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Values of Minors of (1, —1) Incidence Matrices of
SBIBDs and Their Application to the Growth
Problem

C. Koukouvinos* M. Mitroulifand Jennifer Seberry?

Abstract

We obtain explicit formulae for the values of the v — j minors, j = 0,1,2 of (1,—1)
incidence matrices of SBIBD (v, k,A). This allows us to obtain explicit information on the
growth problem for families of matrices with moderate growth. An open problem remains
to establish whether the (1, —1) CP incidence matrices of SBIBD(v, k, A), can have growth
greater than v for families other than Hadamard families.

Key Words and Phrases: Incidence matrices, SBIBD, minors, Gaussian elimination, growth,
complete pivoting.
AMS Subject Classification: Primary 05B20, 15A15, Secondary 65F05, 65G05.

1 Introduction

We evaluate the v — j, j =0, 1,2 minors for (1, —1) incidence matrices of certain SBIBDs. For
the purpose of this paper we will define a SBIBD(v, k, A) to be a v x v matrix, B, with entries 0
or 1, which has exactly k entries +1 and v — k entries 0 in each row and column and for which
the inner product of any distinct pairs of rows and columns is A. The (1, —1) incidence matrix
of B is obtained by letting A = 2B — J, where J is the v X v matrix with entries all +1. We
write I for the identity matrix of order v.

Then we have

BBT = (k= NI+ \J (1)
and
AAT = 4(k — NI+ (v —4(k — \)J (2)
The determinant simplification theorem (see the Appendix) shows that

detB = (k — \)"T \/k + (v — DA = k(k — ) 7@
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and since A(v — 1) = k2 — k,

V-

det A=2""V(k - \)T |v — 2k (3)

or with z = v — 4k + 4,
1
det A= (v—2)7"" Dy — 2.

We see the determinant is greatest for values of x close to zero. Indeed z = 0 for Hadamard
matrices.

In this paper we study the application of the computed values of the minors to the growth
problem. Let A = [a;;] € R™™". We reduce A to upper triangular form by using Gaussian

elimination with complete pivoting (GECP) [9]. Let A) = [az(-f)] denote the matrix obtained

after the first k pivoting operations, so A1) is the final upper triangular matrix. A diagonal

entry of that final matrix will be called a pivot. Matrices with the property that no exchanges are

actually needed during GECP are called completely pivoted (CP). Let g(n, A) = max \az(f) |/|a(1[i)|
Zi]?

denote the growth associated with GECP on A and g(n) = sup{g(n,A)/A € R"*"}. The
problem of determining g(n) for various values of n is called the growth problem.

The determination of g(n) remains a mystery. Wilkinson [9] conjectured that g(n, A) <
n¥ A € R" ™. This conjecture is now known to be false [4]. One of the curious frustrations
of the growth problem is that it is quite difficult to construct any examples of n x n matrices
A other than Hadamard for which g(n, A) is even close to n. In order to obtain matrices with
large growth sophisticated numerical optimization techniques must be applied [4]. By using
such methods, matrices with growth larger than n = 13,14, 15, 16, 18, 20,25 were specified. For
a special category of orthogonal matrices H € R™ " with elements +1 and HHT = nlI, it has
been observed that g(n, H) = n. This equality has been proved for a certain class of n x n
Hadamard matrices [3]. It has also been observed that weighing matrices of order n can give
g(n,H) =n—1 [5].

Explicit information for the pivot structure for families of matrices achieving moderate
growth is derived and an open problem concerning the possibility of finding (1, —1) incidence
matrices of SBIBD(v, k, A\) having growth greater than v is posed. We conjecture

Conjecture (The growth conjecture for (1,—1) incidence matrices of SBIBD (v,k, \))

Let A be an v x v CP (1, —1) incidence matrices of SBIBD(v,k, ). Let z = v — 4(k — )
and v, k, A not trivial. Reduce A by GE. Then we conjecture

. v—x)(v—2k)(v—1 v—z)(v-2k)(v—1
() 9o, 4) = SERiRag) o e,

(v—z)(v—2k)(v—1) (v—x)(v—2k)(v-1) ,

(11) The last inOt 18 equal to m, or Zk(v72k+1) y
(iii) The second last pivot is equal to (”;I) or - %§
iv) Every pivot before the last has magnitude at most 5.

g 2

Notation 1. Write A for a matrix of order n whose initial pivots are derived from matrices
with CP structure. Write A(j) for the absolute value of the determinant of the j x j principal
submatrix in the upper lefthand corner of the matrix A and A[j] for the absolute value of the



determinant of the (n — j) x (n — j) principal submatrix in the bottom righthand corner of the
matrix A. Throughout this paper when we have used ¢ pivots we then find all possible values of
the A(n — ) minors. Hence, if any minor is CP it must have one of these values. The magnitude
of the pivots appearing after the application of GE operations on a CP matrix W is given by

= WHW(G —1), j=1.2. . n W(O)=1 (1)
In particular for a CP SBIBD(v, k, \), A,
py = A(w)[A(v = 1), py_1=A(v—-1)/A(v —2.) (5)

We use the notation M; to denote the j x j minor of A.

In all determinants studied with an underlying SBIBD(v, k, A) the minors of size v — j where
j > A may need special analysis. When A = j the determinant of the n — 57 minor obtained by
using the two columns with A ones in their first A places gives a special case. This has been
calculated for A = 1 but resulted in the same determinants as Table 2. We have not considered
in this paper the v — 2 x v — 2 minors of SBIBD(v, k, 2).

For completeness we give the determinant simplification theorem in Appendix as we use it
extensively in this paper.

2 The (v—1) X (v—1) minors

Clearly the determinant of the (£1) incidence matrix of an SBIBD(v,k, A) and the (£1) in-
cidence matrix of its complementary SBIBD(v,v — k,v 4+ 2k — \) are negatives of each other.
Hence their determinants have the same absolute value.

We show the (v—1) x (v—1) subdeterminants of the (£1) incidence matrix of an SBIBD (v, k, \)
take two values. We show one value arises if the (1,1) and (1,2) elements have the same sign
(+) and the other occurs if the (1,1) and (1,2) elements have different signs. These also corre-
spond to forming the (v — 1) x (v — 1) submatrix by removing the first row and column of the
SBIBD(v,k,\) and its complementary SBIBD(v,v — k,v — 2k + \).

Theorem 1 The (v—1)x(v—1) minors of the (1,—1) incidence matriz of an
SBIBD(v,k,)\), A, have value

(v — )3 (0 — 2% £ 1)% + (2 — 1)(~vz — v + 22). (6)

i w=3) 7y (v—2k-1)
S x);v 3)2(U( 72?“)(”71)
(’U — I) 2\ 2kﬂ

where z =v —4(k — X\) and X\ = k% For x =1 the minor is

(v —1)20=3) (y — 2% £ 1).

Proof. The inner product of any two rows of the (1, —1) incidence matrix of any SBIBD (v, k, \)
is z =v —4(k — X). We have two cases:



Figure 1: The Generic Form for Case(v — 1, 1)

v—k—1 C»

Figure 2: The Generic Form For Case(v — 1, 2)

Case(v — 1,1) We rearrange the rows and columns of A until we have the matrix structure
in Figure 1, where C] is rows 2,...,k and columns 2,...,v, while Cy is rows k + 1,...,v and
columns 2,...,v. The inner product of any pair of rows of C is  — 1; the inner product of any
pair of rows of Cy is £ — 1; the inner product of any pair of rows where one row is in C and the
other row is in Cy is # 4+ 1. Thus we have, with C7 = [CIT CQT], the determinant simplification
theorem with g =v — k, p=k — 1 gives

det (CCT) = (w—z)=3| "~ 1+ (z—-1)(p-1) (z+1)q

(z+1)p v—14+(z—-1)(g—-1)
=w-2)"3(v-2k+1)2%z+ (z - 1)(~vz — v+ 27))]. (7)
— -3 2 (v — 2k —1)?
= ('U—IE)(U )4('1)—k) W
Case(v — 1,2) We rearrange the rows and columns of A until we have the matrix arranged as in
Figure 2. C isrows 2,...,k+1 and columns 2, ..., v, while Cs is rows k+2,...,v and columns
2,...,v. The inner product of any pair of rows of C is x — 1; the inner product of any pair of

rows of Cy is « — 1; the inner product of any pair of rows where one row is in C; and the other
row is in Cy is = + 1.
Thus we have, using the determinant simplification theorem with p =k and ¢ = v — k — 1,

det (CCT) = (v—2)"3[(v -2k —1)%z + (z — 1)(—vz — v + 2z)], (8)



b |1
d |1
1 1
D ; Ci
1 1
1 -
q C>
1 —
-1
r Cs
-1
s Cy

Figure 3: The Generic Matrix for the Seven Cases for Minors A(v — 2)

_ — 2k +1)?

= (p — ) 3)4k2(v—

(v —x) 1)

as required. The result for z = 1 is obtained by substitution and rearrangement. a

Each SBIBD (v, k, \) has a complementary SBIBD (v, v—k,v—2k+\). The second result (8)
can also be obtained from the first (7) above by applying the first result (7) to the complementary
SBIBD(v,k, ).

3 The (v—2) x (v— 2) minors

We now consider the (v—2) x (v—2) minors. We first observe that while A = 1 causes no change
to the value of the (v — 1) x (v — 1) determinant, there is potential for the (v — 2) x (v — 2) to
differ. As before we consider all cases.

We choose the (1,1) element to be 1 (otherwise we negate the whole matrix, obtaining a
matrix whose determinant has the same absolute value, and proceed as before). We choose the
matrix to be CP in the first two steps and thereafter find all possible determinants of A(v — 2)
so if the matrix is CP it must have one of these determinants.

We consider seven cases after rearranging the rows and columns of A: called Case (v —
2,1), 1=1,2,3,4,5,6,7. Only cases i=1,2,3 can possibly be CP. We have the matrix arranged
as in Figure 3. Here p, ¢, r and u are the number of columns beginning with the corresponding
two first elements,(1,1), (1,—1), (=1,1) and (—1,—1) respectively as descibed in Table 1, and
prg+r+u=v-—2.

Write z = v — 4(k — A). Then a simple variant of the determinant simplification theorem
gives the required determinant of CC”, in this case, as



1 b p q r u
c d
Case(v—2,1) | 1 1 A-=1 k=-X2-1 k-2 v—2k+ A
1 —
Case(v—2,2) | 1 1 A-=1 k=) E—XA—1 v—2k+ X
- 1
Case(v—2,3) | 1 — A k=—X—-1 k—-2X v—2k+A-1
Case(v—2,4) | 1 1 A—2 k-2 E—X v—2k+ A
1 1
Case(v—2,5) | 1 1 A-=1 k=2 E—AX v—2k+A-1
Case(v—2,6) | 1 — A k—XA—-1 k-X-1 v—-2k+2X
- 1
Case(v —2,7) | 1 — A k=—X—=2 k—-2X v—2k+ A
1 —

Table 1: Parameter Values for Cases(v — 2,1),i =1, 2,---, 7

v—z+plz—2) qx re u(z + 2)
v—6 | DT v—z+gq(z—2) r(z+2) uz
(v =2) pT q(z + 2) v—z+r(z—2) uzx : (9)
p(z + 2) qz re v—z+u(z —2)

Now using P=v—z —4p, Q =v—x —4q, R=v —x —4r, and U = v — £ — 4u we obtain
det (CCT) = (v — )" %[4(z + 1)(pgRU + prQU + quPR + ruPQ) (10)

+ (2 + 2)(pQRU + qPRU + rPQU + uPQR) + PQRU).

We now consider the seven cases summarized in Table 1 and find by lengthy but straight-
forward calculation, the minors given in Table 2.

Lemma 1 The value of the (v—2) X (v—2) minors obtained from Case(v—1,1) and Case(v—1,2)
are equal.

Proof. This can be seen from Table 2 or by noting the 2 x 2 principal submatrices are permu-
tations of each other. O

Hence we have

Theorem 2 The (v—2) X (v—2) minors of the (1, —1) incidence matriz of an SBIBD(v, k, \),
A, have values as summarized in Table 2.



1 b P U det C/(v — 2)*T"
c d
Case(v—2,1) | 1 1 |2v—z—2k+2) —2(v +  — 2k) 4(v — 2k — 1) =1
1 —
Case(v—2,2) | 1 1 |2v—z—2k+2) —2(v +  — 2k) 4(v — 2k — 1) =1
-1
Case(v—12,3) | 1 — | 2(v—a —2k) —2v+az—2k+2) | 4pL2ED
Case(v—2,4) | 1 1 |2(wv—2z—2k+4) —2(v + z — 2k) 0
11
Case(v—2,5) | 1 1 |2(v—z—2k+2) —2w+x—-2k+2) |0
Case(v —2,6) | 1 — | 2(v -z — 2k) —2(v +z — 2k) 4oy k)
-1
Case(v—2,7) | 1 — | 2(v—z — 2k) —2(v + z — 2k) 0
1 —
Table 2: Determinant Values for Cases(v — 2,1),i =1, 2,---, 7

For x =1 these give the minor as

20— 130"V —2k+1) or 0 or 2(v —1)37%,/2[(v — 2k)2 + 21 — 20].

Proof. Usep=A—1,q=k—-A—-1,r=k—-ANs=v—-2k— )\, P=2(v—x—2k+2), Q =4,
R=0and U = -2(v+x—2k) in (10) to get the the result for Case(v —2,1) and Case(v — 2, 2).
The result for Case(v — 2,3) arises by replacing k by v — k.

The result for Case(v — 2,3) also comes from using p = X\, ¢ = k- X\, r =k — X\ — 1,
s=v=2k+A-1,P=2v—2—-2k),Q=0,R=4and U = —-2(v+z — 2k + 2) in (10). Only
these three cases could be part of a CP matrix.

The determinant of the (v —2) X (v — 2) minors of the 1, —1 incidence matrix of an SBIBD
obtained by deleting the minors with elements

i

BN

is found, by using @ = R = 0 in equation (10), to be zero. Thus the determinant in Case(v—2,4)
and Case(v — 2,5) is zero.

Case(v — 2,6) and Case(v — 2,7) are obtained by using the appropriate values for P, Q, R
and U from Table 2 O



Case(v) (v—2)(v—2k)(v—T)
Case(v—1,1) 2(v—2k-1)(v—k)

Case(v) (v—z)(v—1)(v—2k)
Case(v—1,2) 2k(v—2k+1)

Table 3: Pivots p, for SBIBD

Case(v) (v—1)(v—2k)
Case(v—1,1) v—2k+1

Case(v) (v=1)(v—2k)
Case(v—1,2) v—2k—1

Table 4: Pivots p, for SBIBD for z =1

Remark 1 We see, by observing the upper lefthand 2 x 2 matrix, that Case(v — 2,3) is the
complement of Case(v — 2,1). O

4 Pivot structure for SBIBD(v, k, \)

We observe that M, | has two values that may appear in CP matrices

(v—2k—1)
(v—1)

(v—2k+1)

— — (y—g)3(3)
, Case(v—1,2) = (v—x)2 2k w=1)

Case(v—1,1) = (v—x)%(”73)2(v—k)

We observe that M, 5 has four values of which the following two may appear in CP matrices

Case(v—2,10r2) = 4(v—2)20" (v-2k-1) E” . ];;v Case(v—2,3) = 4k(v—x)%(”5)%
v — v —

We use (5). Then in Case(v — 1,1) and Case(v — 1,2) the pivots are given in Table 3. For
z =1 the pivots are given in Table 4.
. _ (v=z)(v—1)(v—2k)
Lemma 2 The pivot p, = h—zhiD) >V for an SBIBD(v, k, \).
Proof. We note for a SBIBD(v, k, \), A= kgﬁjg so = 4 — 4k + 4k gﬁjg. We used Matlab to
evaluate the pivot more exactly obtaining

(v —=2k)((v —2k)* + (v —4)(v—1)
o= 2%(v — 2k +1) >

Now v > k for all non trivial SBIBD so p, > v for v # 2k. a

We note those cases associated with Cases(v — 2,¢), £ = 4,5,6 or 7 cannot occur in CP
matrices. For the remainder of this paper we will not consider the Cases (v — 2,4), (v —
2,5), (v—2,6), (v—2,7) further. We use (5). Then in Case(v —1,1) and Case(v — 1,2) the
pivots are given in Table 5. For x = 1 the pivots are given in Table 6.



Case(v=1,1) [ p—2x

Case v—2,1g 2

Case(v—1,1 v—z (v—k)(v—2k—1)
Case(v—2,3 2 2k(v—2k+1)
Case v—l,Q; v—z  k(v—2k+1)
CaseEv—2,2§ T2 (w—2k—1)(v—Fk)
Case(v—1,2 v—1x

Case(v—2,3) | "2

Case(v—1,1) | v—

Case v—2,1g 2
Case(v—1,1 (v=1)(v—2k—1)
Case 1172,3; 2(v—2k+1)
Case(v—1,2 (v—1)(v—2k+1)
CaseEv—2,1§ 2(v—2k-1)
Case(v—1,2 v—1
Case(v—2,3) | "2

Table 6: Pivots p,_1 for SBIBD where z = 1

Remark 2 We found for all (1, —1) SBIBD (v, k, A), except those related to Hadamard matrices,
there is the theoretical possibility that the growth is greater than the order v. In practice we were
unable to find any CP (1,—1) SBIBD with growth > v leaving this possibility as an intriguing
open question. O

5 Pivot structure for SBIBD(2s? + 25 + 1, s%, 3s(s — 1))

In this section we are especially interested in the growth problem for the Brouwer family
SBIBD(2s® + 2s + 1,s%,4s(s — 1)), (z = 1). The Brouwer family for s an odd prime power
can be found in [2]. For s = 2 the SBIBD(13,4,1) is well known as the projective plane of
order 3. The result for s = 4 was given by Bridges, Hall, and Hayden [1].

Let d, denote the maximum determinant of all v X v matrices with elements +1. It follows
from Hadamard’s inequality that d, < v*/2 and it is easily shown that equality can only hold if
v=1or2orifv= 0(mod4). If v = 1(mod4), v # 1, Payne [6], showed that

dy < (v — 1) D22y =1
and equality can hold only if v = 2s? +2s + 1, s = 1,2,3,.... In this case we can write d, as
dy < 25555 (5 4 1)5°+5(25 4 1),

Raghavarao [7] constructed these v x v matrices with elements £1 for v = 5, 13, 25 with maximum
determinant. Brouwer [2] constructed the v x v matrices with maximum determinant for v =
252 4+ 2s + 1, when s is an odd prime power, i.e., for v = 25,61, 113,181,265, .. ..

Conjecture (The growth conjecture for Brouwer’s SBIBD(2s? + 2s + 1, 5%, 25(s — 1)))



Let A be an v x v CP SBIBD(2s% + 25 + 1, 52, %s(s — 1)) of the Brouwer type. Reduce A by
GE. Then we conjecture

(i) g(v,A) =s(2s+1), or (s+1)(2s+1) v > 13;
(ii) The last pivot is equal to s(2s + 1) or (s +1)(2s + 1);

(iii) The second last pivot is equal to s(s + 1) = 51 or s? or (s + 1)%;

)
)
)
(iv) Every pivot before the last has magnitude at most 2=
(v) The first four pivots are equal to 1,22, 4;
i)

(vi) The fifth pivot may be 2 or 3.
We prove (ii), (iii), (v) and (vi) in this paper.
Theorem 3 Let A be the vxv SBIBD(2s?+2s+1, 5%, $s(s—1)) design of Brouwer type. Reduce

A by GECP, then the last two pivots are s(2s + 1), and s(s + 1) = % or s2, respectively, for
Case(v — 1,1) and (25 +1)(s + 1) and s(s +1) or (s+ 1)2, respectively, for Case(v — 1,2).

Proof. Since

M, = (252 + 25)°°5(25 + 1)
My_1 =2(s+1)(2s% 4+ 25)" 571 or 25(2s2 4 25)*" 51
Mv72 = 4(8 + 1)(282 =+ 25)32+3_2 or 48(282 4 28)52+s—2

using (5) we obtain the required result. O

We give some values for the family SBIBD(2s? + 2s + 1, 5%, 1s(s — 1)).

Case(v —1,1) Case(v —1,2)
v S Do Pv-1 Pv Pv-1
s(2s+1) s(s+1) or 2| (s+1)(2s+1) s(s+1) or (s+1)2
511 3 2
253 21 12 9 28 12 16
41 | 4 36 20 16 45 20 25
61 |5 55 30 25 66 30 36

As the SBIBD for v = 5 is unique, we show, by computation, there is no entry for v = 5 in
Case (v —1,2).
By detecting the pivot structure of Brouwer’s SBIBD(2s? + 2s + 1,52, £s(s — 1)), Table 7 was
computed.

Remark 3 We experimented with the SBIBD(25,9,3). After testing 40000 equivalent matrices
we observed that always the five first pivots were 1,2,2,4,2 or 3 whereas the three last pivots

- 24 24 24
in backward order were 5+ or £5, 5 or 3/2,21 -

10



s | v | growth Pivot Pattern
3125 21 (1,2,2,4,3,12, 184,47 5.1825,5.4857,4.75, 5.4737,
51923&&&&&%&%%21)
' > 3°10/3° 3°16/5°10/3° 3 °16/5°5/2° 2
4141 36 (1,2,2,4,3, 19,28 4.4 1349231, ..,
40 40 40 40 40 40 36

4’4’2’%0’218’2’ 60 60 60
5|61 55 (1,2,2,4,3, 22,8 4.4,554,..., %, % % 55)

Table 7: Growth Factors and Pivots Patterns for small CP Brouwer SBIBD

The next result is easy to prove using a counting argument and noting the inner product of
every pair of rows is +1 to see that the design always contains a 4 x 4 Hadamard matrix.

Proposition 1 Let A be the v X v (1, —1) incidence matriz of an SBIBD of the Brouwer type.
Reduce A by GECP then the magnitudes of the first four pivots are 1,2,2 and 4; the magnitude

of \agé)\ is 2 or 3.

Proof: Since the design always contains a 4 x 4 Hadamard matrix, this can be moved to be

the 4 x 4 principal minor without changing the CP property. Thus the first four pivots will be
1,2,2 and 4 [3]. Because every entry in A®) is of magnitude 0,2 or 4, pivoting on aﬁ) will only
involve adding +1 or +1/2 times the fourth row of A®) to the rows below, and this will create

only integer entries in A(). Thus |agé)| must be an integer satisfying the relation

A(12345) = 16]ay| < 4210 — 1 = [a})| < 3.
where A(12345) denotes the determinant of the 5 x 5 principal submatrix of A. Thus \agé)|
must be 1,2 or 3. To see that it cannot be 1 is to show that one could not have

1
AW = 2

B
where every entry of B is zero or *1; for, if that were true, then B would be a normalized
(v —4) x (v — 4) matrix, and so
v—4
|detB| < (v —4)7 .

U‘;l
But |detB| = (U_l)i% and it is easily checked that these cannot both hold when v > 4. O

Proposition 2 Let A be the 5 x 5 (1, —1) incidence matriz of an SBIBD of the Brouwer type.
Reduce A by GECP then the pivot structure is unique and is equal to (1,2,2,4,3).

Proof: Because of the above proposition we have that the first four pivots are 1,2,2,4. Tt
follows that A(5) = (5 — 1)0=1/2,/275 =1 = 48 since 5 = 25> + 25 + 1, s = 1. Thus the fifth

pivot will be defined by the relation ps = % = % = 3. O



Minor of Minor of Minor of
(252 +2s+ 1,52, 0) (452,282 + 5,82 +5) (4t—1,2t —1,t—1)
A= %(32 —3))

Case(v — 2,1) A(s + 1)(252 + 25)* T2 2(45%)%" 2 0
& Case(v — 2,2)
Case(v — 2, 3) 45(252 + 25)%"Hs 2 2(452)%" 2 4(4¢)2-3
Case(v — 2,4) 0 0 0
& Case(v — 2,5)
Case(v — 2,6) 4(25% + 25)5" 52 0 4(4t)%3
Case(v — 2,7) 0 0 0

Table 8: Values of Large Minors of Some SBIBD

6 Other Families of SBIBDs

We now use (5) to obtain results for other families of SBIBD.

6.1 The Growth of the Finite Projective Planes SBIBD(s> + s+ 1,5 + 1, 1)

Theorem 4 Let A be the vxv (1, —1) incidence matriz of the finite projective plane SBIBD(s%+
s+1,s4+1,1), s>3. Reduce A by GECP, then the last two pivots are

2(s2 —s—1 25(s? —s5—1
Dy = (s —s )or s(s*—s—1)
§—2 s—1
and
2(s—1)

_1=25 o
Pv—1 S or s _9

Proof. Since

32+s

M, =285 (52 — 5 — 1).

2
2 _ s°+s
My_ =25 +5715

32+s—2
2

2 (s —2) or 287tslg (s —1).

32 s5—2 s2 s—
M, 5 =2+5"2"75 (5 = 2) or 27+ 2" (5 — 1).

The values of the two last pivots are specified from the above formulae. O
Remark 4 We experimented with the SBIBD(31,6,1). Its A(n — 1) minor is 2'4 -3 - 10'® or
217.10'* depending on the case considered in Theorem 1. Our calculations always found the

CP matrix had M3y = 24 -3 -10'% although our theory also allows for M3y = 27 - 10'4. Thus,
in our examples, the last pivot was always equal to % and not %. O
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6.2 The Growth of the Menon-Hadamard Family SBIBD (452, 2s% £ s, 5% + 5)

Theorem 5 Let A be the v x v reqular Hadamard matriz from the SBIBD(4s%,2s? + 5,52 £ s).
Reduce A by GECP, then the last two pivots are v, and 3.

Proof. Since , , ,
Mv — (482)23 ’ Mv_l — (482)25 —1’ ]\4@_2 — 2(482)25 -2

the values of the two last pivots are 452, and 2s?, respectively. O

6.3 The Growth of the Hadamard Family SBIBD (4t — 1,2t — 1,¢t — 1)

Theorem 6 Let A be the v x v (1, —1) incidence matriz of the Hadamard family SBIBD(4t —
1,2t — 1,t — 1). Reduce A by GECP, then the last two pivots are 2t, and 2t.

Proof. The last two pivots are computed straightforwardly using formula (5) since

M, = (46)*71, M,_y = 2(4t)*72, M,_o = 4(4t)*3.
Thus, the values of the two last pivots are 2¢, and 2t. O
We give the results for some families of SBIBD(v, k, ) in Table 8.
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7 Appendix: The Determinant Simplification Theorem

We use the notation

T
ce = (k- aii)Ibl,b2,~~~,b; + @i Iy by,

for a matrix of blocks with integer multiples. For example the matrix

z

CCT = (k - aii)Iu,v,w,m + aijJu,'u,w,z (11)
a b c d
b a e f . .
where (a;;) = c e a g is the (u+v +w+ z) X (u + v+ w + z) matrix
d f g a
r u v w x =
ka a bb --- b cc c dd d
ak a bbd b cc c dd d
aa k bb b cc c dd d
bb--- b ka - a ee e fr - f
bb - b ak - a ee - e frfr - f
cct = bb - b aa -k ee - e frfr - f
ce - ¢ ce - e ka - a gg g
ce - ¢ ee - e ak - a gg - g
cec - ¢ ee - e aa -k g9 - g
dd - d fr—f gg - g ka - - a
dd.d  ff-f  ggeg  akoa
L dd - d fr—-f 99 -9 aa -k |

We now give a theorem proved similarly to the proof for finding the determinant of an SBIBD
in [8, Theorem3,p32].

Theorem 7 (Determinant Simplification Theorem) Let

T
cc = (k- aii)Ibl,b2,~~~,b; + @iy by,

z

then
det CCT =TI%_ | (k — ay)% " 'det D (12)
where
kE+ (by —1)an baaia bsaiz --- b.ai,
D_ biaz k+ (ba —1)ags bsags --- b.as,
biraz1 baa o bsas -+ k4 (bz - l)azz

14



Corollary 1 Suppose C is the matriz of order (u + v + w + z) X (u + v + w + ), where
n =u+v+w+xz, for which CCT is given above, satisfying CCT = (k —aii) Iy ww,z + CijJuwwa-
Then

det CC" = (k — a)"*det D

where

kE+ (u—1)a vb we zd
B ub kE+(v—1)a we xf
b= uc ve kE+ (w—1)a zg (13)
ud vf wy kE+ (z—1)a
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