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Values of Minors of (1;�1) Inidene Matries ofSBIBDs and Their Appliation to the GrowthProblemC. Koukouvinos�, M. Mitrouliyand Jennifer SeberryzAbstratWe obtain expliit formulae for the values of the v � j minors, j = 0; 1; 2 of (1;�1)inidene matries of SBIBD(v; k; �). This allows us to obtain expliit information on thegrowth problem for families of matries with moderate growth. An open problem remainsto establish whether the (1;�1) CP inidene matries of SBIBD(v; k; �), an have growthgreater than v for families other than Hadamard families.Key Words and Phrases: Inidene matries, SBIBD, minors, Gaussian elimination, growth,omplete pivoting.AMS Subjet Classi�ation: Primary 05B20, 15A15, Seondary 65F05, 65G05.1 IntrodutionWe evaluate the v� j; j = 0; 1; 2 minors for (1;�1) inidene matries of ertain SBIBDs. Forthe purpose of this paper we will de�ne a SBIBD(v; k; �) to be a v� v matrix, B, with entries 0or 1, whih has exatly k entries +1 and v � k entries 0 in eah row and olumn and for whihthe inner produt of any distint pairs of rows and olumns is �. The (1;�1) inidene matrixof B is obtained by letting A = 2B � J , where J is the v � v matrix with entries all +1. Wewrite I for the identity matrix of order v.Then we have BBT = (k � �)I + �J (1)and AAT = 4(k � �)I + (v � 4(k � �))J (2)The determinant simpli�ation theorem (see the Appendix) shows thatdetB = (k � �) v�12 qk + (v � 1)� = k(k � �) 12 (v�1)�Department of Mathematis, National Tehnial University of Athens, Zografou 15773, Athens, GreeeyDepartment of Mathematis, University of Athens, Panepistemiopolis 15784, Athens, Greee.zShool of Information Tehnology and Computer Siene, University of Wollongong, Wollongong, NSW, 2522,Australia. 1



and sine �(v � 1) = k2 � k, det A = 2v�1(k � �) v�12 jv � 2kj (3)or with x = v � 4k + 4�; det A = (v � x) 12 (v�1)jv � 2kj:We see the determinant is greatest for values of x lose to zero. Indeed x = 0 for Hadamardmatries.In this paper we study the appliation of the omputed values of the minors to the growthproblem. Let A = [aij ℄ 2 Rn�n. We redue A to upper triangular form by using Gaussianelimination with omplete pivoting (GECP) [9℄. Let A(k) = [a(k)ij ℄ denote the matrix obtainedafter the �rst k pivoting operations, so A(n�1) is the �nal upper triangular matrix. A diagonalentry of that �nal matrix will be alled a pivot. Matries with the property that no exhanges areatually needed during GECP are alled ompletely pivoted (CP). Let g(n;A) = maxi;j;k ja(k)ij j=ja(0)11 jdenote the growth assoiated with GECP on A and g(n) = supf g(n;A)=A 2 Rn�n g. Theproblem of determining g(n) for various values of n is alled the growth problem.The determination of g(n) remains a mystery. Wilkinson [9℄ onjetured that g(n;A) �n8 A 2 Rn�n. This onjeture is now known to be false [4℄. One of the urious frustrationsof the growth problem is that it is quite diÆult to onstrut any examples of n � n matriesA other than Hadamard for whih g(n;A) is even lose to n. In order to obtain matries withlarge growth sophistiated numerial optimization tehniques must be applied [4℄. By usingsuh methods, matries with growth larger than n = 13; 14; 15; 16; 18; 20; 25 were spei�ed. Fora speial ategory of orthogonal matries H 2 Rn�n with elements �1 and HHT = nI, it hasbeen observed that g(n;H) = n. This equality has been proved for a ertain lass of n � nHadamard matries [3℄. It has also been observed that weighing matries of order n an giveg(n;H) = n� 1 [5℄.Expliit information for the pivot struture for families of matries ahieving moderategrowth is derived and an open problem onerning the possibility of �nding (1;�1) inidenematries of SBIBD(v; k; �) having growth greater than v is posed. We onjetureConjeture (The growth onjeture for (1;�1) inidene matries of SBIBD(v; k; �))Let A be an v � v CP (1;�1) inidene matries of SBIBD(v; k; �). Let x = v � 4(k � �)and v; k; � not trivial. Redue A by GE. Then we onjeture(i) g(v;A) = (v�x)(v�2k)(v�1)2(v�2k�1)(v�k) ; or (v�x)(v�2k)(v�1)2k(v�2k+1) ;(ii) The last pivot is equal to (v�x)(v�2k)(v�1)2(v�2k�1)(v�k) ; or (v�x)(v�2k)(v�1)2k(v�2k+1) ;(iii) The seond last pivot is equal to (v�x)2 or v�x2 � k(v�2k+1)(v�2k�1)(v�k) ;(iv) Every pivot before the last has magnitude at most v�x2 .Notation 1. Write A for a matrix of order n whose initial pivots are derived from matrieswith CP struture. Write A(j) for the absolute value of the determinant of the j � j prinipalsubmatrix in the upper lefthand orner of the matrix A and A[j℄ for the absolute value of the2



determinant of the (n� j)� (n� j) prinipal submatrix in the bottom righthand orner of thematrix A. Throughout this paper when we have used i pivots we then �nd all possible values ofthe A(n� i) minors. Hene, if any minor is CP it must have one of these values. The magnitudeof the pivots appearing after the appliation of GE operations on a CP matrix W is given bypj =W (j)=W (j � 1); j = 1; 2; : : : ; n; W (0) = 1: (4)In partiular for a CP SBIBD(v; k; �); A,pv = A(v)=A(v � 1); pv�1 = A(v � 1)=A(v � 2:) (5)We use the notation Mj to denote the j � j minor of A.In all determinants studied with an underlying SBIBD(v; k; �) the minors of size v� j wherej > � may need speial analysis. When � = j the determinant of the n� j minor obtained byusing the two olumns with � ones in their �rst � plaes gives a speial ase. This has beenalulated for � = 1 but resulted in the same determinants as Table 2. We have not onsideredin this paper the v � 2� v � 2 minors of SBIBD(v; k; 2).For ompleteness we give the determinant simpli�ation theorem in Appendix as we use itextensively in this paper.2 The (v � 1)� (v � 1) minorsClearly the determinant of the (�1) inidene matrix of an SBIBD(v; k; �) and the (�1) in-idene matrix of its omplementary SBIBD(v; v � k; v + 2k � �) are negatives of eah other.Hene their determinants have the same absolute value.We show the (v�1)�(v�1) subdeterminants of the (�1) inidene matrix of an SBIBD(v; k; �)take two values. We show one value arises if the (1,1) and (1,2) elements have the same sign(+) and the other ours if the (1,1) and (1,2) elements have di�erent signs. These also orre-spond to forming the (v � 1) � (v � 1) submatrix by removing the �rst row and olumn of theSBIBD(v; k; �) and its omplementary SBIBD(v; v � k; v � 2k + �).Theorem 1 The (v � 1)� (v � 1) minors of the (1;�1) inidene matrix of anSBIBD(v; k; �), A, have value(v � x) 12 (v�3)q(v � 2k � 1)2x+ (x� 1)(�vx � v + 2x): (6)= 8<: (v � x) 12 (v�3)2(v � k) (v�2k�1)(v�1)(v � x) 12 (v�3)2k (v�2k+1)(v�1)where x = v � 4(k � �) and � = k (k�1)(v�1) . For x = 1 the minor is(v � 1) 12 (v�3)(v � 2k � 1):Proof. The inner produt of any two rows of the (1;�1) inidene matrix of any SBIBD(v; k; �)is x = v � 4(k � �). We have two ases: 3



1 1 1 � � � �1 � 11k � 1 ... C11�v � k ... C2�Figure 1: The Generi Form for Case(v � 1; 1)� 1 1 � � � �1 � 11k ... C11�v � k � 1 ... C2�Figure 2: The Generi Form For Case(v � 1; 2)Case(v � 1; 1) We rearrange the rows and olumns of A until we have the matrix struturein Figure 1, where C1 is rows 2; : : : ; k and olumns 2; : : : ; v, while C2 is rows k + 1; : : : ; v andolumns 2; : : : ; v. The inner produt of any pair of rows of C1 is x� 1; the inner produt of anypair of rows of C2 is x� 1; the inner produt of any pair of rows where one row is in C1 and theother row is in C2 is x+ 1. Thus we have, with CT = hCT1 CT2 i, the determinant simpli�ationtheorem with q = v � k, p = k � 1 givesdet (CCT ) = (v � x)v�3 ����� v � 1 + (x� 1)(p� 1) (x+ 1)q(x+ 1)p v � 1 + (x� 1)(q � 1) �����= (v � x)v�3[(v � 2k + 1)2x+ (x� 1)(�vx � v + 2x)℄: (7)= (v � x)(v�3)4(v � k)2 (v � 2k � 1)2(v � 1)2Case(v� 1; 2) We rearrange the rows and olumns of A until we have the matrix arranged as inFigure 2. C1 is rows 2; : : : ; k+1 and olumns 2; : : : ; v, while C2 is rows k+2; : : : ; v and olumns2; : : : ; v. The inner produt of any pair of rows of C1 is x� 1; the inner produt of any pair ofrows of C2 is x� 1; the inner produt of any pair of rows where one row is in C1 and the otherrow is in C2 is x+ 1.Thus we have, using the determinant simpli�ation theorem with p = k and q = v � k � 1,det (CCT ) = (v � x)v�3[(v � 2k � 1)2x+ (x� 1)(�vx� v + 2x)℄; (8)4



1 b 1 : : : d 1 : : :1 1p ... ... C11 11 �q ... ... C21 �� 1r ... ... C3� 1� �s ... ... C4� �Figure 3: The Generi Matrix for the Seven Cases for Minors A(v � 2)= (v � x)(v�3)4k2 (v � 2k + 1)2(v � 1)2as required. The result for x = 1 is obtained by substitution and rearrangement. 2Eah SBIBD(v; k; �) has a omplementary SBIBD(v; v�k; v�2k+�). The seond result (8)an also be obtained from the �rst (7) above by applying the �rst result (7) to the omplementarySBIBD(v; k; �).3 The (v � 2)� (v � 2) minorsWe now onsider the (v�2)�(v�2) minors. We �rst observe that while � = 1 auses no hangeto the value of the (v � 1) � (v � 1) determinant, there is potential for the (v � 2)� (v � 2) todi�er. As before we onsider all ases.We hoose the (1,1) element to be 1 (otherwise we negate the whole matrix, obtaining amatrix whose determinant has the same absolute value, and proeed as before). We hoose thematrix to be CP in the �rst two steps and thereafter �nd all possible determinants of A(v � 2)so if the matrix is CP it must have one of these determinants.We onsider seven ases after rearranging the rows and olumns of A: alled Case (v �2; i); i = 1; 2; 3; 4; 5; 6; 7. Only ases i=1,2,3 an possibly be CP. We have the matrix arrangedas in Figure 3. Here p, q, r and u are the number of olumns beginning with the orrespondingtwo �rst elements,(1; 1); (1;�1); (�1; 1) and (�1;�1) respetively as desibed in Table 1, andp+ q + r + u = v � 2.Write x = v � 4(k � �). Then a simple variant of the determinant simpli�ation theoremgives the required determinant of CCT , in this ase, as5



1 b p q r u dCase(v � 2; 1) 1 1 �� 1 k � �� 1 k � � v � 2k + �1 �Case(v � 2; 2) 1 1 �� 1 k � � k � �� 1 v � 2k + �� 1Case(v � 2; 3) 1 � � k � �� 1 k � � v � 2k + �� 1� �Case(v � 2; 4) 1 1 �� 2 k � � k � � v � 2k + �1 1Case(v � 2; 5) 1 1 �� 1 k � � k � � v � 2k + �� 1� �Case(v � 2; 6) 1 � � k � �� 1 k � �� 1 v � 2k + �� 1Case(v � 2; 7) 1 � � k � �� 2 k � � v � 2k + �1 �Table 1: Parameter Values for Cases(v � 2; i), i = 1; 2; � � � ; 7
(v � x)v�6 ����� v � x+ p(x� 2) qx rx u(x+ 2)px v � x+ q(x� 2) r(x+ 2) uxpx q(x+ 2) v � x+ r(x� 2) uxp(x+ 2) qx rx v � x+ u(x� 2) ����� : (9)Now using P = v � x� 4p, Q = v � x� 4q, R = v � x� 4r, and U = v � x� 4u we obtaindet (CCT ) = (v � x)v�6[4(x + 1)(pqRU + prQU + quPR+ ruPQ) (10)+ (x+ 2)(pQRU + qPRU + rPQU + uPQR) + PQRU ℄:We now onsider the seven ases summarized in Table 1 and �nd by lengthy but straight-forward alulation, the minors given in Table 2.Lemma 1 The value of the (v�2)�(v�2) minors obtained from Case(v�1; 1) and Case(v�1; 2)are equal.Proof. This an be seen from Table 2 or by noting the 2� 2 prinipal submatries are permu-tations of eah other. 2Hene we haveTheorem 2 The (v�2)�(v�2) minors of the (1;�1) inidene matrix of an SBIBD(v; k; �),A, have values as summarized in Table 2. 6



1 b P Q R U det C=(v � x) v�52 dCase(v � 2; 1) 1 1 2(v � x� 2k + 2) 4 0 �2(v + x� 2k) 4(v � 2k � 1) (v�k)(v�1)1 �Case(v � 2; 2) 1 1 2(v � x� 2k + 2) 0 4 �2(v + x� 2k) 4(v � 2k � 1) (v�k)(v�1)� 1Case(v � 2; 3) 1 � 2(v � x� 2k) 4 0 �2(v + x� 2k + 2) 4k (v�2k+1)(v�1)� �Case(v � 2; 4) 1 1 2(v � x� 2k + 4) 0 0 �2(v + x� 2k) 01 1Case(v � 2; 5) 1 1 2(v � x� 2k + 2) 0 0 �2(v + x� 2k + 2) 0� �Case(v � 2; 6) 1 � 2(v � x� 2k) 4 4 �2(v + x� 2k) 4 ((v�2k)2�k)(v�1)� 1Case(v � 2; 7) 1 � 2(v � x� 2k) 8 0 �2(v + x� 2k) 01 �Table 2: Determinant Values for Cases(v � 2; i), i = 1; 2; � � � ; 7For x = 1 these give the minor as2(v � 1) 12 (v�5)(v � 2k � 1) or 0 or 2(v � 1) 12 (v�5)q2[(v � 2k)2 + 2� 1� 2v℄:Proof. Use p = �� 1, q = k � �� 1, r = k � �, s = v � 2k � �, P = 2(v � x� 2k + 2), Q = 4,R = 0 and U = �2(v+x� 2k) in (10) to get the the result for Case(v� 2; 1) and Case(v� 2; 2).The result for Case(v � 2; 3) arises by replaing k by v � k.The result for Case(v � 2; 3) also omes from using p = �, q = k � �, r = k � � � 1,s = v� 2k+ �� 1, P = 2(v � x� 2k), Q = 0, R = 4 and U = �2(v+ x� 2k +2) in (10). Onlythese three ases ould be part of a CP matrix.The determinant of the (v� 2)� (v� 2) minors of the 1;�1 inidene matrix of an SBIBDobtained by deleting the minors with elements" 1 11 1 # " 1 1� � # " � �1 1 # " � �� � #is found, by using Q = R = 0 in equation (10), to be zero. Thus the determinant in Case(v�2; 4)and Case(v � 2; 5) is zero.Case(v � 2; 6) and Case(v � 2; 7) are obtained by using the appropriate values for P , Q, Rand U from Table 2 27



Case(v)Case(v�1;1) (v�x)(v�2k)(v�1)2(v�2k�1)(v�k)Case(v)Case(v�1;2) (v�x)(v�1)(v�2k)2k(v�2k+1)Table 3: Pivots pv for SBIBDCase(v)Case(v�1;1) (v�1)(v�2k)v�2k+1Case(v)Case(v�1;2) (v�1)(v�2k)v�2k�1Table 4: Pivots pv for SBIBD for x = 1Remark 1 We see, by observing the upper lefthand 2 � 2 matrix, that Case(v � 2; 3) is theomplement of Case(v � 2; 1). 24 Pivot struture for SBIBD(v; k; �)We observe that Mv�1 has two values that may appear in CP matriesCase(v�1; 1) = (v�x) 12 (v�3)2(v�k)(v � 2k � 1)(v � 1) ; Case(v�1; 2) = (v�x) 12 (v�3)2k (v � 2k + 1)(v � 1)We observe that Mv�2 has four values of whih the following two may appear in CP matriesCase(v�2; 1 or 2) = 4(v�x) 12 (v�5)(v�2k�1)(v � k)(v � 1) ; Case(v�2; 3) = 4k(v�x) 12 (v�5) (v � 2k + 1)(v � 1) :We use (5). Then in Case(v � 1; 1) and Case(v � 1; 2) the pivots are given in Table 3. Forx = 1 the pivots are given in Table 4.Lemma 2 The pivot pv = (v�x)(v�1)(v�2k)2k(v�2k+1) > v for an SBIBD(v; k; �).Proof. We note for a SBIBD(v; k; �); � = k (k�1)(v�1) so x = 4� 4k+4k (k�1)(v�1) . We used Matlab toevaluate the pivot more exatly obtainingpv = (v � 2k)((v � 2k)2 + (v � 4)(v � 1)2k(v � 2k + 1) > v:Now v > k for all non trivial SBIBD so pv > v for v 6= 2k. 2We note those ases assoiated with Cases(v � 2; `); ` = 4; 5; 6 or 7 annot our in CPmatries. For the remainder of this paper we will not onsider the Cases (v � 2; 4); (v �2; 5); (v � 2; 6); (v � 2; 7) further. We use (5). Then in Case(v � 1; 1) and Case(v � 1; 2) thepivots are given in Table 5. For x = 1 the pivots are given in Table 6.8



Case(v�1;1)Case(v�2;1) v�x2Case(v�1;1)Case(v�2;3) v�x2 (v�k)(v�2k�1)2k(v�2k+1)Case(v�1;2)Case(v�2;2) v�x2 k(v�2k+1)(v�2k�1)(v�k)Case(v�1;2)Case(v�2;3) v�x2Table 5: Pivots pv�1 for SBIBDCase(v�1;1)Case(v�2;1) v�12Case(v�1;1)Case(v�2;3) (v�1)(v�2k�1)2(v�2k+1)Case(v�1;2)Case(v�2;1) (v�1)(v�2k+1)2(v�2k�1)Case(v�1;2)Case(v�2;3) v�12Table 6: Pivots pv�1 for SBIBD where x = 1Remark 2 We found for all (1;�1) SBIBD(v; k; �), exept those related to Hadamard matries,there is the theoretial possibility that the growth is greater than the order v. In pratie we wereunable to �nd any CP (1;�1) SBIBD with growth > v leaving this possibility as an intriguingopen question. 25 Pivot struture for SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1))In this setion we are espeially interested in the growth problem for the Brouwer familySBIBD(2s2 + 2s + 1; s2; 12s(s � 1)), (x = 1). The Brouwer family for s an odd prime poweran be found in [2℄. For s = 2 the SBIBD(13; 4; 1) is well known as the projetive plane oforder 3. The result for s = 4 was given by Bridges, Hall, and Hayden [1℄.Let dv denote the maximum determinant of all v � v matries with elements �1. It followsfrom Hadamard's inequality that dv � vv=2 and it is easily shown that equality an only hold ifv = 1 or 2 or if v � 0(mod 4). If v � 1(mod 4), v 6= 1, Payne [6℄, showed thatdv � (v � 1)(v�1)=2p2v � 1and equality an hold only if v = 2s2 + 2s+ 1, s = 1; 2; 3; : : :. In this ase we an write dv asdv � 2s2+sss2+s(s+ 1)s2+s(2s+ 1):Raghavarao [7℄ onstruted these v�v matries with elements �1 for v = 5; 13; 25 with maximumdeterminant. Brouwer [2℄ onstruted the v � v matries with maximum determinant for v =2s2 + 2s+ 1, when s is an odd prime power, i.e., for v = 25; 61; 113; 181; 265; : : :.Conjeture (The growth onjeture for Brouwer's SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1)))9



Let A be an v� v CP SBIBD(2s2 +2s+1; s2; 12s(s� 1)) of the Brouwer type. Redue A byGE. Then we onjeture(i) g(v;A) = s(2s+ 1); or (s+ 1)(2s+ 1) v > 13;(ii) The last pivot is equal to s(2s+ 1) or (s+ 1)(2s+ 1);(iii) The seond last pivot is equal to s(s+ 1) = v�12 or s2 or (s+ 1)2;(iv) Every pivot before the last has magnitude at most v�12 ;(v) The �rst four pivots are equal to 1; 2; 2; 4;(vi) The �fth pivot may be 2 or 3.We prove (ii), (iii), (v) and (vi) in this paper.Theorem 3 Let A be the v�v SBIBD(2s2+2s+1; s2; 12s(s�1)) design of Brouwer type. RedueA by GECP, then the last two pivots are s(2s + 1), and s(s + 1) = v�12 or s2, respetively, forCase(v � 1; 1) and (2s+ 1)(s+ 1) and s(s+ 1) or (s+ 1)2, respetively, for Case(v � 1; 2).Proof. Sine Mv = (2s2 + 2s)s2+s(2s+ 1)Mv�1 = 2(s+ 1)(2s2 + 2s)s2+s�1 or 2s(2s2 + 2s)s2+s�1Mv�2 = 4(s+ 1)(2s2 + 2s)s2+s�2 or 4s(2s2 + 2s)s2+s�2using (5) we obtain the required result. 2We give some values for the family SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1)).Case(v � 1; 1) Case(v � 1; 2)v s pv pv�1 pv pv�1s(2s+ 1) s(s+ 1) or s2 (s+ 1)(2s + 1) s(s+ 1) or (s+ 1)25 1 3 225 3 21 12 9 28 12 1641 4 36 20 16 45 20 2561 5 55 30 25 66 30 36As the SBIBD for v = 5 is unique, we show, by omputation, there is no entry for v = 5 inCase (v � 1; 2).By deteting the pivot struture of Brouwer's SBIBD(2s2 + 2s+ 1; s2; 12s(s� 1)), Table 7 wasomputed.Remark 3 We experimented with the SBIBD(25,9,3). After testing 40000 equivalent matrieswe observed that always the �ve �rst pivots were 1; 2; 2; 4; 2 or 3 whereas the three last pivotsin bakward order were 242 or 245=2 ; 242 or 243=2 ; 21. 210



s v growth Pivot Pattern3 25 21 (1; 2; 2; 4; 3; 103 ; 185 ; 4; 4; 92 ; 5:1825; 5:4857; 4:75; 5:4737;5:1923; 163 ; 2410=3 ; 163 ; 2416=5 ; 2410=3 ; 243 ; 2416=5 ; 245=2 ; 242 ; 21)4 41 36 (1; 2; 2; 4; 3; 103 ; 185 ; 4; 4; 133 ; 4:9231; : : : ;404 ; 404 ; 402 ; 404 ; 402 ; 402 ; 36)5 61 55 (1; 2; 2; 4; 3; 103 ; 185 ; 4; 4; 5; 5:4; : : : ; 604 ; 602 ; 602 ; 55)Table 7: Growth Fators and Pivots Patterns for small CP Brouwer SBIBDThe next result is easy to prove using a ounting argument and noting the inner produt ofevery pair of rows is +1 to see that the design always ontains a 4� 4 Hadamard matrix.Proposition 1 Let A be the v � v (1;�1) inidene matrix of an SBIBD of the Brouwer type.Redue A by GECP then the magnitudes of the �rst four pivots are 1; 2; 2 and 4; the magnitudeof ja(4)55 j is 2 or 3.Proof: Sine the design always ontains a 4� 4 Hadamard matrix, this an be moved to bethe 4 � 4 prinipal minor without hanging the CP property.Thus the �rst four pivots will be1; 2; 2 and 4 [3℄. Beause every entry in A(3) is of magnitude 0; 2 or 4, pivoting on a(3)44 will onlyinvolve adding �1 or �1=2 times the fourth row of A(3) to the rows below, and this will reateonly integer entries in A(4). Thus ja(4)55 j must be an integer satisfying the relationA(1 2 3 4 5) = 16ja(4)55 j � 44=2p10� 1) ja(4)55 j � 3:where A(1 2 3 4 5) denotes the determinant of the 5 � 5 prinipal submatrix of A. Thus ja(4)55 jmust be 1; 2 or 3. To see that it annot be 1 is to show that one ould not haveA(4) = 2666664 1 2 2 4 B
3777775where every entry of B is zero or �1; for, if that were true, then B would be a normalized(v � 4)� (v � 4) matrix, and so jdetBj � (v � 4) v�42 :But jdetBj = (v�1) v�12 p2v�116 and it is easily heked that these annot both hold when v > 4. 2Proposition 2 Let A be the 5� 5 (1;�1) inidene matrix of an SBIBD of the Brouwer type.Redue A by GECP then the pivot struture is unique and is equal to (1; 2; 2; 4; 3).Proof: Beause of the above proposition we have that the �rst four pivots are 1; 2; 2; 4. Itfollows that A(5) = (5 � 1)(5�1)=2p2 � 5� 1 = 48 sine 5 = 2s2 + 2s + 1, s = 1. Thus the �fthpivot will be de�ned by the relation p5 = A(5)A(4) = 4816 = 3. 211



Minor of Minor of Minor of(2s2 + 2s+ 1; s2; �) (4s2; 2s2 + s; s2 + s) (4t� 1; 2t � 1; t� 1)� = 12(s2 � s))Case(v � 2; 1) 4(s+ 1)(2s2 + 2s)s2+s�2 2(4s2)2s2�2 0& Case(v � 2; 2)Case(v � 2; 3) 4s(2s2 + 2s)s2+s�2 2(4s2)2s2�2 4(4t)2t�3Case(v � 2; 4) 0 0 0& Case(v � 2; 5)Case(v � 2; 6) 4(2s2 + 2s)s2+s�2 0 4(4t)2t�3Case(v � 2; 7) 0 0 0Table 8: Values of Large Minors of Some SBIBD6 Other Families of SBIBDsWe now use (5) to obtain results for other families of SBIBD.6.1 The Growth of the Finite Projetive Planes SBIBD(s2 + s + 1; s + 1; 1)Theorem 4 Let A be the v�v (1;�1) inidene matrix of the �nite projetive plane SBIBD(s2+s+ 1; s+ 1; 1); s > 3. Redue A by GECP, then the last two pivots arepv = 2(s2 � s� 1)s� 2 or 2s(s2 � s� 1)s� 1and pv�1 = 2s or 2(s� 1)s� 2 :Proof. Sine Mv = 2s2+ss s2+s2 (s2 � s� 1):Mv�1 = 2s2+s�1s s2+s2 (s� 2) or 2s2+s�1s s2+s�22 (s� 1):Mv�2 = 2s2+s�2s s2+s�22 (s� 2) or 2s2+s�2s s2+s�42 (s� 1):The values of the two last pivots are spei�ed from the above formulae. 2Remark 4 We experimented with the SBIBD(31,6,1). Its A(n � 1) minor is 214 � 3 � 1015 or217 � 1014 depending on the ase onsidered in Theorem 1. Our alulations always found theCP matrix had M30 = 214 � 3 � 1015 although our theory also allows for M30 = 217 � 1014. Thus,in our examples, the last pivot was always equal to 383 and not 952 . 212



6.2 The Growth of the Menon-Hadamard Family SBIBD(4s2; 2s2 � s; s2 � s)Theorem 5 Let A be the v� v regular Hadamard matrix from the SBIBD(4s2; 2s2 � s; s2� s).Redue A by GECP, then the last two pivots are v, and v2 .Proof. Sine Mv = (4s2)2s2 ; Mv�1 = (4s2)2s2�1; Mv�2 = 2(4s2)2s2�2the values of the two last pivots are 4s2, and 2s2, respetively. 26.3 The Growth of the Hadamard Family SBIBD(4t� 1; 2t� 1; t� 1)Theorem 6 Let A be the v � v (1;�1) inidene matrix of the Hadamard family SBIBD(4t �1; 2t� 1; t� 1). Redue A by GECP, then the last two pivots are 2t, and 2t.Proof. The last two pivots are omputed straightforwardly using formula (5) sineMv = (4t)2t�1; Mv�1 = 2(4t)2t�2; Mv�2 = 4(4t)2t�3:Thus, the values of the two last pivots are 2t, and 2t. 2We give the results for some families of SBIBD(v; k; �) in Table 8.Referenes[1℄ W.G. Bridges, M. Hall Jr., and J.L. Hayden, Codes and designs, J. Combin. Theory, Ser.A, 31 (1981), 155-174.[2℄ A.E. Brouwer, An in�nite series of symmetri designs, Math. Centrum Amsterdam ReportZW 202/83, 1983.[3℄ J. Day, and B. Peterson, Growth in Gaussian elimination, Amer. Math. Monthly, 95 (1988),489-513.[4℄ N. Gould, On growth in Gaussian elimination with pivoting, SIAM J. Matrix Anal. Appl.,12 (1991), 354-361.[5℄ C. Koukouvinos, M. Mitrouli and J. Seberry, Growth in Gaussian elimination for weighingmatries W (n; n� 1), Linear Algebra and its Appliations, 306 (2000), 189-202.[6℄ S.E. Payne, On maximizing det(ATA), Disrete Math., 10 (1974), 145-158.[7℄ D. Raghavarao, Some optimum weighing designs, Ann. Math. Statist., 30 (1959), 295-303.[8℄ A.P. Street, and D.J. Street, Combinatoris of Experimental Design, Oxford UniversityPress, New York, 1987.[9℄ J. H. Wilkinson, The Algebrai Eigenvalue Problem, Oxford University Press, London(1988). 13



7 Appendix: The Determinant Simpli�ation TheoremWe use the notation CCT = (k � aii)Ib1;b2;���;bz + aijJb1;b2;���;bzfor a matrix of bloks with integer multiples. For example the matrixCCT = (k � aii)Iu;v;w;x + aijJu;v;w;x (11)where (aij) = 26664 a b  db a e f e a gd f g a 37775 is the (u+ v + w + x)� (u+ v + w + x) matrix

CCT =
2666666666666666666666666666666666664

uz }| {k a � � � a vz }| {b b � � � b wz }| {  � � �  xz }| {d d � � � da k � � � a b b � � � b   � � �  d d � � � d... ... ... ... ... ... ... ... ... ... ... ...a a � � � k b b � � � b   � � �  d d � � � db b � � � b k a � � � a e e � � � e f f � � � fb b � � � b a k � � � a e e � � � e f f � � � f... ... ... ... ... ... ... ... ... ... ... ...b b � � � b a a � � � k e e � � � e f f � � � f  � � �  e e � � � e k a � � � a g g � � � g  � � �  e e � � � e a k � � � a g g � � � g... ... ... ... ... ... ... ... ... ... ... ...  � � �  e e � � � e a a � � � k g g � � � gd d � � � d f f � � � f g g � � � g k a � � � ad d � � � d f f � � � f g g � � � g a k � � � a... ... ... ... ... ... ... ... ... ... ... ...d d � � � d f f � � � f g g � � � g a a � � � k

3777777777777777777777777777777777775
:

We now give a theorem proved similarly to the proof for �nding the determinant of an SBIBDin [8, Theorem3,p32℄.Theorem 7 (Determinant Simpli�ation Theorem) LetCCT = (k � aii)Ib1;b2;���;bz + aijJb1;b2;���;bzthen det CCT = �zi=1(k � aii)bi�1det D (12)where D = 266664 k + (b1 � 1)a11 b2a12 b3a13 � � � bza1zb1a21 k + (b2 � 1)a22 b3a23 � � � bza2z... ... ... ...b1az1 b2az2 b3az2 � � � k + (bz � 1)azz 37777514



Corollary 1 Suppose C is the matrix of order (u + v + w + x) � (u + v + w + x), wheren = u+v+w+x, for whih CCT is given above, satisfying CCT = (k�aii)Iu;v;w;x+aijJu;v;w;x:Then det CCT = (k � a)n�4det Dwhere D = 26664 k + (u� 1)a vb w xdub k + (v � 1)a we xfu ve k + (w � 1)a xgud vf wg k + (x� 1)a 37775 : (13)

15


	Values of minors of (1,-1) incidence matrices of SBIBDs and their application to the growth problem
	Recommended Citation

	Values of minors of (1,-1) incidence matrices of SBIBDs and their application to the growth problem
	Abstract
	Keywords
	Disciplines
	Publication Details

	SBIBD.dvi

