraction named refined dense

trajectories. The refined dense trajectories method extracts salient interest

points in a region of interest where there is motion and discards the noisy

and redundant interest points.

• A novel spatio-temporal interest point detector based on a low-rank and

group-sparse matrix approximation is presented. The detector yields a set
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1.4. Thesis Organization

of salient spatio-temporal interest points, which is neither too dense nor too

sparse.

• A short-window video stabilization is presented for the above visual feature

extraction methods to handle camera motion. The global motion is compen-

sated by realigning of the video frames during interest point detection and

trajectory formation.

• A unique super descriptor tensor decomposition model is presented for

global representation of bi-modal features. Discriminative features are ob-

tained for classification through decomposition of tensor-based model fol-

lowed by feature ranking. This retains the spatio-temporal structure among

the features from multiple descriptors and modalities.

• The proposed video recognition system is applied to dynamic scene recog-

nition, action recognition, violent scene detection, and human interaction

recognition. The performance of the proposed recognition systems is com-

pared with the state-of-the-art methods for the same tasks.

1.4 Thesis Organization

This thesis consists of seven chapters:

• Chapter 1 outlines significance and objectives of the research project. It

highlights the research contributions and publications.

• Chapter 2 gives a literature review of the audio-visual video recognition

and its components including audio-visual feature extraction, global feature

representation, and video classification. Thiss chapter discusses the different

approaches available for the three components.

• Chapter 3 presents the proposed methods for visual feature extraction, re-

fined dense trajectories, low-rank and group-sparse matrix approximation

based spatio-temporal interest point detector, and short-window video sta-

bilization. Multiple dynamic scene and action recognition datasets are used

to evaluate the proposed visual features extraction methods.
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• Chapter 4 presents the proposed super descriptor tensor decomposition

model for global representation of audio-visual features. The chapter ana-

lyzes the individual components of the model for the tasks of dynamic scene

recognition and human interaction recognition.

• Chapter 5 details the classification results of the proposed recognition sys-

tem for the applications of visual video recognition. This chapter compares

the proposed recognition system with the state-of-the-art methods for dy-

namic scene recognition and action recognition.

• Chapter 6 presents the classification results of proposed recognition system

for the applications of audio-visual video recognition. The chapter evaluates

and compares the proposed bi-modal recognition system with the state-

of-the-art approaches for human interaction recognition and violent scene

detection.

• Chapter 7 summaries the research activities and provides the concluding

remarks.

1.5 Research Publications

The publications arising from this research project are listed as follows:

1. M. R. Khokher, A. Bouzerdoum and S. L. Phung, “A Super Descriptor Tensor

Decomposition for Dynamic Scene Recognition”, IEEE Transactions on Cir-

cuits and Systems for Video Technology, 2018. (DOI 10.1109/TCSVT.2018.2825784)

2. M. R. Khokher, A. Bouzerdoum and S. L. Phung, “Human Interaction Recog-

nition using Low-rank Matrix Approximation and Super Descriptor Tensor

Decomposition”, IEEE International Conference on Acoustics, Speech, and Signal

Processing, pp. 1847–1851, 2017.

3. M. R. Khokher, A. Bouzerdoum and S. L. Phung, “Violent Scene Detection

using a Super Descriptor Tensor Decomposition”, International Conference on

Digital Image Computing: Techniques and Applications, pp. 1–8, 2015.
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4. M. R. Khokher, A. Bouzerdoum and S. L. Phung, “Crowd Behavior Recog-

nition using Dense Trajectories”, International Conference on Digital Image

Computing: Techniques and Applications, pp. 1–7, 2014.
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2.1. Introduction

2.1 Introduction

Many recognition systems tend to exploit multi-modal information to achieve

better performance [1]–[11]. Multiple modalities provide complementary infor-

mation and one modality can give more useful information than the others. In

addition, multiple modalities make a system more robust. Furthermore, unaf-

fected modalities benefit a recognition system in presence of certain noise. For

example, camera motion may affect the motion information but not the auditory

cues which can be useful for the recognition task.

Audio-visual video recognition is an example of such a multi-modal recogni-

tion system, which uses more than one modality, and have appeared in differ-

ent applications such as human interaction recognition [1], [2], action and event

recognition [3], [4], and affect recognition [5]–[11]. In a general audio-visual video

recognition system, firstly, local feature descriptors extract the audio and visual

features from videos. Secondly, a global feature representation model encodes

the extracted bi-modal features, and yields salient and discriminative features for

classification. Thirdly, a classifier is used to perform the video recognition task.

This chapter provides an overview of different approaches for the three com-

ponents in the above pipe-line. Section 2.2 describes the different attributes

of auditory information and some commonly used audio feature descriptors.

Section 2.3 presents a review of approaches for local feature extraction, from

spatio-temporal interest point detection, trajectory formation, to visual descriptor

computation. Section 2.4 gives an overview of different global feature represen-

tation approaches, consist of vocabulary generation, local feature encoding, and

pooling of encoded features. Section 2.5 provides a discussion about different

classifiers that are commonly used for machine learning.

2.2 Audio Feature Extraction

Audio feature extraction deals with the extraction and analysis of audio signals

to obtain a machine-processable representation. Audio features are as important

as visual features for an efficient recognition system. For example, audio features

extracted from the sounds of hand clapping, high five, and verbal communication
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2.2. Audio Feature Extraction

can be equally important as visual features [2]. Similarly, the sounds of gun-shots

and explosions can be very informative for violence detection in automatic video

surveillance [5].

There exists a huge amount of literature on audio feature extraction, see re-

views in [12] and [13]. The audio features are usually developed for specific

tasks, such as automatic speech recognition, sound recognition, audio segmen-

tation, and music information retrieval. In this section, we describe a few audio

attributes and descriptors for audio feature extraction.

2.2.1 Audio Attributes

The audio signals can be described in terms of different attributes such as duration,

pitch, loudness, and timbre:

• Duration refers to start and end of an audio signal. Depending on sound en-

velope, the duration can be divided into four phases: attack, decay, sustain,

and release. In some cases, silence can be of interest as well.

• Pitch mainly relates to frequency of a sound. We are usually interested in

pitch strength which is defined as “subjective magnitude of the auditory

sensation related to pitch” [14]. Pitch strength is determined by the spectral

shape. Narrow-band noise and line spectra related sounds generate larger

pitch strength than the broader spectral distribution signals.

• Loudness relates to the changes in sound pressure level. It is defined as the

“attribute of auditory sensation in terms of which sounds can be ordered on

a scale extending from soft to loud” [14].

• Timbre is the most complex attribute of sound. It is the “attribute of auditory

sensation which enables a listener to judge that two non-identical sounds,

similarly presented and having the same loudness and pitch, are dissimi-

lar” [14]. In other words, timbre expresses the difference between hearing

sensations of two different instruments, e.g., violin and piano, playing the

same musical note.
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2.2. Audio Feature Extraction

Audio features represent the above-mentioned attributes. There is a wide

range of audio feature descriptors that represent loudness and pitch. Other fea-

ture descriptors capture specific aspects of timbre such as tonality, frequency

modulation, and sharpness. For a detailed overview, see [12] and [13].

2.2.2 Audio Feature Descriptors

We can categorize different audio feature descriptors based on their domains:

temporal, frequency, and cepstral. A feature in frequency domain describes spec-

tral characteristics of a signal, whereas a feature in temporal domain represents

the signal’s waveform.

2.2.2.1 Temporal Domain

The temporal domain describes the changes in the signal over time. Among

many audio feature descriptors in temporal domain, zero crossing rate [15] and

short-time energy [16] are commonly used. Zero crossing rate (ZCR) is one of the

simplest feature descriptors, which gives the number of zero crossings within one

second in temporal domain. Due to the simplicity of ZCR, it has been widely used

for music classification, speech analysis, highlight detection, and environmental

sound recognition. Short-time energy (SE) represents the envelope of a signal. SE

can be defined as the per-frame mean energy which is also a measure for power.

SE has mostly been used for audio retrieval.

2.2.2.2 Frequency Domain

The frequency domain provides spectral distribution of a signal. It describes

the harmonic structure, tonality, and bandwidth. There exist many descriptors

in frequency domain [12], [13]. We consider here linear predictive coding [17]

and spectral flux [18] descriptors due to their widespread use. Linear predictive

coding (LPC) estimates the basic parameters of speech such as vocal tract transfer

function and formant frequencies. LPC has been used for speech recognition, au-

dio segmentation, and audio retrieval. The spectrum and cepstral representation

of LPC are also used for recognition. Spectral flux (SF) is defined as the ℓ2-norm of

difference vector of frame-to-frame spectral amplitude. SF quantifies the changes
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2.2. Audio Feature Extraction

in spectrum shape over time. In SF, the flux is high for abrupt spectral changes

like note onsets, and it is low for slowly changing spectral properties like noise.

SF has been used in music and audio retrieval, music recognition, and speech

analysis.

2.2.2.3 Cepstral Domain

The concept of cepstrum was introduced in [19]. Fourier transform of the loga-

rithm of magnitude of the spectrum, provides representation in cepstral domain.

Perceptual linear prediction [20] and Mel-frequency cepstral coefficients [21] are

the commonly used audio feature descriptors in cepstral domain. Perceptual

linear prediction (PLP) is based on the hearing concept, and it approximates the

spectral shape using linear predictive analysis. PLP represents vocal tract charac-

teristics and approximates many properties of human hearing. This gives PLP a

better representation of spectral shape than LPC.

Mel-frequency cepstral coefficients (MFCCs) method has become one of the

standard methods for audio retrieval and automatic speech recognition. To extract

MFCCs, firstly, the audio signal is segmented into short overlapping frames. The

reason for keeping the frames short is that the audio signal is assumed to be

stationary over a short duration. The power spectrum of each frame is calculated

using the periodogram. Then a Mel-filterbank with triangular filters is applied

to the power spectra, and energy from each filter is obtained. To match the

features closely to human hearing, the logarithms of all the filterbank energies are

computed. As the filterbanks are usually overlapping in the frequency domain,

a discrete cosine transform (DCT) is applied to the log-filterbank energies. In the

end, a set of low frequency DCT coefficients is taken to represent the MFCCs. To

exploit the discriminative ability of MFCCs, the first and second-order derivatives

of MFCCs can also be used as features.

The different audio feature descriptors discussed above are listed in Table 2.1.

The different audio feature descriptors are chosen depending on the type of in-

formation that needs to be extracted [12], [13]. Recently, MFCCs descriptor has

been widely used for automatic speech recognition. The MFCCs collectively de-

scribe the coarse spectral shape, such as average power in spectrum, spectrum
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Table 2.1: Local descriptors for audio feature extraction.

Feature Domain Method Comments Author [ref] Year

Temporal
ZCR Low complexity, fast, and medium accuracy. Kedem et al. [15] 1986

SE Low complexity, fast, and medium accuracy. Zhang et al. [16] 2001

Frequency
LPC Medium complexity, fast, and high accuracy. Rabiner et al. [17] 1978

SF Low complexity, fast, and medium accuracy. Scheirer et al. [18] 1997

Cepstral
PLP High complexity, medium speed, and medium accuracy. Hermansky et al. [20] 1990

MFCCs High complexity, medium speed, and high accuracy. Davis et al. [21] 1980

centroid, pitch, and tone. Due to a diverse representation of audio signals, MFCCs

descriptor is considered one of the state-of-the-art methods.

2.3 Visual Feature Extraction

In a video recognition system, visual features (static or dynamic) play the most

important role for efficient recognition. The visual feature extraction mostly starts

from the detection of spatio-temporal interest points (STIPs) in videos. Then,

visual descriptors are computed within a volume, either around the STIPs [22]

or along the trajectories formed by tracking those STIPs [23]. In this section,

we discuss different methods for STIP detection, trajectory formation, and local

descriptors for visual feature extraction in videos.

2.3.1 Spatio-temporal Interest Point Detection

The spatio-temporal interest points are the key points in the space-time, where

the visual features are most discriminative. There exist many approaches for

STIP detection [22], [24]–[31], which can be categorized as spatio-temporal corner

detectors [22], [24]–[25], spatio-temporal filtering methods [26]–[28], and global

information based techniques [29]–[31].

2.3.1.1 Spatio-temporal Corner Detectors

The spatio-temporal corner detectors are extensions of 2D corner detectors in the

time domain. In [22], Harris3D detector was presented which is an extension of

2D Harris corner detector to the space-time domain. In Harris3D, regions with

high intensity variations are detected as a sparse set of STIPs. In [24], Hes-STIP

detector was proposed which is a spatio-temporal extension of 2D scale-invariant
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Harris-Laplace corner detector. In Hes-STIP, a dense set of STIPs is extracted using

Hessian saliency measure. In [25], V-FAST corner detector was presented to detect

STIPs by extending FAST corner detector to the time domain. Spatio-temporal

saliency is detected when several contiguous pixels on a circle are brighter than

a reference pixel, yielding in desired STIPs. The corner detection based methods

usually result in a sparse set of STIPs, which may lead to loss of information.

2.3.1.2 Spatio-temporal Filtering Methods

The spatio-temporal filtering methods employ Gaussian and Gabor filters in the

space-time domain to detect STIPs. In [26], a 2D Gaussian filter in the space and

a 1D Gabor filter in the time domain are used to detect STIPs. This approach was

extended in [27] using 2D Gabor filters in the space-time domain. Like corner

detectors, these approaches also yield a sparse set of STIPs. They focus on local

spatio-temporal information instead of global motion, which results in unwanted

STIPs caused by camera motion. In another approach [28], a selective set of STIPs

is detected by applying temporal constraints based on 2D Gabor filters, and a

STIP matching algorithm is used to remove camera motion.

2.3.1.3 Global Information based Techniques

The global information is incorporated to detect STIPs in [29]–[31]. In [29], a non-

negative matrix factorization (NNMF) based detector was proposed, which uses

global information of moving points. The STIPs are detected by considering their

relation to the relevant motion. In [30], a 3D transform was presented for capturing

global distribution of STIPs using Radon features. Similarly, in [31], histogram of

interest points (HIPL) method was introduced for capturing information about

the spatial distribution of STIPs.

The choice of a detector to extract STIPs depends on the nature of videos. In

some cases, extracting a sparse set of STIPs helps, whereas in other cases, a dense

set of STIPs may capture more information. For the videos with natural scenes,

going towards one extreme may not be useful. For example, a detector being too

sparse can lead to loss of information, whereas a detector being too dense may

add noise and complexity [32]. Table 2.2 lists the various spatio-temporal interest
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Table 2.2: Spatio-temporal interest point detectors for videos.

Type Method Comments Author [ref] Year

Corner Harris3D Sparse, low detection rate, and fast. Laptev et al. [22] 2005

detection Hes-STIP Dense and medium detection rate and speed. Willems et al. [24] 2008

V-FAST Sparse, low detection rate, and fast. Yu et al. [25] 2010

Space-time Cuboids Sparse, low detection rate, and fast. Dollar et al. [26] 2005

filtering E-cuboids Sparse and medium detection rate and speed. Bregonzio et al. [27] 2008

Selective STIPs Dense, high detection rate, and slow. Chakraborty et al. [28] 2012

Global NNMF Sparse, medium detection rate, and fast. Wong et al. [29] 2007

information 3D R-Transform Sparse, low detection rate, and slow. Yuan et al. [30] 2013

HIPL Sparse, low detection rate, and fast. Yan et al. [31] 2012

point detectors for videos.

2.3.2 Trajectory Formation

The spatio-temporal interest points provide the key points for feature extraction.

It is easy to simply take a volume around the STIPs, and then calculate the

visual features descriptors within that volume [22]. This may not provide all

the necessary space-time information that is needed. It is better to form motion

trajectories by tracking the STIPs in consecutive frames of a video. The local

descriptors can then be calculated within a volume along those trajectories [23].

We consider here a few interest point tracking methods to form motion trajec-

tories. In [33], a Kanade-Lucas-Tomasi (KLT) algorithm was presented to locate

and track the interest points. In KLT algorithm, the minimum eigen-values of

gradient matrices are used to detect the interest points. The interest points are

then tracked using the Newton-Raphson method. The use of KLT algorithm was

also seen in [34] and [35]. In [36], the interest points are detected using FAST cor-

ner detector, and then tracked by matching histogram of oriented gradient (HOG)

descriptors over the consecutive frames. The trajectories were shown to be less

sensitive to noise in comparison with the trajectories formed by KLT algorithm.

In [37], the interest points are tracked by pair-wise matching of scale-invariant

feature transform (SIFT) descriptors over consecutive frames. It was shown that

the SIFT tracking based trajectories achieved better classification accuracy than

KLT trajectories. Later in [38], the trajectories from KLT and SIFT tracking are

combined to formulate visual matching and tracking. In [23], dense trajectories
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Table 2.3: Various approaches for trajectory formation in videos.

Method Tracking based on Comments Author [ref] Year

KLT tracker Newton-Raphson method Medium quality trajectories, some irregular Lucas et al. [33] 1981

patterns, and medium complexity.

HOG tracker HOG descriptor matching Low quality trajectories, irregular patterns, Kaaniche et al. [36] 2009

and medium complexity.

SIFT tracker SIFT descriptor matching Medium quality trajectories, some irregular Sun et al. [37] 2009

patterns, and medium complexity.

KLT-SIFT tracker KLT+SIFT tracking Medium quality trajectories, some irregular Sun et al. [38] 2010

patterns, and high complexity.

Dense Trajectories Dense optical flow field High quality trajectories, smooth patterns, Wang et al. [23] 2013

and high complexity.

method was proposed to form trajectories by tracking densely sampled inter-

est points. In dense trajectories method, the interest points are tracked using

dense optical flow field. It has been shown that dense trajectories outperform

KLT and SIFT matching based trajectories [23]. The various trajectory formation

approaches are listed in Table 2.3.

2.3.3 Visual Feature Descriptors

The visual feature descriptors are used to extract appearance and motion infor-

mation from videos. Here we discuss some existing local feature descriptors

proposed for videos. The visual feature descriptors can be categorized based on

appearance information [24], [39]–[41], and motion information [23], [26], [39],

[43], [44]. These approaches are discussed as follows.

2.3.3.1 Appearance based Visual Descriptors

The appearance information around interest points or trajectories can be very dis-

criminative for video representation. There exist different visual feature descrip-

tors which make use of gradient orientations to extract appearance information. In

[39], histogram of oriented gradients descriptor was proposed for videos, which is

a variant of HOG descriptor for images initially proposed in [45]. For videos, the

HOG descriptor captures the shape and appearance information, either around an

interest point or along a trajectory within a spatio-temporal grid. The edge orienta-

tions are computed and quantized into histogram bins. A histogram is calculated

in each cell of the spatio-temporal grid, which is then normalized and concate-
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nated to obtain visual features. In [40], 3-dimensional HOG (HOG3D) descriptor

was presented by extending HOG image descriptor [45] to the spatio-temporal

domain. Based on convex regular polyhedrons, HOG3D computes 3D gradient

orientations, which are then quantized to form histograms. A similar approach to

HOG3D is called histogram of oriented 4-dimensional normals (HON4D), which

combines 3D surface normals with time [41]. The 3D depth maps are used as the

basis of descriptor computation, rather than 2D image frames as in HOG3D.

There exist some visual feature descriptors which also extend 2D image de-

scriptors to the space-time domain for videos. For example, in [42], 3-dimensional

scale-invariant Fourier transform (3DSIFT) descriptor was presented, which is an

extension of SIFT descriptor [46] for images to the spatio-temporal domain. Based

on the concept of spatio-temporal grids and gradients, 3DSIFT weights each pixel

by a Gaussian. The Gaussian weighting gives less importance to those gradients

which are far away from the center of local features. A dominant orientation

is determined which is used to make the descriptor rotation-invariant. In [24],

extended speeded-up robust features (E-SURF) descriptor was proposed, which

is an extension of SURF descriptor [47] to the spatio-temporal domain. The space-

time volume that surrounds an interest point is divided into a spatio-temporal

grid. Haar-wavelets are used to obtain the local features by representing each cell

in the grid by a vector.

2.3.3.2 Motion based Visual Descriptors

The early works on visual feature descriptors in videos were presented in [43] and

[26]. In [43], multiple feature descriptors were proposed by representing motion as

spatio-temporal jets, position independent and dependent histograms, and prin-

cipal component analysis (PCA), calculated for optical flow and spatio-temporal

gradients. In [26], several descriptors were presented based on transformations of

local neighborhoods such as windowed optical flow, normalized pixel values, and

brightness gradient. The features are obtained by taking histogram of the values

and flattening of the local neighborhood in small grids. In this approach, PCA is

used for dimensionality reduction. The shape of motion trajectories also leads to

visual feature extraction. For example, in [23], a trajectory shape descriptor was
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proposed to capture and encode the shape of trajectories. To describe the shape

of a trajectory, a sequence of displacement vectors is normalized using the sum of

displacement vector magnitudes.

The commoly used visual descriptors based on optical flow are histogram

of optical flow (HOF) [39] and motion boundary histograms (MBH) [44]. HOF

was proposed to encode motion information in videos. HOF first calculates the

optical flow, then quantizes the flow information into histogram bins to obtain

visual features. Rather than using simple optical flow, MBH descriptor computes

derivatives of horizonal and vertical components of the optical flow to encode the

relative motion between pixels. MBH descriptor is more robust to camera motion

than the normal optical flow. This is because MBH represents the gradient of

optical flow. In [23], MBH was employed to extract local features along motion

trajectories. In this approach, spatial derivatives are computed for horizontal and

vertical components of the optical flow resulting in MBHx and MBHy descriptors.

A histogram of each component is obtained and then normalized using ℓ2-norm

to obtain the visual features.

The widely used visual feature descriptors are HOG and HOF, which capture

appearance and motion information, respectively. The HOG descriptor computes

the orientation of shape at the finest level (e.g., each pixel) to capture the ap-

pearance information. Although HOF has been used extensively, it is sensitive

to camera motion. Recently, MBH has been used widely because it is based

on derivatives of optical flow, which helps with suppressing the camera motion

[23]. We list various appearance and motion based visual feature descriptors in

Table 2.4.

2.4 Global Feature Representation

The local audio and visual features are usually processed to obtain a global rep-

resentation for classification. The most popular representation is bag-of-words

(BoW) originally proposed to represent text for document retrieval [48]. Since

then the BoW model has been studied widely for information retrieval, natu-

ral language processing, and computer vision. The BoW model encodes the
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Table 2.4: Visual feature descriptors for videos.

Method Descriptor based on Comments Author [ref] Year

HOG Spatio-temporal gradients Low classification accuracy and low complexity. Laptev et al. [39] 2008

HOG3D 3D gradients Medium classification accuracy and medium complexity. Klaser et al. [40] 2008

HON4D 4D orientation normals Medium classification accuracy and high complexity. Oreifej et al. [41] 2013

3DSIFT Spatio-temporal gradients Medium classification accuracy and medium complexity. Scovanner et al. [42] 2007

E-SURF Haar wavelets Low classification accuracy and high complexity. Willems et al. [24] 2008

Space-time Jets Gradients and optical flow High classification accuracy and medium complexity. Laptev et al. [43] 2006

Cuboids Gradients and optical flow Low classification accuracy and medium complexity. Dollar et al. [26] 2005

Trajectory shape Shape of trajectories Medium classification accuracy and low complexity. Wang et al. [23] 2013

HOF Optical flow Medium classification accuracy and low complexity. Laptev et al. [39] 2008

MBH Optical flow derivatives High classification accuracy and medium complexity. Dalal et al. [44] 2006

global statistics of local features by calculating histogram of feature occurrences

in videos. The BoW model consists of three major components: i) vocabulary gen-

eration, ii) local feature encoding, and iii) pooling and normalization of encoded

features. The vocabulary is created through unsupervised learning of local fea-

tures from training video sequences. The feature encoding generally represents

the local features using some coding method to obtain the codewords. The final

features for classification are then obtained by pooling and normalization of code-

words. In this section, we discuss various approaches for the three components

of the BoW model.

2.4.1 Vocabulary Generation

A vocabulary divides the feature space into several regions or clusters. The vocab-

ulary sometimes is also called codebook or dictionary. Local features in a region

relate to a codeword represented by an integer (ranging from 1 to vocabulary

size). The local features are later encoded as a histogram of codewords.

There exist many approaches to compute the vocabulary. For example, in

[49], k-means algorithm was proposed to compute the vocabulary. A codeword

is considered as the cluster center in k-means. The cluster center is the mean of

all feature vectors which belong to that codeword. In k-means, the clusters are

positioned exclusively around the densest regions in feature space. This does

not code other informative regions. To overcome this drawback, in [50], a fixed

radius clusterer method based on mean shift (MS) was proposed to generate the

vocabulary. It was shown that mean shift based clustering performed better than

the k-means clustering. In [51], an information theoretic method based on min-
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Table 2.5: Vocabulary generation methods for global feature representation.

Method Comments Author [ref] Year

k-means Average clustering and low complexity. Sivic et al. [49] 2003

MS Good clustering and medium complexity. Jurie et al. [50] 2005

MIL Good clustering and medium complexity. Lazebnik et al. [51] 2009

RL Average clustering and medium complexity. Tuytelaars et al. [52] 2007

SC Excellent clustering and high complexity. Yang et al. [53] 2009

GMM Excellent clustering and high complexity. Winn et al. [54] 2005

imization of information loss (MIL) was proposed to simultaneously learn the

vocabularies in the Euclidean feature space. This approach captures the compo-

nents that are semantically common. In [52], a data-independent approach was

presented that divides the feature space into a regular lattice (RL) for construction

of the vocabulary. The hashing techniques are used to store only non-empty bins,

and fit the method to fine-grained grids which accommodates the high dimen-

sional feature space. This is different from learning the division of feature space

from the training data.

There are some approaches which tend to outperform the above-mentioned

approaches for vocabulary generation. For example, in [53], sparse coding (SC) is

used to generate the vocabulary. It was shown that sparse coding performed better

than k-means based vocabulary learning. In [54], Gaussian mixture model (GMM)

is used to represent the local features. The centers of the Gaussian components

represent the codewords. Although GMM tend to have more representation

power in comparison with a single cluster center, it needs higher computational

resources. The various methods for vocabulary generation are listed in Table 2.5.

2.4.2 Local Feature Encoding

The local audio and visual features are encoded to obtain a more meaningful

representation. The local features can be represented either as a combination

of codewords obtained after feature encoding [53], [55]–[58], or as differences

between local features and the codewords [59]–[61]. A detailed description and

comparison of different feature encoding techniques are provided in [62] and [63].

There exist many feature encoding techniques, here we discuss a few methods
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that represent the local features as a combination of codewords. In [55], a vector

quantization (VQ) method was proposed to encode the local features from images.

In this method, the vocabulary is generated using k-means algorithm. The local

features are then quantized through hard-assignment of the features to the vo-

cabulary. Hard-assignment can be restrictive in representing the features. Many

approaches replace the hard-assignment with alternative feature encoding to re-

tain more information about the features. For example, in [56], soft-assignment

of local features to the vocabulary was presented. A kernel codebook encoding

(KCB) was proposed which associates the local features with multiple nearby

codewords, rather than a single nearest codeword. The local features are mapped

to weighted combination of codewords. In another work [57], locality-constrained

linear coding (LLC) was proposed to encode the local features by projecting the

features to the local linear subspace. The subspace consists of multiple closest

codewords. The feature representation is obtained by max pooling of the coor-

dinates resulted from the projection of each local feature into its local coordinate

system. It was shown that LLC performed better in comparison with VQ and

KCB methods.

The above-mentioned feature encoding techniques extract order-less features.

In [58], spatial pyramid matching (SPM) was proposed to retain the global geo-

metric correspondence of images. In SPM, the images are divided into regular

grids and the local features are computed in each grid. The vocabulary is gener-

ated using k-means algorithm and the features are encoded using VQ encoding.

The final features are obtained through average pooling of the encoded features.

In [53], a similar approach based on sparse coding was presented which is a vari-

ation of SPM. In this approach, k-means vector quantization is replaced by the

sparse coding for quantization of local features, and the average pooling is re-

placed by the max pooling. The sparse coding based SPM (ScSPM) outperformed

many previous feature encoding techniques including VQ, KCB, and SPM.

Recently, different encoding techniques have been developed which represent

the local features as differences between the features and the codewords. In [59],

a super-vector coding (SVC) method was proposed to encode the local features.

SVC uses hard-assignment of the local features to single nearest codeword. SVC
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Table 2.6: Representative feature encoding techniques based on combination of
codewords.

Method Comments Author [ref] Year

VQ Low accuracy and low complexity. Csurka et al. [55] 2004

KCB Low accuracy and low complexity. Gemert et al. [56] 2008

LLC Medium accuracy and high complexity. Wang et al. [57] 2010

SPM Medium accuracy and medium complexity. Lazebnik et al. [58] 2006

ScSPM High accuracy and high complexity. Yang et al. [53] 2009

also uses soft-assignment of the local features to several nearest codewords. In

SVC, the local features are represented as first-order differences between the

features and the codewords. In [60], vector of locally aggregated descriptors

(VLAD) was proposed for feature encoding. The encoded features are obtained

by matching each local feature vector to its closest codeword. The final features

are obtained by averaging of differences between descriptors assigned to the

clusters and their centroids. In [61], Fisher vector (FV) encoding was proposed to

represent the local features same as SVC (i.e., using differences between features

and code words). In FV, the vocabulary is generated using GMM instead of k-

means. The local features are represented by capturing first and second-order

differences between the features and codewords (Gaussian components). There

also exist some variants of FV encoding called improved FV (IFV) and stacked FV

(SFV), in [64] and [65], respectively.

The feature encoding techniques like VQ, LLC, and SPM are commonly used

for feature encoding because their representation requires a small storage capac-

ity. Techniques like SVC, FV, and VLAD have powerful representation but they

require a large storage capacity. So far, FV encoding is the state-of-the-art for local

feature encoding [62], [63]. The various feature encoding techniques for global

feature representation are listed in Tables 2.6 and 2.7.

2.4.3 Pooling of Encoded Features

The local features after the feature encoding are pooled towards obtaining a

compact final representation. There are three common feature pooling techniques:

sum pooling, average pooling, and max pooling. In sum pooling, the encoded
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Table 2.7: Representative feature encoding techniques based on difference be-
tween features and codewords.

Method Comments Author [ref] Year

SVC Medium accuracy and medium complexity. Zhou et al. [59] 2009

VLAD Medium accuracy and high complexity. Jegou et al. [60] 2010

FV High accuracy and high complexity. Sanchez et al. [61] 2013

SFV High accuracy and high complexity. Peng et al. [65] 2014

feature vectors are added to obtain a single vector which represents a video

sequence, p j =
∑N

i=1 ei, j, where ei ∈ RM, i = 1, ...,N, represents the encoded vector,

and p j, j = 1, ...,M, represents the jth entry in the pooled vector. This pooling

strategy is intuitive and has been used on multiple occasions [66], [67]. In average

pooling, the resultant vector from the sum pooling is further divided by the total

number of encoded vectors, p j =
∑N

i=1 ei, j/N. Although average pooling has been

used in some methods [68], it is not considered the best pooling technique [69].

In max pooling, the maximum value (element wise) is picked from each encoded

vector to form a single vector, p j =max ei, j, i ∈ {1, ...,N}. Max pooling is a widely

accepted technique and used in many methods [70], [71]. Once the encoded

feature vectors are pooled, the resultant vector can be normalized using ℓ1, ℓ2,

and power normalization. Sometimes two normalizations are combined like ℓ2

and power normalization [66].

2.5 Video Classification

The video classification is the final step in a recognition framework. The fea-

tures obtained after global feature representation are fed to a machine learning

algorithm, which classifies the features into different categories or classes. In

general, the existing machine learning algorithms can be categorized as super-

vised, unsupervised, and semi-supervised learning methods. This categorization

is based on label information that comes with the features. In supervised learn-

ing, the input training features carry the label information. A model is trained

to make predictions, and the model is corrected if it makes a wrong prediction.

To achieve a desired level of accuracy, the training process is continued on the
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training data. The supervised learning is used for classification and regression

problems. In unsupervised learning, the training features do not include the la-

bel information. A model examines the data structure to extract general rules.

These rules are then used to organize the features according to their similarities.

Unsupervised learning is generally used for clustering (vocabulary generation),

association rule learning, and dimensionality reduction. In semi-supervised learn-

ing, the input training features have mixed labeled and unlabeled information.

A model must perform both the tasks: feature organization and label prediction.

Semi-supervised learning is used for classification and regression problems.

The training features usually come with the label information for a video

recognition problem. Therefore, we focus only on supervised learning for video

classification. The goal is to build a model that can capture the distribution of

class labels in terms of training features. Then the trained model is used for

prediction and assignment of labels to test features. There are many supervised

learning algorithms for classification problem, we therefore discuss commonly

used classification algorithms. The various algorithms can be categorized as

instance based learning algorithms [72]–[74], logic based learning algorithms

[75]–[78], statistical and graphical approaches [79]–[85], support vector machines

[86]–[90], and neural network and deep learning methods [91]–[97].

2.5.1 Instance based Learning

The most popular instance based learning classification method is k-nearest neigh-

bor (kNN) [72]. For a given test instance, the kNN first locates the k nearest

instances, then a label is determined based on single most frequent label of the

nearest instance. The kNN classifier needs to store all the instances. Also, it is

sensitive to irrelevant features and the similarity functions chosen for comparison

of the instances. There exist some variants of kNN classifier. For example, in [73],

a condense nearest neighbor algorithm was proposed for dataset reduction. A set

of prototypes is selected from the training data for classification for same accuracy

as kNN with whole dataset. In [74], a universal nearest neighbor algorithm was

presented which induces a leveraged kNN rule. This rule weights the votes of

nearest neighbors through leveraging coefficients. The coefficients are learned
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iteratively from the training data.

2.5.2 Logic based Learning

Logic based learning leads to decision tree classifiers which classify features based

on sorting of feature values. In decision trees, a node represents a test on a feature,

a branch yields an outcome for the test, and a leaf node gives a class label. To

construct a decision tree, best features are found through different measures such

as gain ratio, information gain, Gini index, and Chi-square. These measures may

not be significantly better than each other. The making of an optimal decision

tree is a non-deterministic polynomial-time (NP) complete problem. The widely

used decision trees include iterative dichotomiser-3 (ID3) [75], classification and

regression trees (CART) [76], and C4.5 [77].

A limitation of decision trees is overfitting of the training data. To handle

this limitation, random forests were proposed in [78]. Based on a collection of

several individual trees, random forest predicts a class label through voting on

the results from all the individual trees. In random forest, first, bootstrapping

of original sample data is performed to produce the training set for individual

trees. Then for each decision tree, a bagging process is done after training over the

bootstrapped data. Random forest selects a few features to grow by expanding at

each node. Random forest is flexible and has a few parameters to be tuned.

2.5.3 Statistical and Graphical Approaches

There are different classifiers which make use of statistical measures like probabil-

ity and conditional probability. For example, naive Bayes (NB) classifier provides

a probability that a given data sample belongs to a specific class [79]. NB classifier

is based on Bayes’ rule. It makes a naive (strong) assumption that all variables are

statistically independent and contribute towards classification. Another classifier

is Bayesian network, which uses a directed acyclic graph to represent a set of

random variables and their conditional dependencies. A Bayesian network is a

probabilistic graphical model where each feature corresponds to one node. A

Bayesian network unrolled in the time axis is dynamic Bayesian network (DBN)

[80]. DBN contains multiple random variables in its state space.
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There exist some other graphical models which have been widely used for

classification. For example, a simplified version of DBN with fixed graph structure

and only one random variable is hidden Markov model (HMM) [81]. HMM is a

generative model which assumes that the model is a Markov process with hidden

(unobserved) states. HMM models the transition matrix based on the training

data to give the output. HMM assumes that the observations are independent

given their labels. This assumption is violated if the observations have complex

features. Whereas, this assumption is abandoned in [82] by conditioning on the

entire observations. In [82], conditional random field (CRF) was presented, which

is a discriminative model and a generalization of HMM [82]. CRF is an undirected

graphical model which gives the conditional probability of a label sequence given

a sequence of observations. CRF has more discriminative power than HMM,

and it outperforms HMM for classification purpose [82]. There also exist some

variants of CRF for the recognition task in computer vision, e.g., hidden CRF [83],

multi-scale CRF (mCRF) [84], and latent dynamic CRF (LDCRF) [85].

2.5.4 Support Vector Machines

Support vector machines (SVM) classifier is widely used for classification prob-

lem [86]–[90]. SVM constructs a hyperplane in high-dimensional space, which

separates features of two classes on either side of it. The hyperplane achieves a

good separation if it maximizes its distance to the nearest data point of any class.

The margin should be large to reduce the generalization error. SVM classifier

is generally fast and yields good classification results. The original SVM was

designed in [86], which is a linear classifier. Later in [89], different kernel tricks

were applied which resulted in a non-linear SVM classifier. Some widely used

kernel functions include polynomial, sigmoid, and radial basis function. There

also exist some extensions of SVM such as multi-class SVM, transductive SVM,

structured SVM, and Bayesian SVM.

2.5.5 Neural Networks and Deep Learning

Artificial neural network (ANN) has achieved a great attention for the task of

classification and recognition [91]–[97]. ANN consists of a group of connected
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units called neurons organized into multiple layers: input layer, hidden layers,

output layer. Input layer is made of input neurons, and it receives the information

that needs to be processed. Hidden layers are made of hidden neurons, and they

process the data. Output layer is made of output neurons, and it yields the

results of the network. To map the input to the output, ANN learns the weights

on the connections between the neurons. The learning of weights is usually time

consuming, the learning time is increased even further for multiple hidden layers.

For a better performance, the hidden layers have parameters which usually need

to be tuned.

There exist different types of ANN such as extreme learning machines (ELM)

[92], deep neural network (DNN) [93], and convolutional neural network (CNN)

[94]. Extreme learning machines were originally presented for generalized single-

hidden layer feedforward networks. An important aspect of ELM is that it has

only one hidden layer of neurons which needs not to be tuned. This is different

from general network structure of neural networks where parameter tuning is

required for hidden layers. The learning using ELM is much faster and the

training error is much smaller than common neural networks. Since the hidden

layer in ELM needs not to be tuned, and its parameters can be fixed, the output

weights can be resolved via least-square method. In comparison, a deep neural

network has multiple hidden layers of neurons between the input and the output

layers. DNN can have a large number of hidden layers where every neuron in

one layer is connected to a neuron in the next layer. This leads to overfitting

and very slow learning. DNN can be applied on raw input data, and it learns

features directly from the data rather than extracting features manually. CNN is

similar to DNN but its hidden layers contain special layers called convolutional

and pooling layers. These layers apply convolution and pooling operations on

patches of neurons in one layer and pass the output to the next layer. Since

only a patch of neurons in one layer is connected to a neuron in next layer,

the number of connections between hidden layers is less than that of in DNN.

CNN has recently been used for image and video classification. For example,

fast feature embedding using convolutional networks for images [95], learning

of spatio-temporal features using 3D convolutional networks for videos [96], and
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Figure 6.1: Sample video frames from the MediaEval VSD2014 dataset [171].

Development and Test subsets consist of Hollywood movies, and the Generalization

subset contains video clips from YouTube. There are twenty-four movies in the

Development, seven movies in the Test, and eighty-six clips in the Generalization

subsets, with average violence rate of 12.35%, 17.18%, and 31.69%, respectively.

Frame level binary annotations are provided for all the scenes. The violent scenes

are identified by their start and end frames. Fig. 6.1 shows some violent scenes

(e.g., explosion, fights, gun-shot, screaming, and war violence) from the VSD2014

dataset.

To be consistent with the participating teams for the VSD Affect task at MediaE-

val 2014, we perform the same violence detection task and use the same evaluation

protocol. The VSD Affect task aim to auto-detect the violent video segments in

movies by indicating their start and end frames. With this information, it is easy

to make a summarized video containing violent scenes for parental guidance.

For evaluation, a modified version of the mean average precision (MAP): dubbed
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MAP2014, is used [171]. The MAP2014 measure considers as a hit only predicted

segments that overlap by more than 50% with their corresponding ground truth

segments. If there are multiple hits on the same ground truth, only one true

positive is counted and the rest are ignored.

In our audio-visual recognition system, the audio features are extracted using

MFCC and visual features are extracted using the RDT method. The audio-visual

features are then represented by the SDTD model. The implementation details

of audio-visual features extraction and representation are given previously in

Sections 3.3.4.2, 3.2.5.2, and 4.4.2. The videos in the test subsets (i.e., Test and

Generalization) are subdivided into 75 frames clips. For the desired segment level

prediction output, the continuous clips are merged to get a single video segment

if they are all classified as violent or non-violent.

6.3.3 Classification results for Violent Scene Detection

The classification results for the proposed audio-visual recognition system are

presented in this section. The classification results are obtained using the best

configuration of our SDTD model, as concluded in Chapter 4. For this purpose,

SDV is used for feature encoding (with dictionary size of 500), HOOI algorithm

is used for tensor decomposition, Fisher ranking is used for feature selection, and

ELM is used for classification. The MAP2014 scores as a function of number of

features are given in Fig. 6.2 for the two VSD2014 subsets: Test (Hollywood) and

Generalization (YouTube). The highest MAP2014 score of 61.6% is achieved for

the Test (Hollywood) subset using 8,000 features. The highest MAP2014 score of

68.4% is achieved for the Generalization (YouTube) subset using 7,500 features.

6.3.4 Comparison with State-of-the-art Methods for Violent Scene
Detection

The proposed audio-visual recognition system i.e., RDT+SDTD, is compared with

several methods presented for the VSD Affect task at MediaEval 2014. The par-

ticipating teams include RECOD [169], FUDAN [172], FAR [173], NII-UIT [174],

MIC-TJU [175], VIVOLAB [176], TUB-IRML [177], and MTMDCC [178]. The

MAP2014 scores of the RDT+SDTD and other methods for the Test (Hollywood)
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Figure 6.2: MAP2014 score versus number of features for the Test (Hollywood)
and Generalization (YouTube) subsets.

and Generalization (YouTube) subsets are given in Table 6.5. The MAP2014 scores

of the other methods are directly taken from the references shown in the table.

For the Test (Hollywood) subset, the RDT+SDTD achieves a MAP2014 score of

61.6%, and it outperforms all other methods except for FUDAN which has a score

of 63.0%. For the Generalization (YouTube) subset, the RDT+SDTD achieves a

MAP2014 score of 68.4%, and it outperforms all other methods including FU-

DAN.

The Friedman’s test is not feasible for the statistical significance comparison

of different methods tested on VSD2014 dataset. The reason is that VSD2014

is not a multi-class dataset like Maryland, YUPPEN, or UCF, where the CRs

(data) of individual categories are used to compute the Friedman’s p-values for

comparison between two methods. If the MAP2014 scores in Table 6.5 are used to

calculate the Friedman’s p-values, the results may look unrealistic because there

are not enough subsets or data. For example, a p-value of 0.16 is obtained when

comparing the RDT+SDTD with VIVOLAB, which indicates that the difference

between the MAP2014 scores of the two methods is not significant. Since this does

not give us a true comparison, the Friedman’s test is not performed for VSD2014

dataset to compare different methods.
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Table 6.5: MAP2014 scores ± std (in percent) of the RDT+SDTD method and
the VSD2014 participating teams for the Test (Hollywood) and Generalization
(YouTube) subsets.

Team/Method Test (Hollywood) Generalization (YouTube)

FUDAN [172] 63.0 ± 2.8 60.4 ± 3.5

NII-UIT [174] 55.9 ± 2.9 –

FAR [173] 45.1 ± 2.9 66.4 ± 3.3

MIC-TJU [175] 44.6 ± 2.9 56.6 ± 3.5

RECOD [169] 37.6 ± 2.8 61.8 ± 3.4

VIVOLAB [176] 17.8 ± 2.2 43.0 ± 3.5

TUB-IRML [177] 17.2 ± 2.2 51.7 ± 3.5

MTMDCC [178] 2.6 ± 0.9 –

RDT+SDTD 61.6 ± 2.8 68.4 ± 3.3

6.4 Chapter Summary

In this chapter, we analyze the performance of our proposed audio-video recog-

nition system for the tasks of human interaction recognition and violent scene

detection. The audio features are extracted using Mel-frequency cepstral coef-

ficients. To extract visual features, the proposed LRGS-STIP and RDT methods

are used for human interaction recognition and violent scene detection datasets,

respectively. The extracted audio-visual features are then represented through

the SDTD model for classification. Audio and visual features together provided

better classification accuracy than visual only features. The results show that the

proposed audio-visual recognition system outperforms most of the other methods

for tasks of human interaction recognition and violent scene detection.
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Audio-visual recognition systems have been proposed for automatic recogni-

tion of dynamic scenes, human actions, events, and human interactions. Many

applications include automatic surveillance, human-computer interaction, video

indexing and retrieval, games, virtual reality, and robot navigation. Existing

recognition systems show some limitations of visual feature extraction and global

feature representation in videos. We propose to extract salient and discriminative

visual features in presence of camera motion, and present a tensor based global

feature representation model to retain the spatio-temporal structure among fea-

tures. Improving individual components of a recognition system (i.e., visual

feature extraction and global feature representation) leads to better classification

accuracy for video recognition.

This chapter is organized as follows: Section 7.1 summarizes the research

contributions of the thesis; Section 7.2 outlines the future research directions;

Section 7.3 draws conclusion for the thesis.
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7.1 Research summary

The research activities have been documented in several chapters of the thesis.

They are listed and summarized as follows:

1. We provided a literature review of audio-visual recognition systems and

their individual components: audio-visual feature extraction, global feature

representation, and video classification.

2. We proposed a new method for visual feature extraction called refined dense

trajectories. Salient interest points are detected in a region of interest where

the motion is the most discriminative. The refined dense trajectories method

provides salient trajectories by discarding unnecessary and noisy interest

points.

3. We presented a novel spatio-temporal interest point detector based on a

low-rank and group-sparse matrix approximation. The detector yields a

set of salient spatio-temporal interest points that is neither too dense nor

too sparse. The detector incorporates long-term temporal interactions to

detect spatio-temporal interest points, which represent the best key points

in motion areas.

4. We integrated a short-window video stabilization in the above visual fea-

ture extraction methods to handle camera motion. The global motion is

compensated by realigning of the video frames during interest point detec-

tion and trajectory formation. This yields a stabilized set of interest points

and trajectories, which is not affected due to the camera motion and dynamic

background.

5. We proposed a unique super descriptor tensor decomposition model for

global representation of audio-visual features from multiple descriptors and

modalities. Discriminative features are obtained for classification through

decomposition of a tensor-based model followed by a feature ranking. This

retains the spatio-temporal structure among features from multiple descrip-

tors and modalities.
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7.2 Future work

Possible research directions can be summarized as follows:

1. The super descriptor tensor decomposition model is capable of accommo-

dating datasets that contain multiple modalities (e.g., text, audio, visual,

depth, and 3D shape). This capability of the super descriptor tensor decom-

position model can lead to an extension of the model towards large-scale

multi-modal datasets.

2. Tensor decomposition is inherently a computationally intensive process. A

possible research direction is to explore graphic processing units for fast

computation to accommodate real-time video processing.

3. A massive amount of video data is generated every day, e.g., thousands of

videos are uploaded on social media and video streaming websites daily.

Reducing the video annotation cost is in high demand. For this purpose,

active learning can be incorporated with the super descriptor tensor decom-

position model to automatically annotate the videos.

7.3 Conclusion

In this research project, firstly, a new method called refined dense trajectories

was proposed for visual feature extraction. This method was compared with the

widely used dense trajectories method. Our method outperforms the dense tra-

jectories method in terms of visual analysis, classification accuracy, and computa-

tion time. Secondly, a novel spatio-temporal interest point detector was presented

based on a low-rank and group-sparse matrix approximation. To handle camera

motion, a short-window video stabilization was presented, which compensates

for global motion by realigning of the video frames, during interest point detec-

tion and trajectory formation. The proposed detector was compared with some

existing spatio-temporal interest point detectors. Our detector outperforms the

other detectors in terms of valid interest point detection and classification accu-

racy, with and without adding global motion compensation. Thirdly, a unique
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super descriptor tensor decomposition model was presented for feature repre-

sentation from multiple descriptors and modalities. In our model, the super

descriptor vector coding yields best classification results for a small dictionary

size. In addition, the higher-order orthogonal interactions along with Fisher

ranking provides the best results for a small number of features used for classi-

fication. The super descriptor tensor decomposition model was compared with

existing global feature representation methods including bag-of-words and su-

per vector based models. Our model outperforms all other methods in terms of

classification accuracy. We evaluated different classifiers for our proposed audio-

visual recognition system. The extreme learning machines classifier provides the

best classification results. Lastly, the proposed visual and audio-video recogni-

tion systems were tested on multiple visual and audio-visual datasets, for the

tasks of dynamic scene recognition, action recognition, human iteraction recog-

nition, and violent scene recognition. The reliability of the obtained classification

results for the proposed recognition systems was measured using the Cohen’s

kappa coefficient. The classification results of the proposed recognition systems

were compared with other methods using the Friedman’s test. From the com-

parison, the proposed recognition systems either outperform or give comparable

classification results to the state-of-the-art methods for visual and audio-visual

recognition. In future, the proposed systems are to be employed for large-scale

multi-modal datasets. In addition, graphic processing units are to be explored for

fast processing. Furthermore, active learning is to be incorporated for automatic

annotation to accommodate large-scale datasets.
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Appendix A
Appendix

A.1 Derivation of Equation (4.2)

The gradient of the log-likelihood of p(xi) w.r.t mean µµµk for a component k,

∂
∂µµµk

ln p(xi) =
1

p(xi)
∂
∂µµµk

{
wk pk(xi)

}
. (A.1)

The R.H.S of (A.1) can be expressed as

∂
∂µµµk

ln p(xi) =
wk pk(xi)

p(xi)

[
1

wk pk(xi)
∂
∂µµµk

{
wk pk(xi)

}]
. (A.2)

Using Bayes’ rule to obtain the posterior p+k (xi) in (A.2) gives

∂
∂µµµk

ln p(xi) = p+k (xi)
[
∂
∂µµµk

ln
{
wk pk(xi)

}]
. (A.3)

Taking the gradient of the log-likelihood of wk pk(xi) leads to:

(A.4)

∂
∂µµµk

ln
{
wk pk(xi)

}
=
∂
∂µµµk

{
ln wk + ln N(xi;µµµk,σσσk)

}
=
∂
∂µµµk

ln N(xi;µµµk,σσσk).

Applying the log to the multi-variate GaussianN(xi;µµµk,σσσk) in (A.4) gives

∂
∂µµµk

ln
{
wk pk(xi)

}
=
∂
∂µµµk

{
−1

2
(xi−µµµk)Tσσσ−1

k (xi−µµµk)
}
. (A.5)

From the Equation (86) of the matrix cookbook by Peterson et al. [179], we can

simplify (A.5) as

(A.6)
∂
∂µµµk

ln
{
wk pk(xi)

}
= −1

2

{
−2 σσσ−1

k (xi −µµµk)
}

= σσσ−1
k (xi −µµµk).
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A.1. Derivation of Equation (4.2)

Finally, substituting (A.6) into (A.3) leads to:

∂
∂µµµk

ln p(xi) = p+k (xi) σσσ−1
k (xi−µµµk). (A.7)
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