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Values of Minors of (1;�1) In
iden
e Matri
es ofSBIBDs and Their Appli
ation to the GrowthProblemC. Koukouvinos�, M. Mitrouliyand Jennifer SeberryzAbstra
tWe obtain expli
it formulae for the values of the v � j minors, j = 0; 1; 2 of (1;�1)in
iden
e matri
es of SBIBD(v; k; �). This allows us to obtain expli
it information on thegrowth problem for families of matri
es with moderate growth. An open problem remainsto establish whether the (1;�1) CP in
iden
e matri
es of SBIBD(v; k; �), 
an have growthgreater than v for families other than Hadamard families.Key Words and Phrases: In
iden
e matri
es, SBIBD, minors, Gaussian elimination, growth,
omplete pivoting.AMS Subje
t Classi�
ation: Primary 05B20, 15A15, Se
ondary 65F05, 65G05.1 Introdu
tionWe evaluate the v� j; j = 0; 1; 2 minors for (1;�1) in
iden
e matri
es of 
ertain SBIBDs. Forthe purpose of this paper we will de�ne a SBIBD(v; k; �) to be a v� v matrix, B, with entries 0or 1, whi
h has exa
tly k entries +1 and v � k entries 0 in ea
h row and 
olumn and for whi
hthe inner produ
t of any distin
t pairs of rows and 
olumns is �. The (1;�1) in
iden
e matrixof B is obtained by letting A = 2B � J , where J is the v � v matrix with entries all +1. Wewrite I for the identity matrix of order v.Then we have BBT = (k � �)I + �J (1)and AAT = 4(k � �)I + (v � 4(k � �))J (2)The determinant simpli�
ation theorem (see the Appendix) shows thatdetB = (k � �) v�12 qk + (v � 1)� = k(k � �) 12 (v�1)�Department of Mathemati
s, National Te
hni
al University of Athens, Zografou 15773, Athens, Gree
eyDepartment of Mathemati
s, University of Athens, Panepistemiopolis 15784, Athens, Gree
e.zS
hool of Information Te
hnology and Computer S
ien
e, University of Wollongong, Wollongong, NSW, 2522,Australia. 1



and sin
e �(v � 1) = k2 � k, det A = 2v�1(k � �) v�12 jv � 2kj (3)or with x = v � 4k + 4�; det A = (v � x) 12 (v�1)jv � 2kj:We see the determinant is greatest for values of x 
lose to zero. Indeed x = 0 for Hadamardmatri
es.In this paper we study the appli
ation of the 
omputed values of the minors to the growthproblem. Let A = [aij ℄ 2 Rn�n. We redu
e A to upper triangular form by using Gaussianelimination with 
omplete pivoting (GECP) [9℄. Let A(k) = [a(k)ij ℄ denote the matrix obtainedafter the �rst k pivoting operations, so A(n�1) is the �nal upper triangular matrix. A diagonalentry of that �nal matrix will be 
alled a pivot. Matri
es with the property that no ex
hanges area
tually needed during GECP are 
alled 
ompletely pivoted (CP). Let g(n;A) = maxi;j;k ja(k)ij j=ja(0)11 jdenote the growth asso
iated with GECP on A and g(n) = supf g(n;A)=A 2 Rn�n g. Theproblem of determining g(n) for various values of n is 
alled the growth problem.The determination of g(n) remains a mystery. Wilkinson [9℄ 
onje
tured that g(n;A) �n8 A 2 Rn�n. This 
onje
ture is now known to be false [4℄. One of the 
urious frustrationsof the growth problem is that it is quite diÆ
ult to 
onstru
t any examples of n � n matri
esA other than Hadamard for whi
h g(n;A) is even 
lose to n. In order to obtain matri
es withlarge growth sophisti
ated numeri
al optimization te
hniques must be applied [4℄. By usingsu
h methods, matri
es with growth larger than n = 13; 14; 15; 16; 18; 20; 25 were spe
i�ed. Fora spe
ial 
ategory of orthogonal matri
es H 2 Rn�n with elements �1 and HHT = nI, it hasbeen observed that g(n;H) = n. This equality has been proved for a 
ertain 
lass of n � nHadamard matri
es [3℄. It has also been observed that weighing matri
es of order n 
an giveg(n;H) = n� 1 [5℄.Expli
it information for the pivot stru
ture for families of matri
es a
hieving moderategrowth is derived and an open problem 
on
erning the possibility of �nding (1;�1) in
iden
ematri
es of SBIBD(v; k; �) having growth greater than v is posed. We 
onje
tureConje
ture (The growth 
onje
ture for (1;�1) in
iden
e matri
es of SBIBD(v; k; �))Let A be an v � v CP (1;�1) in
iden
e matri
es of SBIBD(v; k; �). Let x = v � 4(k � �)and v; k; � not trivial. Redu
e A by GE. Then we 
onje
ture(i) g(v;A) = (v�x)(v�2k)(v�1)2(v�2k�1)(v�k) ; or (v�x)(v�2k)(v�1)2k(v�2k+1) ;(ii) The last pivot is equal to (v�x)(v�2k)(v�1)2(v�2k�1)(v�k) ; or (v�x)(v�2k)(v�1)2k(v�2k+1) ;(iii) The se
ond last pivot is equal to (v�x)2 or v�x2 � k(v�2k+1)(v�2k�1)(v�k) ;(iv) Every pivot before the last has magnitude at most v�x2 .Notation 1. Write A for a matrix of order n whose initial pivots are derived from matri
eswith CP stru
ture. Write A(j) for the absolute value of the determinant of the j � j prin
ipalsubmatrix in the upper lefthand 
orner of the matrix A and A[j℄ for the absolute value of the2



determinant of the (n� j)� (n� j) prin
ipal submatrix in the bottom righthand 
orner of thematrix A. Throughout this paper when we have used i pivots we then �nd all possible values ofthe A(n� i) minors. Hen
e, if any minor is CP it must have one of these values. The magnitudeof the pivots appearing after the appli
ation of GE operations on a CP matrix W is given bypj =W (j)=W (j � 1); j = 1; 2; : : : ; n; W (0) = 1: (4)In parti
ular for a CP SBIBD(v; k; �); A,pv = A(v)=A(v � 1); pv�1 = A(v � 1)=A(v � 2:) (5)We use the notation Mj to denote the j � j minor of A.In all determinants studied with an underlying SBIBD(v; k; �) the minors of size v� j wherej > � may need spe
ial analysis. When � = j the determinant of the n� j minor obtained byusing the two 
olumns with � ones in their �rst � pla
es gives a spe
ial 
ase. This has been
al
ulated for � = 1 but resulted in the same determinants as Table 2. We have not 
onsideredin this paper the v � 2� v � 2 minors of SBIBD(v; k; 2).For 
ompleteness we give the determinant simpli�
ation theorem in Appendix as we use itextensively in this paper.2 The (v � 1)� (v � 1) minorsClearly the determinant of the (�1) in
iden
e matrix of an SBIBD(v; k; �) and the (�1) in-
iden
e matrix of its 
omplementary SBIBD(v; v � k; v + 2k � �) are negatives of ea
h other.Hen
e their determinants have the same absolute value.We show the (v�1)�(v�1) subdeterminants of the (�1) in
iden
e matrix of an SBIBD(v; k; �)take two values. We show one value arises if the (1,1) and (1,2) elements have the same sign(+) and the other o

urs if the (1,1) and (1,2) elements have di�erent signs. These also 
orre-spond to forming the (v � 1) � (v � 1) submatrix by removing the �rst row and 
olumn of theSBIBD(v; k; �) and its 
omplementary SBIBD(v; v � k; v � 2k + �).Theorem 1 The (v � 1)� (v � 1) minors of the (1;�1) in
iden
e matrix of anSBIBD(v; k; �), A, have value(v � x) 12 (v�3)q(v � 2k � 1)2x+ (x� 1)(�vx � v + 2x): (6)= 8<: (v � x) 12 (v�3)2(v � k) (v�2k�1)(v�1)(v � x) 12 (v�3)2k (v�2k+1)(v�1)where x = v � 4(k � �) and � = k (k�1)(v�1) . For x = 1 the minor is(v � 1) 12 (v�3)(v � 2k � 1):Proof. The inner produ
t of any two rows of the (1;�1) in
iden
e matrix of any SBIBD(v; k; �)is x = v � 4(k � �). We have two 
ases: 3



1 1 1 � � � �1 � 11k � 1 ... C11�v � k ... C2�Figure 1: The Generi
 Form for Case(v � 1; 1)� 1 1 � � � �1 � 11k ... C11�v � k � 1 ... C2�Figure 2: The Generi
 Form For Case(v � 1; 2)Case(v � 1; 1) We rearrange the rows and 
olumns of A until we have the matrix stru
turein Figure 1, where C1 is rows 2; : : : ; k and 
olumns 2; : : : ; v, while C2 is rows k + 1; : : : ; v and
olumns 2; : : : ; v. The inner produ
t of any pair of rows of C1 is x� 1; the inner produ
t of anypair of rows of C2 is x� 1; the inner produ
t of any pair of rows where one row is in C1 and theother row is in C2 is x+ 1. Thus we have, with CT = hCT1 CT2 i, the determinant simpli�
ationtheorem with q = v � k, p = k � 1 givesdet (CCT ) = (v � x)v�3 ����� v � 1 + (x� 1)(p� 1) (x+ 1)q(x+ 1)p v � 1 + (x� 1)(q � 1) �����= (v � x)v�3[(v � 2k + 1)2x+ (x� 1)(�vx � v + 2x)℄: (7)= (v � x)(v�3)4(v � k)2 (v � 2k � 1)2(v � 1)2Case(v� 1; 2) We rearrange the rows and 
olumns of A until we have the matrix arranged as inFigure 2. C1 is rows 2; : : : ; k+1 and 
olumns 2; : : : ; v, while C2 is rows k+2; : : : ; v and 
olumns2; : : : ; v. The inner produ
t of any pair of rows of C1 is x� 1; the inner produ
t of any pair ofrows of C2 is x� 1; the inner produ
t of any pair of rows where one row is in C1 and the otherrow is in C2 is x+ 1.Thus we have, using the determinant simpli�
ation theorem with p = k and q = v � k � 1,det (CCT ) = (v � x)v�3[(v � 2k � 1)2x+ (x� 1)(�vx� v + 2x)℄; (8)4



1 b 1 : : :
 d 1 : : :1 1p ... ... C11 11 �q ... ... C21 �� 1r ... ... C3� 1� �s ... ... C4� �Figure 3: The Generi
 Matrix for the Seven Cases for Minors A(v � 2)= (v � x)(v�3)4k2 (v � 2k + 1)2(v � 1)2as required. The result for x = 1 is obtained by substitution and rearrangement. 2Ea
h SBIBD(v; k; �) has a 
omplementary SBIBD(v; v�k; v�2k+�). The se
ond result (8)
an also be obtained from the �rst (7) above by applying the �rst result (7) to the 
omplementarySBIBD(v; k; �).3 The (v � 2)� (v � 2) minorsWe now 
onsider the (v�2)�(v�2) minors. We �rst observe that while � = 1 
auses no 
hangeto the value of the (v � 1) � (v � 1) determinant, there is potential for the (v � 2)� (v � 2) todi�er. As before we 
onsider all 
ases.We 
hoose the (1,1) element to be 1 (otherwise we negate the whole matrix, obtaining amatrix whose determinant has the same absolute value, and pro
eed as before). We 
hoose thematrix to be CP in the �rst two steps and thereafter �nd all possible determinants of A(v � 2)so if the matrix is CP it must have one of these determinants.We 
onsider seven 
ases after rearranging the rows and 
olumns of A: 
alled Case (v �2; i); i = 1; 2; 3; 4; 5; 6; 7. Only 
ases i=1,2,3 
an possibly be CP. We have the matrix arrangedas in Figure 3. Here p, q, r and u are the number of 
olumns beginning with the 
orrespondingtwo �rst elements,(1; 1); (1;�1); (�1; 1) and (�1;�1) respe
tively as des
ibed in Table 1, andp+ q + r + u = v � 2.Write x = v � 4(k � �). Then a simple variant of the determinant simpli�
ation theoremgives the required determinant of CCT , in this 
ase, as5



1 b p q r u
 dCase(v � 2; 1) 1 1 �� 1 k � �� 1 k � � v � 2k + �1 �Case(v � 2; 2) 1 1 �� 1 k � � k � �� 1 v � 2k + �� 1Case(v � 2; 3) 1 � � k � �� 1 k � � v � 2k + �� 1� �Case(v � 2; 4) 1 1 �� 2 k � � k � � v � 2k + �1 1Case(v � 2; 5) 1 1 �� 1 k � � k � � v � 2k + �� 1� �Case(v � 2; 6) 1 � � k � �� 1 k � �� 1 v � 2k + �� 1Case(v � 2; 7) 1 � � k � �� 2 k � � v � 2k + �1 �Table 1: Parameter Values for Cases(v � 2; i), i = 1; 2; � � � ; 7
(v � x)v�6 ����� v � x+ p(x� 2) qx rx u(x+ 2)px v � x+ q(x� 2) r(x+ 2) uxpx q(x+ 2) v � x+ r(x� 2) uxp(x+ 2) qx rx v � x+ u(x� 2) ����� : (9)Now using P = v � x� 4p, Q = v � x� 4q, R = v � x� 4r, and U = v � x� 4u we obtaindet (CCT ) = (v � x)v�6[4(x + 1)(pqRU + prQU + quPR+ ruPQ) (10)+ (x+ 2)(pQRU + qPRU + rPQU + uPQR) + PQRU ℄:We now 
onsider the seven 
ases summarized in Table 1 and �nd by lengthy but straight-forward 
al
ulation, the minors given in Table 2.Lemma 1 The value of the (v�2)�(v�2) minors obtained from Case(v�1; 1) and Case(v�1; 2)are equal.Proof. This 
an be seen from Table 2 or by noting the 2� 2 prin
ipal submatri
es are permu-tations of ea
h other. 2Hen
e we haveTheorem 2 The (v�2)�(v�2) minors of the (1;�1) in
iden
e matrix of an SBIBD(v; k; �),A, have values as summarized in Table 2. 6



1 b P Q R U det C=(v � x) v�52
 dCase(v � 2; 1) 1 1 2(v � x� 2k + 2) 4 0 �2(v + x� 2k) 4(v � 2k � 1) (v�k)(v�1)1 �Case(v � 2; 2) 1 1 2(v � x� 2k + 2) 0 4 �2(v + x� 2k) 4(v � 2k � 1) (v�k)(v�1)� 1Case(v � 2; 3) 1 � 2(v � x� 2k) 4 0 �2(v + x� 2k + 2) 4k (v�2k+1)(v�1)� �Case(v � 2; 4) 1 1 2(v � x� 2k + 4) 0 0 �2(v + x� 2k) 01 1Case(v � 2; 5) 1 1 2(v � x� 2k + 2) 0 0 �2(v + x� 2k + 2) 0� �Case(v � 2; 6) 1 � 2(v � x� 2k) 4 4 �2(v + x� 2k) 4 ((v�2k)2�k)(v�1)� 1Case(v � 2; 7) 1 � 2(v � x� 2k) 8 0 �2(v + x� 2k) 01 �Table 2: Determinant Values for Cases(v � 2; i), i = 1; 2; � � � ; 7For x = 1 these give the minor as2(v � 1) 12 (v�5)(v � 2k � 1) or 0 or 2(v � 1) 12 (v�5)q2[(v � 2k)2 + 2� 1� 2v℄:Proof. Use p = �� 1, q = k � �� 1, r = k � �, s = v � 2k � �, P = 2(v � x� 2k + 2), Q = 4,R = 0 and U = �2(v+x� 2k) in (10) to get the the result for Case(v� 2; 1) and Case(v� 2; 2).The result for Case(v � 2; 3) arises by repla
ing k by v � k.The result for Case(v � 2; 3) also 
omes from using p = �, q = k � �, r = k � � � 1,s = v� 2k+ �� 1, P = 2(v � x� 2k), Q = 0, R = 4 and U = �2(v+ x� 2k +2) in (10). Onlythese three 
ases 
ould be part of a CP matrix.The determinant of the (v� 2)� (v� 2) minors of the 1;�1 in
iden
e matrix of an SBIBDobtained by deleting the minors with elements" 1 11 1 # " 1 1� � # " � �1 1 # " � �� � #is found, by using Q = R = 0 in equation (10), to be zero. Thus the determinant in Case(v�2; 4)and Case(v � 2; 5) is zero.Case(v � 2; 6) and Case(v � 2; 7) are obtained by using the appropriate values for P , Q, Rand U from Table 2 27



Case(v)Case(v�1;1) (v�x)(v�2k)(v�1)2(v�2k�1)(v�k)Case(v)Case(v�1;2) (v�x)(v�1)(v�2k)2k(v�2k+1)Table 3: Pivots pv for SBIBDCase(v)Case(v�1;1) (v�1)(v�2k)v�2k+1Case(v)Case(v�1;2) (v�1)(v�2k)v�2k�1Table 4: Pivots pv for SBIBD for x = 1Remark 1 We see, by observing the upper lefthand 2 � 2 matrix, that Case(v � 2; 3) is the
omplement of Case(v � 2; 1). 24 Pivot stru
ture for SBIBD(v; k; �)We observe that Mv�1 has two values that may appear in CP matri
esCase(v�1; 1) = (v�x) 12 (v�3)2(v�k)(v � 2k � 1)(v � 1) ; Case(v�1; 2) = (v�x) 12 (v�3)2k (v � 2k + 1)(v � 1)We observe that Mv�2 has four values of whi
h the following two may appear in CP matri
esCase(v�2; 1 or 2) = 4(v�x) 12 (v�5)(v�2k�1)(v � k)(v � 1) ; Case(v�2; 3) = 4k(v�x) 12 (v�5) (v � 2k + 1)(v � 1) :We use (5). Then in Case(v � 1; 1) and Case(v � 1; 2) the pivots are given in Table 3. Forx = 1 the pivots are given in Table 4.Lemma 2 The pivot pv = (v�x)(v�1)(v�2k)2k(v�2k+1) > v for an SBIBD(v; k; �).Proof. We note for a SBIBD(v; k; �); � = k (k�1)(v�1) so x = 4� 4k+4k (k�1)(v�1) . We used Matlab toevaluate the pivot more exa
tly obtainingpv = (v � 2k)((v � 2k)2 + (v � 4)(v � 1)2k(v � 2k + 1) > v:Now v > k for all non trivial SBIBD so pv > v for v 6= 2k. 2We note those 
ases asso
iated with Cases(v � 2; `); ` = 4; 5; 6 or 7 
annot o

ur in CPmatri
es. For the remainder of this paper we will not 
onsider the Cases (v � 2; 4); (v �2; 5); (v � 2; 6); (v � 2; 7) further. We use (5). Then in Case(v � 1; 1) and Case(v � 1; 2) thepivots are given in Table 5. For x = 1 the pivots are given in Table 6.8



Case(v�1;1)Case(v�2;1) v�x2Case(v�1;1)Case(v�2;3) v�x2 (v�k)(v�2k�1)2k(v�2k+1)Case(v�1;2)Case(v�2;2) v�x2 k(v�2k+1)(v�2k�1)(v�k)Case(v�1;2)Case(v�2;3) v�x2Table 5: Pivots pv�1 for SBIBDCase(v�1;1)Case(v�2;1) v�12Case(v�1;1)Case(v�2;3) (v�1)(v�2k�1)2(v�2k+1)Case(v�1;2)Case(v�2;1) (v�1)(v�2k+1)2(v�2k�1)Case(v�1;2)Case(v�2;3) v�12Table 6: Pivots pv�1 for SBIBD where x = 1Remark 2 We found for all (1;�1) SBIBD(v; k; �), ex
ept those related to Hadamard matri
es,there is the theoreti
al possibility that the growth is greater than the order v. In pra
ti
e we wereunable to �nd any CP (1;�1) SBIBD with growth > v leaving this possibility as an intriguingopen question. 25 Pivot stru
ture for SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1))In this se
tion we are espe
ially interested in the growth problem for the Brouwer familySBIBD(2s2 + 2s + 1; s2; 12s(s � 1)), (x = 1). The Brouwer family for s an odd prime power
an be found in [2℄. For s = 2 the SBIBD(13; 4; 1) is well known as the proje
tive plane oforder 3. The result for s = 4 was given by Bridges, Hall, and Hayden [1℄.Let dv denote the maximum determinant of all v � v matri
es with elements �1. It followsfrom Hadamard's inequality that dv � vv=2 and it is easily shown that equality 
an only hold ifv = 1 or 2 or if v � 0(mod 4). If v � 1(mod 4), v 6= 1, Payne [6℄, showed thatdv � (v � 1)(v�1)=2p2v � 1and equality 
an hold only if v = 2s2 + 2s+ 1, s = 1; 2; 3; : : :. In this 
ase we 
an write dv asdv � 2s2+sss2+s(s+ 1)s2+s(2s+ 1):Raghavarao [7℄ 
onstru
ted these v�v matri
es with elements �1 for v = 5; 13; 25 with maximumdeterminant. Brouwer [2℄ 
onstru
ted the v � v matri
es with maximum determinant for v =2s2 + 2s+ 1, when s is an odd prime power, i.e., for v = 25; 61; 113; 181; 265; : : :.Conje
ture (The growth 
onje
ture for Brouwer's SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1)))9



Let A be an v� v CP SBIBD(2s2 +2s+1; s2; 12s(s� 1)) of the Brouwer type. Redu
e A byGE. Then we 
onje
ture(i) g(v;A) = s(2s+ 1); or (s+ 1)(2s+ 1) v > 13;(ii) The last pivot is equal to s(2s+ 1) or (s+ 1)(2s+ 1);(iii) The se
ond last pivot is equal to s(s+ 1) = v�12 or s2 or (s+ 1)2;(iv) Every pivot before the last has magnitude at most v�12 ;(v) The �rst four pivots are equal to 1; 2; 2; 4;(vi) The �fth pivot may be 2 or 3.We prove (ii), (iii), (v) and (vi) in this paper.Theorem 3 Let A be the v�v SBIBD(2s2+2s+1; s2; 12s(s�1)) design of Brouwer type. Redu
eA by GECP, then the last two pivots are s(2s + 1), and s(s + 1) = v�12 or s2, respe
tively, forCase(v � 1; 1) and (2s+ 1)(s+ 1) and s(s+ 1) or (s+ 1)2, respe
tively, for Case(v � 1; 2).Proof. Sin
e Mv = (2s2 + 2s)s2+s(2s+ 1)Mv�1 = 2(s+ 1)(2s2 + 2s)s2+s�1 or 2s(2s2 + 2s)s2+s�1Mv�2 = 4(s+ 1)(2s2 + 2s)s2+s�2 or 4s(2s2 + 2s)s2+s�2using (5) we obtain the required result. 2We give some values for the family SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1)).Case(v � 1; 1) Case(v � 1; 2)v s pv pv�1 pv pv�1s(2s+ 1) s(s+ 1) or s2 (s+ 1)(2s + 1) s(s+ 1) or (s+ 1)25 1 3 225 3 21 12 9 28 12 1641 4 36 20 16 45 20 2561 5 55 30 25 66 30 36As the SBIBD for v = 5 is unique, we show, by 
omputation, there is no entry for v = 5 inCase (v � 1; 2).By dete
ting the pivot stru
ture of Brouwer's SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1)), Table 7 was
omputed.Remark 3 We experimented with the SBIBD(25,9,3). After testing 40000 equivalent matri
eswe observed that always the �ve �rst pivots were 1; 2; 2; 4; 2 or 3 whereas the three last pivotsin ba
kward order were 242 or 245=2 ; 242 or 243=2 ; 21. 210



s v growth Pivot Pattern3 25 21 (1; 2; 2; 4; 3; 103 ; 185 ; 4; 4; 92 ; 5:1825; 5:4857; 4:75; 5:4737;5:1923; 163 ; 2410=3 ; 163 ; 2416=5 ; 2410=3 ; 243 ; 2416=5 ; 245=2 ; 242 ; 21)4 41 36 (1; 2; 2; 4; 3; 103 ; 185 ; 4; 4; 133 ; 4:9231; : : : ;404 ; 404 ; 402 ; 404 ; 402 ; 402 ; 36)5 61 55 (1; 2; 2; 4; 3; 103 ; 185 ; 4; 4; 5; 5:4; : : : ; 604 ; 602 ; 602 ; 55)Table 7: Growth Fa
tors and Pivots Patterns for small CP Brouwer SBIBDThe next result is easy to prove using a 
ounting argument and noting the inner produ
t ofevery pair of rows is +1 to see that the design always 
ontains a 4� 4 Hadamard matrix.Proposition 1 Let A be the v � v (1;�1) in
iden
e matrix of an SBIBD of the Brouwer type.Redu
e A by GECP then the magnitudes of the �rst four pivots are 1; 2; 2 and 4; the magnitudeof ja(4)55 j is 2 or 3.Proof: Sin
e the design always 
ontains a 4� 4 Hadamard matrix, this 
an be moved to bethe 4 � 4 prin
ipal minor without 
hanging the CP property.Thus the �rst four pivots will be1; 2; 2 and 4 [3℄. Be
ause every entry in A(3) is of magnitude 0; 2 or 4, pivoting on a(3)44 will onlyinvolve adding �1 or �1=2 times the fourth row of A(3) to the rows below, and this will 
reateonly integer entries in A(4). Thus ja(4)55 j must be an integer satisfying the relationA(1 2 3 4 5) = 16ja(4)55 j � 44=2p10� 1) ja(4)55 j � 3:where A(1 2 3 4 5) denotes the determinant of the 5 � 5 prin
ipal submatrix of A. Thus ja(4)55 jmust be 1; 2 or 3. To see that it 
annot be 1 is to show that one 
ould not haveA(4) = 2666664 1 2 2 4 B
3777775where every entry of B is zero or �1; for, if that were true, then B would be a normalized(v � 4)� (v � 4) matrix, and so jdetBj � (v � 4) v�42 :But jdetBj = (v�1) v�12 p2v�116 and it is easily 
he
ked that these 
annot both hold when v > 4. 2Proposition 2 Let A be the 5� 5 (1;�1) in
iden
e matrix of an SBIBD of the Brouwer type.Redu
e A by GECP then the pivot stru
ture is unique and is equal to (1; 2; 2; 4; 3).Proof: Be
ause of the above proposition we have that the �rst four pivots are 1; 2; 2; 4. Itfollows that A(5) = (5 � 1)(5�1)=2p2 � 5� 1 = 48 sin
e 5 = 2s2 + 2s + 1, s = 1. Thus the �fthpivot will be de�ned by the relation p5 = A(5)A(4) = 4816 = 3. 211



Minor of Minor of Minor of(2s2 + 2s+ 1; s2; �) (4s2; 2s2 + s; s2 + s) (4t� 1; 2t � 1; t� 1)� = 12(s2 � s))Case(v � 2; 1) 4(s+ 1)(2s2 + 2s)s2+s�2 2(4s2)2s2�2 0& Case(v � 2; 2)Case(v � 2; 3) 4s(2s2 + 2s)s2+s�2 2(4s2)2s2�2 4(4t)2t�3Case(v � 2; 4) 0 0 0& Case(v � 2; 5)Case(v � 2; 6) 4(2s2 + 2s)s2+s�2 0 4(4t)2t�3Case(v � 2; 7) 0 0 0Table 8: Values of Large Minors of Some SBIBD6 Other Families of SBIBDsWe now use (5) to obtain results for other families of SBIBD.6.1 The Growth of the Finite Proje
tive Planes SBIBD(s2 + s + 1; s + 1; 1)Theorem 4 Let A be the v�v (1;�1) in
iden
e matrix of the �nite proje
tive plane SBIBD(s2+s+ 1; s+ 1; 1); s > 3. Redu
e A by GECP, then the last two pivots arepv = 2(s2 � s� 1)s� 2 or 2s(s2 � s� 1)s� 1and pv�1 = 2s or 2(s� 1)s� 2 :Proof. Sin
e Mv = 2s2+ss s2+s2 (s2 � s� 1):Mv�1 = 2s2+s�1s s2+s2 (s� 2) or 2s2+s�1s s2+s�22 (s� 1):Mv�2 = 2s2+s�2s s2+s�22 (s� 2) or 2s2+s�2s s2+s�42 (s� 1):The values of the two last pivots are spe
i�ed from the above formulae. 2Remark 4 We experimented with the SBIBD(31,6,1). Its A(n � 1) minor is 214 � 3 � 1015 or217 � 1014 depending on the 
ase 
onsidered in Theorem 1. Our 
al
ulations always found theCP matrix had M30 = 214 � 3 � 1015 although our theory also allows for M30 = 217 � 1014. Thus,in our examples, the last pivot was always equal to 383 and not 952 . 212



6.2 The Growth of the Menon-Hadamard Family SBIBD(4s2; 2s2 � s; s2 � s)Theorem 5 Let A be the v� v regular Hadamard matrix from the SBIBD(4s2; 2s2 � s; s2� s).Redu
e A by GECP, then the last two pivots are v, and v2 .Proof. Sin
e Mv = (4s2)2s2 ; Mv�1 = (4s2)2s2�1; Mv�2 = 2(4s2)2s2�2the values of the two last pivots are 4s2, and 2s2, respe
tively. 26.3 The Growth of the Hadamard Family SBIBD(4t� 1; 2t� 1; t� 1)Theorem 6 Let A be the v � v (1;�1) in
iden
e matrix of the Hadamard family SBIBD(4t �1; 2t� 1; t� 1). Redu
e A by GECP, then the last two pivots are 2t, and 2t.Proof. The last two pivots are 
omputed straightforwardly using formula (5) sin
eMv = (4t)2t�1; Mv�1 = 2(4t)2t�2; Mv�2 = 4(4t)2t�3:Thus, the values of the two last pivots are 2t, and 2t. 2We give the results for some families of SBIBD(v; k; �) in Table 8.Referen
es[1℄ W.G. Bridges, M. Hall Jr., and J.L. Hayden, Codes and designs, J. Combin. Theory, Ser.A, 31 (1981), 155-174.[2℄ A.E. Brouwer, An in�nite series of symmetri
 designs, Math. Centrum Amsterdam ReportZW 202/83, 1983.[3℄ J. Day, and B. Peterson, Growth in Gaussian elimination, Amer. Math. Monthly, 95 (1988),489-513.[4℄ N. Gould, On growth in Gaussian elimination with pivoting, SIAM J. Matrix Anal. Appl.,12 (1991), 354-361.[5℄ C. Koukouvinos, M. Mitrouli and J. Seberry, Growth in Gaussian elimination for weighingmatri
es W (n; n� 1), Linear Algebra and its Appli
ations, 306 (2000), 189-202.[6℄ S.E. Payne, On maximizing det(ATA), Dis
rete Math., 10 (1974), 145-158.[7℄ D. Raghavarao, Some optimum weighing designs, Ann. Math. Statist., 30 (1959), 295-303.[8℄ A.P. Street, and D.J. Street, Combinatori
s of Experimental Design, Oxford UniversityPress, New York, 1987.[9℄ J. H. Wilkinson, The Algebrai
 Eigenvalue Problem, Oxford University Press, London(1988). 13



7 Appendix: The Determinant Simpli�
ation TheoremWe use the notation CCT = (k � aii)Ib1;b2;���;bz + aijJb1;b2;���;bzfor a matrix of blo
ks with integer multiples. For example the matrixCCT = (k � aii)Iu;v;w;x + aijJu;v;w;x (11)where (aij) = 26664 a b 
 db a e f
 e a gd f g a 37775 is the (u+ v + w + x)� (u+ v + w + x) matrix

CCT =
2666666666666666666666666666666666664

uz }| {k a � � � a vz }| {b b � � � b wz }| {
 
 � � � 
 xz }| {d d � � � da k � � � a b b � � � b 
 
 � � � 
 d d � � � d... ... ... ... ... ... ... ... ... ... ... ...a a � � � k b b � � � b 
 
 � � � 
 d d � � � db b � � � b k a � � � a e e � � � e f f � � � fb b � � � b a k � � � a e e � � � e f f � � � f... ... ... ... ... ... ... ... ... ... ... ...b b � � � b a a � � � k e e � � � e f f � � � f
 
 � � � 
 e e � � � e k a � � � a g g � � � g
 
 � � � 
 e e � � � e a k � � � a g g � � � g... ... ... ... ... ... ... ... ... ... ... ...
 
 � � � 
 e e � � � e a a � � � k g g � � � gd d � � � d f f � � � f g g � � � g k a � � � ad d � � � d f f � � � f g g � � � g a k � � � a... ... ... ... ... ... ... ... ... ... ... ...d d � � � d f f � � � f g g � � � g a a � � � k

3777777777777777777777777777777777775
:

We now give a theorem proved similarly to the proof for �nding the determinant of an SBIBDin [8, Theorem3,p32℄.Theorem 7 (Determinant Simpli�
ation Theorem) LetCCT = (k � aii)Ib1;b2;���;bz + aijJb1;b2;���;bzthen det CCT = �zi=1(k � aii)bi�1det D (12)where D = 266664 k + (b1 � 1)a11 b2a12 b3a13 � � � bza1zb1a21 k + (b2 � 1)a22 b3a23 � � � bza2z... ... ... ...b1az1 b2az2 b3az2 � � � k + (bz � 1)azz 37777514



Corollary 1 Suppose C is the matrix of order (u + v + w + x) � (u + v + w + x), wheren = u+v+w+x, for whi
h CCT is given above, satisfying CCT = (k�aii)Iu;v;w;x+aijJu;v;w;x:Then det CCT = (k � a)n�4det Dwhere D = 26664 k + (u� 1)a vb w
 xdub k + (v � 1)a we xfu
 ve k + (w � 1)a xgud vf wg k + (x� 1)a 37775 : (13)
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