2004

Boundary element formulations for fracture mechanics problems

Wei-Liang Wu

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Copyright Warning

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
BOUNDARY ELEMENT FORMULATIONS FOR
FRACTURE MECHANICS PROBLEMS

By
Wei-Liang Wu

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
AT
UNIVERSITY OF WOLLONGONG
NORTHFIELDS AVENUE, WOLLONGONG NSW 2522
AUSTRALIA
NOVEMBER 2004
UNIVERSITY OF WOLLONGONG
SCHOOL OF
MATHEMATICS AND APPLIED STATICS

This thesis is submitted to the University of Wollongong, and has not been submitted for a higher degree to any other university or institution.

Wei-Liang Wu

November 2004
UNIVERSITY OF WOLLONGONG

Date: November 2004

Author: Wei-Liang Wu
Title: Boundary Element Formulations for Fracture Mechanics Problems
School: Mathematics and Applied Statics
Degree: Ph.D.

Permission is herewith granted to University of Wollongong to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.
To My Parents with Love and Gratitude.
Acknowledgements

I would like to acknowledge the many people who have helped me in my life and who helped bring this thesis to fruition.

In particular, I want to thank my supervisor, Dr. Xiaoping Lu who had constantly been a source of knowledge and expertise on mathematical techniques which have been utilised in this thesis. I thank her for her constant support, encouragement and her willingness to help at any time despite her hectic schedule.

Above all, I want to thank my teachers – both in Taiwan and Australia. To those who helped me learn in the classroom. To those who helped me learn in the world beyond the classroom.

I would also like to thank the colleagues of the University of Wollongong who devoted time and effort to provide me with critical feedback on earlier drafts, pointing inaccuracies, suggesting better examples, and gently noting things that needed smoothing. I would like to mention especially Dr. Ahmed A. El-Feki, Dr. Anna Maria Milan, Dr. Bin Liu and Frank Bierbrauer.

In addition, my deepest thanks are owed to my family who have always inspired me to greater things particularly my parents for their love, sacrifice and support.
Table of Contents

Acknowledgements v
List of Tables ix
List of Figures x

1 Introduction

1.1 General Considerations 1
1.2 Modes of Crack Tip Deformation 4
1.3 Other Fracture Characterising Parameters 6
 1.3.1 The J-integral 6
 1.3.2 The Crack Tip Opening Displacement 7
1.4 Numerical Methods in Linear Elastic Fracture Mechanics 8
 1.4.1 Finite Difference Method 8
 1.4.2 Finite Element Method 8
 1.4.3 Boundary Element Method 9
1.5 Advanced Formulations in Boundary Element Method 11
 1.5.1 Dual Boundary Element Method 11
 1.5.2 Subregion Boundary Element Method 12
 1.5.3 Dual Reciprocity Boundary Element Method 13

2 Dual Boundary Integral Formulation for Two Dimensional Crack Problems

2.1 Introduction 16
2.2 The Dual Boundary Integral Formulation 18
2.3 Stress Intensity Factor Calculation 22
2.4 Numerical Examples 23
2.5 Conclusion 42
3 An Efficient Dual Boundary Element Method for Crack Problems with Anti-plane Shear Loading
 3.1 Introduction ... 44
 3.2 The Dual Boundary Integral Equation
 for Anti-plane Problems 46
 3.3 Calculation of the Mode III Stress Intensity Factor 49
 3.4 Numerical Examples 50
 3.5 Conclusions ... 59

4 The Evaluation of Stress Intensity Factors .. 60
 4.1 Introduction ... 60
 4.2 The Numerical Evaluation of Stress Intensity Factors 63
 4.2.1 J-integral ... 64
 4.2.2 The Discontinuous Quarter Point Element Method 66
 4.2.3 The Special Crack Tip Element Method 69
 4.3 Numerical Examples 70
 4.3.1 A Plate with a Central Slant Crack 71
 4.3.2 Infinite Plate with Two Inclined Cracks 77
 4.3.3 Infinite Plate with Two Parallel Cracks 82
 4.4 Conclusion ... 86

5 A New Subregion Boundary Element Technique 87
 5.1 Introduction ... 88
 5.2 The Multi Region Technique of Boundary Element Method 91
 5.3 Comparison of Subregion BEM Techniques 94
 5.3.1 The Traditional Method 94
 5.3.2 Kita & Kamiya’s Method 94
 5.3.3 The Proposed Method 96
 5.4 Numerical Results 100
 5.5 Conclusion ... 108

6 A Subregion DRBEM Formulation for the Dynamic Analysis of Two
 Dimensional Cracks .. 109
 6.1 Introduction ... 110
 6.2 Dual Reciprocity Boundary Element Method 113
 6.3 Derivation of Particular Solutions 118
 6.4 The Dynamic Stress Intensity Factors 119
 6.5 Numerical Examples 120
 6.5.1 A Rectangular Plate with a Central Crack 121
List of Tables

2.1 Mode I SIF for an internal kinked crack in a rectangular plate 29
2.2 Mode II SIF for an internal kinked crack in a rectangular plate 29
2.3 Comparison of normalised stress intensity factors 35
3.1 Normalised mode III stress intensity factor for a straight central crack 52
List of Figures

1.1 The three modes of loading .. 4
1.2 Definition of the coordinate axis ahead of a crack tip 5
1.3 Stress normal to the crack plane in mode I 6

2.1 Rectangular plate with a central slant crack \((h/w = 2, \theta = 45^\circ)\) 23
2.2 Normalised mode I SIF for the rectangular plate with a central slant crack: (a) the present method, (b) Reference [80], and (c) Reference [73] 24
2.3 Normalised mode II SIF for the rectangular plate with a central slant crack: (a) the present method, (b) Reference [80], and (c) Reference [73] 25
2.4 Normalised mode I SIF for the rectangular plate with a central slant crack \((a/w = 0.1): \) (a) the present method, and (b) Reference [73] ... 26
2.5 Normalised mode II SIF for the rectangular plate with a central slant crack \((a/w = 0.1): \) (a) the present method, and (b) Reference [73] ... 27
2.6 Rectangular plate with an internal kinked crack \((h/w = 2, a/w = 0.1)\) 28
2.7 Normalised mode I SIF vs. crack ratio \(b/a\) at tip \(A\). The angle of the kinked crack is (a) 30°, (b) 45°, (c) 60° 30
2.8 Normalised mode II SIF vs. crack ratio \(b/a\) at tip \(A\). The angle of the kinked crack is (a) 30°, (b) 45°, (c) 60° 31
2.9 Normalised mode I SIF vs. crack ratio \(b/a\) at tip \(B\). The angle of the kinked crack is (a) 30°, (b) 45°, (c) 60° 32
2.10 Normalised mode II SIF vs. crack ratio \(b/a\) at tip \(B\). The angle of the kinked crack is (a) 30°, (b) 45°, (c) 60° 33
2.11 Rectangular plate with two inclined cracks \((h/w = 2, a/W = 0.25)\) 34
2.12 Normalised mode I SIF vs. inclined angle \(\theta\): (a) Finite region (b) Infinite region at tip \(A\), and (c) Finite region (d) Infinite region at tip \(B\) .. 36
2.13 Normalised mode II SIF vs. inclined angle θ: (a) Finite region (b) Infinite region at tip A, and (c) Finite region (d) Infinite region at tip B 37

2.14 Rectangular plate with two parallel cracks ($h/w = 2, a/w = 0.025$) 38

2.15 Normalised mode I SIF for the rectangular plate with two parallel cracks: (a) the present method, and (b) Reference [93] 39

2.16 Normalised mode I SIF vs. s, with a/w given by (a) 0.025, (b) 0.05, (c) 0.1, (d) 0.2 40

2.17 Normalised mode II SIF vs. s, with a/w given by (a) 0.025, (b) 0.05, (c) 0.1, (d) 0.2 41

3.1 Rectangular plate with a central slant crack 51

3.2 Normalised mode III stress intensity factor (SIF) for the rectangular plate with a central slant crack (a) $\theta = 30^\circ$, (b) $\theta = 45^\circ$, and (c) $\theta = 60^\circ$ 53

3.3 Normalised mode III SIF for the infinite plate with a central slant crack (a) the analytical solutions, and (b) the present method 54

3.4 A finite plate with two collinear cracks 55

3.5 Normalised mode III SIF for the rectangular plate with two identical collinear cracks at tip A: (a) the analytical results, (b) the present method and at tip B: (c) the analytical solutions, (d) the present method 56

3.6 A finite plate with two parallel cracks 57

3.7 Normalised mode III SIF for the rectangular plate with two parallel cracks (a) Reference [93] (b) the present method 58

4.1 Crack in an infinite plane 61

4.2 General continuous quadratic element 63

4.3 Coordinate reference system and contour path for J-integral 64

4.4 Singular quarter-point boundary elements 66

4.5 Modeling of the quarter point boundary element 68

4.6 Relative error of Mode I SIF for the infinite plate with a central slant crack from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements 72

4.7 Relative error of Mode II SIF for the infinite plate with a central slant crack from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements 73
4.8 Relative error of Mode III SIF for the infinite plate with a central slant crack from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements ... 74
4.9 Mode I SIF of the finite plate with a central slant crack from the QPE with $\frac{a}{w} = (a) \frac{2}{3}, (b) \frac{1}{2}, (c) \frac{1}{3}$ and the SCT with (d) $\frac{2}{3}$, (e) $\frac{1}{2}$, (f) $\frac{1}{3}$ 75
4.10 Mode II SIF of the finite plate with a central slant crack from the QPE with $\frac{a}{w} = (a) \frac{2}{3}, (b) \frac{1}{2}, (c) \frac{1}{3}$ and the SCT with (d) $\frac{2}{3}$, (e) $\frac{1}{2}$, (f) $\frac{1}{3}$ 76
4.11 Relative error of Mode I SIF for the infinite plate with two inclined cracks at tip A from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements ... 78
4.12 Relative error of Mode I SIF for the infinite plate with two inclined cracks at tip B from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements ... 79
4.13 Relative error of Mode III SIF for the infinite plate with two inclined cracks at tip A from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements ... 80
4.14 Relative error of Mode III SIF for the infinite plate with two inclined cracks at tip B from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements ... 81
4.15 Mode I SIF for the infinite plate with two parallel cracks from (a) the Reference [93], the QPE with (b) 6 elements, (c) 8 elements, (d) 10 elements and the SCT with (e) 6 elements, (f) 8 elements, and (g) 10 elements ... 83
4.16 Mode II SIF for the infinite plate with two parallel cracks from the QPE with (a) 6 elements, (b) 8 elements, (c) 10 elements and the SCT with (d) 6 elements, (e) 8 elements, and (f) 10 elements 84
4.17 Mode III SIF for the infinite plate with two parallel cracks from (a) the Reference [93], the QPE with (b) 6 elements, (c) 8 elements, (d) 10 elements and the SCT with (e) 6 elements, (f) 8 elements, and (g) 10 elements ... 85
5.1 A three subregion medium .. 92
5.2 A perfectly bonded dissimilar elastic semi-strip 101
5.3 Normalised normal stress distribution on the interface
\((E_2/E_1, \nu_1, \nu_2) = (9.0, 0.5, 0.5)\): (a) Ref. [17], (b) the present method
\((E_2/E_1, \nu_1, \nu_2) = (3.0, 0.5, 0.5)\): (c) Ref. [17], (d) the present method... 102
5.4 A three-layer plate with a centre crack 103
5.5 Normalised mode I stress intensity factor (SIF) on the three-layer plate
with a centre crack: (a) \(l/h_2 = 0.1\), (b) \(l/h_2 = 0.2\), (c) \(l/h_2 = 0.3\), (d)
\(l/h_2 = 0.4\), (e) \(l/h_2 = 0.5\) ... 104
5.6 A three-layer plate with two identical co-linear cracks 105
5.7 Normalised mode I SIF at tip A on the three-layer plate with two
co-linear cracks: (a) \(l/h_2 = 0.1\), (b) \(l/h_2 = 0.2\), (c) \(l/h_2 = 0.3\), (d)
\(l/h_2 = 0.4\), (e) \(l/h_2 = 0.5\) ... 106
5.8 Normalised mode I SIF at tip B on the three-layer plate with two
colinear cracks: (a) \(l/h_2 = 0.1\), (b) \(l/h_2 = 0.2\), (c) \(l/h_2 = 0.3\), (d)
\(l/h_2 = 0.4\), (e) \(l/h_2 = 0.5\) ... 107
6.1 Boundary and internal nodes .. 114
6.2 Crack on the body for subregion method 118
6.3 Rectangular plate with a central crack 121
6.4 Normalised mode I DSIF for the rectangular plate with a central crack
(a) the present method, (b) the dual reciprocity method [6] and (c) the
Laplace transform method [6] ... 122
6.5 Rectangular plate with a central slant crack 123
6.6 Normalised mode I DSIF for the rectangular plate with a central slant
crack (a) the present method, (b) the dual reciprocity method [6] and
(c) the Laplace transform method [6] 124
6.7 Normalised mode II DSIF for the rectangular plate with a central slant
crack (a) the present method, (b) the dual reciprocity method [6] and
(c) the Laplace transform method [6] 125
6.8 Rectangular plate with an internal kinked crack 126
6.9 Normalised mode I DSIF for the rectangular plate with an internal
kinked crack at tip A (a) \(b/a = 0.2\), (b) \(b/a = 0.4\), and (c) \(b/a = 0.6\) ... 128
6.10 Normalised mode I DSIF for the rectangular plate with an internal
kinked crack at tip B (a) \(b/a = 0.2\), (b) \(b/a = 0.4\), and (c) \(b/a = 0.6\) ... 129
6.11 Normalised mode II DSIF for the rectangular plate with an internal kinked crack at tip B (a) $b/a = 0.2$, (b) $b/a = 0.4$, and (c) $b/a = 0.6$. 130