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Abstract

M -quantile estimators are a generalised form of quantile-like M -estimators intro-

duced by Breckling and Chambers (1988). Quantiles are a type of M -quantile based

on the least absolute deviation, and the lesser known expectiles are based on least

squares. So just as the median and mean are types of M -estimators, the quantile

and the expectile are types of M -quantile estimators. Another type of M -quantile

is based on the Huber estimator which utilises a tuning constant that adjusts the

robustness of the estimator in the presence of outliers. The tuning constant pro-

vides an intermediary estimator between the quantile and the expectile. With this

robustness property, the mild distributional assumptions of M -estimation, and the

quantile-like framework; altogether it makes these Huber M -quantile estimators very

versatile.

Huber M -quantiles are not scale-equivariant, hence a nuisance scale parameter

is required. Different estimates of this scale parameter can lead to substantial dif-

ferences to the M -quantile estimates hence it is important to investigate the role

and cause of these differences. Four scale estimators were investigated, including

the most commonly used M -quantile scale estimator, a ‘naive’ median absolute de-

viation (MAD), which was found to be erroneously generalised to M -quantiles. A

second proposed scale estimator using maximum likelihood was shown to be non-

robust and unsuitable for general M -quantile estimation. Two scale estimators were

found to be more suitable; the ‘corrected’ MAD and a new estimator which is pro-

posed based on the method of moments (MM). Each of these methods was shown

to perform better than the naive MAD estimator and were comparatively similar

to each other. Furthermore, it was highlighted that the corrected MAD estimator

was unaffected by changes to the tuning constant which is useful. The MM scale

estimator provides an appropriate alternative.

Although M -quantile estimation had already been extended to binary data,

there had yet to be a further extension to M -quantiles for categorical data. A

method is presented which enables this application to categorical data. Instead of

generalising the pre-existing binary M -quantile estimation method to categorical

data, first a simpler definition of binary M -quantiles is proposed. This results in

a simple relationship between the probability and the M -quantile of binary data,
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and the estimates are comparable in performance to the pre-existing estimates.

The main advantage of the proposed method is that it can be easily generalised

to categorical data. Estimates of the categorical M -quantile can be made through

estimates of categorical probabilities through a multinomial logistic model. This

categorical M -quantile method was shown to perform well in small area estimation

with contaminated data, as well as computationally efficient relative to the other

categorical methods in small area estimation.

In order to widen the applications of M -quantiles some new methods are pro-

posed utilising M -quantile q-scores. These q-scores provide ordered indices cor-

responding to where observations lie on the conditional distribution, and are fun-

damental to the use of M -quantiles in small area estimation. It is shown that

the q-scores are actually values from a distribution function related to the data

distribution and the influence function. Through an understanding of this rela-

tionship an inverse M -quantile function can be derived which has useful properties

for use in model diagnostics. Methods which utilise these q-scores and this inverse

M -quantile function are proposed for assessing normality of regression residuals,

identifying distributional characteristics of the residual distribution, variable selec-

tion, and calculating an optimal tuning constant with contaminated data. Following

these diagnostic tools some further diagnostic plots are shown to help verify when

M -quantile regression estimates are appropriately fitted in practice.

The methods in this thesis advance M -quantile estimation methods and en-

hances the potential to be used in practice more widely.
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Chapter 1

Introduction

M -quantiles are a generalised form of quantile-like estimators introduced by Breck-

ling and Chambers (1988). They are a specific type of M -estimator which utilise a

‘quantile-like’ loss function. Quantiles are a type of M -quantile based on the least

absolute deviation, and the lesser known expectiles are based on least squares. So

just as the median and mean are types of M -estimators, the quantile and the ex-

pectile are types of M -quantile estimators. M -quantiles are not bound to just these

two types, and can include a broad range of different loss functions. One such func-

tion is the Huber loss function. Huber M -quantiles utilise a tuning constant that

can adjust the robustness of the estimator in the presence of outliers. Hence these

M -quantiles offer versatility and flexibility with these ‘quantile-like’ and robustness

properties. Further details of their technical framework are presented in the next

chapter.

Huber M -quantile regression models have predominantly been applied in the

area of small area estimation (SAE). Though, since M -quantiles are so flexible and

not well known they have capacity to be useful in new applications in other statistical

areas. As data analysis problems continue to diversify in scientific fields there must

also be a diverse range of statistical methods which can address the problem. If M -

quantile research continues to advance then it increases the potential for development

of the estimators which in turn will diversify their applications.

M -quantile estimators offer a unique way of capturing heterogeneity of groups.

Capturing group effects is usually done through random-effects models which dis-

tinguish between groups via a latent variable. However an ensemble of M -quantile

models can also capture group effects by indexing each unit, which will cluster

together if they share relevant group-level characteristics. This clustering can be

captured through an ‘averaging’ of these indices, which then offers group-level in-

dices which capture the group effect. The advantage of this method is that it does

not require any random effects and hence distributional assumptions. This high-

lights one of the main advantageous features of M -quantile models and why it is

1



CHAPTER 1. INTRODUCTION 2

worthwhile for these methods to be advanced, as this thesis intends to do.

Naturally M -quantiles have shortfalls too, which also need to be addressed. Per-

haps the most considerable shortfall is their lack of interpretability. Estimators like

the mean, median, and quantile are well understood and are intuitively conceivable

to general audiences. However M -quantiles are certainly not. And this is not just

due to a lack of familiarity due to their relatively recent introduction to the liter-

ature, but more so due to the lack of intuitiveness. This is a considerable barrier

to the advancement of M -quantiles in practice, regardless of their usefulness as a

statistical tool.

The aims of this thesis are threefold; firstly to strengthen the theory of the cur-

rently established M -quantile methods, second, to diversify the possible applications

to different data types, and thirdly, to enhance the usability and interpretability of

M -quantiles for the general domain. Hence the overall aim is to make advances

in M -quantile estimation which will strengthen and further the applicability of the

methods in practice.

Chapter 2 of this thesis provides a thorough background to M -quantile estima-

tion. A brief introduction to robust estimation via M -estimation is presented before

defining M -quantiles and their characteristics. The developments of M -quantile re-

gression models for various data types including continuous, binary and count data

are then described. Furthermore, their use in SAE is outlined and further details are

presented on how M -quantiles uniquely capture group-level effects using q-scores.

The information in this chapter provides the context, terminology and background

required for the subsequent chapters.

Chapter 3 addresses the first of the three aims in strengthening the theory of

current M -quantile estimation by focussing on the nuisance M -quantile scale pa-

rameter. To ensure that Huber M -quantiles are scale equivariant a scale parameter

is required which must be simultaneously estimated with the M -quantile estimate.

This chapter assesses the scale estimators which are currently employed and chal-

lenges their appropriateness. One further M -quantile scale estimator is proposed

using the method of moments and a distribution with a close relationship to M -

quantiles called the asymmetric least information distribution. The suitability of

the current and proposed M -quantile scale estimators are assessed based on differ-

ent criteria in a range of different contexts using simulations and real data. Finally

the scale estimators are discussed highlighting the advantages and disadvantages of

each estimator, with a final suggestion on the best estimator for M -quantile estima-

tion.

Chapter 4 addresses the second aim of diversifying the applications of M -

quantiles to different data types. In this chapter a method to apply M -quantile

estimation to categorical data is presented. No such estimators have been intro-
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duced to the literature, so this presented M -quantile estimator is the first for data

where the response variable is multi-category. The conceptual difficulty of this M -

quantile extension is discussed and an alternative approach to binary data is also

presented. The generalisation of this new binary M -quantile approach to categor-

ical data is shown and its characteristics explored. An approach to SAE using

categorical M -quantiles is then detailed, with an extensive simulation study to as-

sess the performance and also to compare it to SAE methods which use multinomial

random-effects models.

The third and last of the thesis aims is addressed in chapter 5 where the us-

ability and interpretability of M -quantile models is improved. The primary focus of

this chapter is on q-scores, which are unit-level indices calculated from M -quantile

models and used for SAE. The distributional characteristics of q-scores are explored

extending research by Jones (1994). It is then shown how these characteristics can

be used to determine an ideal choice of tuning constant, how to assess normal-

ity and also assess conditional distributions more generally for regression models.

Lastly some diagnostic plots using q-scores are suggested with examples from various

different data applications.

Finally chapter 6 summarises the findings of the preceding chapters and draws

conclusions from them. Following this, future research areas for M -quantiles are

discussed which will continue the advancements of M -quantile estimation beyond

this thesis.



Chapter 2

Background and literature review

2.1 M-estimation

Robust estimation is an area of statistics which uses estimators that are robust to

violations to certain underlying inferential assumptions. Many common statistical

techniques require strong assumptions of the distribution, randomness or indepen-

dence of the data. It is the relaxation of the distributional assumptions which is often

the primary focus in robust estimation, particularly through dealing with the effects

of outliers and small sample sizes. Although robust estimators are useful when the

assumptions cannot be made reliably, the downside is that the estimators may lack

efficiency or may be biased. An appropriate estimation technique should be utilised

which sensibly takes into account this trade-off using any available information.

Robust estimation was theoretically formalised by Huber (1964) as a general

estimating approach called M -estimation (‘maximum likelihood type’ estimation).

M -estimation involves the minimisation of a loss function ρ(·) such that the M -

estimator θ̂ is the solution to:

θ̂ = arg min
θ

(
n−1

n∑
i=1

ρ(yi; θ)

)
. (2.1)

In most cases where ρ(·) is differentiable and convex, it is easier to solve using the

influence function ψ(y; θ) = ∂
∂θ
ρ(y; θ). In this way, the M -estimator is the solution

to:

n−1

n∑
i=1

ψ(yi; θ̂) = 0 (2.2)

where θ̂ is the estimator of θ defined by the functional:

E[ψ(Y ; θ)] =

∫ ∞
−∞

ψ (y; θ) f(y)dy = 0. (2.3)

4
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This functional equation represents a population moment condition from which es-

timation is performed with sample data using equation 2.1 or 2.2.

M -estimators cover a broad class of estimators. Of particular interest are loca-

tion M -estimators which have the form:

θ̂ = arg min
θ

(
n−1

n∑
i=1

ρ(yi − θ)

)
(2.4)

or

n−1

n∑
i=1

ψ(yi − θ̂) = 0. (2.5)

Common examples of these locationM -estimators include the sample mean ρ(y; ȳ) =

(y − ȳ)2, the sample median ρ(y; ỹ) = |y − ỹ|, and maximum likelihood estimation

ρ(y; θ) = − log f(y; θ) (which is not restricted to location estimates).

The concept of robustness is a broad one. So it is worth clarifying that robustness

in the context of M -estimation implies a resistance to the influence of outliers.

The influence function, as the name would suggest, influences the degree in which

observations are weighted. If an M -estimator down-weights outliers which could

otherwise have a significant effect on the estimate, then it is robust. More accurately,

an M -estimator is recognised as being robust to outliers if the influence function is

a bounded function. A bounded influence function ensures that arbitrarily large

outliers do not over-influence the estimate. Hence since the estimate is less sensitive

to such outliers, it is said to be robust.

Huber (1964) introduced a now widely used robust M -estimator for location

with the loss function:

ρk(y − θ) =


(y − θ)2

2
, if |y − θ| < k

k|y − θ| − k2

2
, if |y − θ| ≥ k

(2.6)

which is expressed as the influence function:

ψk(y − θ) =

{
y − θ, if |y − θ| < k

ksgn(y − θ), if |y − θ| ≥ k
(2.7)

or alternatively, ψk(y−θ) = max[−k,min(y−θ, k)], where k is a pre-selected tuning

constant. This influence function is known as Huber’s influence function, and it

down-weights observations that exceed the intervals set by the tuning constant k.

In this context, these observations that are down-weighted are said to be ‘Huberised’.

The Huber estimator is convenient because it is equivalent to the mean when k →∞
and the median when k → 0, hence the tuning constant can flexibly control the



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 6

robustness of the estimate. The Huber estimator is outlier-robust if k is finite. A

common choice of k in practice is 1.345 as it represents the point of 95% efficiency

under a standard normal distribution.

Huber (1964) shows that M -estimators have desirable asymptotic properties

under certain conditions, including asymptotic normality and a defined asymptotic

variance. However a notable limitation of M -estimators is that in general they are

not scale-equivariant, i.e. θ(ax1, . . . , axn) 6= aθ(x1, . . . , xn), unless coupled with a

scale parameter. Hence generally a simultaneous estimate of scale is required for M -

estimation, e.g. for the Huber influence function: ψk(y−θ) = max
[
−k,min

(
y−θ
σ
, k
)]

where σ is the scale parameter. The consequence of ensuring scale-equivariance

is that this nuisance scale parameter must also be estimated. However some M -

estimators including the mean and median are naturally scale-equivariant hence do

not require a scale parameter.

Huber extended these M -estimation methods to regression (Huber, 1973). Let

(yi,xi; i = 1, . . . , n) be observed data with yi the response variable and xTi =

(xi,0, . . . , xi,p) be the i-th row of the n × (p + 1) design matrix. Set xi,0 = 1 ∀i
to represent the intercept, and all other columns represent the explanatory variables

or covariates. Linear regression estimates β̂ are found by solving:

n−1

n∑
i=1

ψ(yi − xTi β̂)xi = 0

where β̂T =
(
β̂0, . . . , β̂p

)
is the p-vector of regression coefficients.

Regression M -estimators are equivalent to a weighted least-squares estimation

approach to regression, if we define the weights to be:

wi =
ψ(yi − xTi β̂)

yi − xTi β̂

and then solve:

n−1

n∑
i=1

wi(yi − xTi β̂)xi = 0.

This can be solved by first selecting an initial trial coefficient β̂[0] which is then used

to calculate initial weights. Standard weighted least squares procedures can then be

used to get an updated estimate of the regression coefficient β̂[1]. Recalculating the

weights and iteratively repeating this process will eventually converge on a solution

for β̂. This process is known as iteratively reweighted least-squares (IRLS).

Using this M -estimation framework for regression, outlier-robust influence func-

tions could be used in applications with heavy-tailed residual distributions. Bassett

and Koenker (1978) describes the least absolute deviation (LAD or L1) regression
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estimator which estimates the conditional median. And following this, the least me-

dian of squares (LMS) and least trimmed squares (LTS) were proposed by Rousseeuw

(1984).

LAD regression for the median was generalised to all quantiles by Koenker

and Bassett (1978). Quantile M -estimators are defined as the minimisation of the

following loss function where Qq is the q-th quantile estimator:

ρ(Q)
q (y −Qq) = 2

[
(1− q)Iy≤Qq + qIy>Qq

]
|y −Qq| (2.8)

where q ∈ (0, 1), and I is an indicator function. For the linear regression case where

Qq(xi) = xTi βq the quantile regression coefficient βq is estimated by:

β̂q = arg min
βq

(
n−1

n∑
i=1

ρ(Q)
q (yi − xTi βq)

)
(2.9)

which can be solved using linear programming methods. Note that IRLS is not pri-

marily used for quantiles because the influence function ψ
(Q)
q (·) is not continuous so

convergence is not guaranteed using this method. The uniqueness of the solution for

equation 2.9 is not guaranteed, but this shortfall is generally not an issue. Quantile

regression remains to be a useful and widely used tool.

A common criticism of quantile regression is that with different values of q,

crossing over can occur. Hence for a given xi and two quantiles of interest, q1 and q2,

where q1 < q2, then the resulting quantile estimates Qq1(xi) > Qq2(xi) can feasibly

occur. This is problematic because clearly it is theoretically impossible for quantiles

to do this. However there have been a number of methods introduced to deal with

this problem. See Koenker (1984), He (1997) and Chernozhukov, Fernández-Val,

and Galichon (2010) for an introduction to some of the more common methods.

Quantile regression has become increasingly popular due to the intuitive ap-

proach to estimating not just the centre of the conditional distribution, but the entire

distribution. The mathematical and asymptotic theory of the quantile estimators

has continued to grow and many fields have utilised the methods in practice, includ-

ing economics, ecology, finance and epidemiology. The initial frequentist approach

to quantile regression was also extended to a Bayesian approach by Yu and Moyeed

(2001). This was done by assigning the asymmetric Laplace distribution (ALD) as

the likelihood function and an improper uniform as the prior distribution. The ALD

is employed because the minimisation of equation 2.9 is equivalent to the maximum

likelihood estimate under an ALD assumption, i.e. f(y;Qq) = exp[−ρ(Q)
q (y − Qq)]

where f(·) is the ALD density function. Bayesian approaches to quantile regression

have since developed widely also.

A quantile-like extension was later proposed which does guarantee unique so-
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lutions, but at the expense of losing robustness (Newey and Powell, 1987). These

were named expectiles, with µq being the q-th expectile where q ∈ (0, 1). Just as

quantiles are a generalisation of the median, expectiles are a generalisation of the

mean. The loss and influence function for an expectile are respectively given by:

ρ(E)
q (y − µq) = 2

[
(1− q)Iy≤µq + qIy>µq

]
(y − µq)2 (2.10)

and

ψ(E)
q (y − µq) = 2

[
(1− q)Iy≤µq + qIy>µq

]
(y − µq). (2.11)

So the expectile is merely the L2 version of the quantile, and it can be solved

through IRLS as the influence function is continuous. Though expectiles have less

of an intuitive interpretation compared to quantiles, expectiles still provide quantile-

like estimates with guaranteed uniqueness, greater efficiency and simpler algorithms.

However, since the expectile influence function is unbounded, expectile estimation

is not robust.

Newey and Powell (1987) show the usefulness of expectiles in testing for het-

eroscedasticity and conditional symmetry of the conditional distribution. Since then

many other contributions have been made to expectile methods, and like quantiles,

continue to develop and widen its applicability and theoretical properties.

2.2 M-quantiles for continuous data

Breckling and Chambers (1988) further generalised this idea of quantile-like esti-

mators explicitly to an M -estimation framework. So an M -quantile (Mq) is the

M -estimator that exhibits the following loss function:

ρq(y −Mq) = 2
[
(1− q)Iy≤Mq + qIy>Mq

]
ρ(y −Mq), (2.12)

or influence function:

ψq(y −Mq) = 2
[
(1− q)Iy≤Mq + qIy>Mq

]
ψ(y −Mq) (2.13)

where ρ(·) and ψ(·) can be any appropriate loss or influence function. Hence the

population q-th M -quantile is the solution to:∫ ∞
−∞

ψq (y −Mq) f(y)dy = 0. (2.14)

So M -quantile estimators can be considered a type of estimator where the loss

or influence function has this ‘quantile-like’ structure. The functions within this
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structure, ρ(·) and ψ(·), are open to specification, e.g. ψ(y−Mq) = y−Mq specifies

the expectile. Additionally to quantiles and expectiles, M -quantiles using Huber’s

influence function have been introduced. This Huber M -quantile (Mq,k) requires a

pre-selected q and k and the influence function is given by:

ψq,k(y −Mq,k) = 2
[
(1− q)Iy≤Mq,k

+ qIy>Mq,k

]
ψk(y −Mq,k) (2.15)

or alternatively

1

2
ψq,k(y −Mq,k) =



−(1− q)k, if y −Mq,k ≤ −k

(1− q)(y −Mq,k), if − k < y −Mq,k ≤ 0

q(y −Mq,k), if 0 < y −Mq,k < k

qk, if y −Mq,k ≥ k.

(2.16)

This ψq,k(·) influence function is used throughout the thesis and maintains this

definition in all instances. It follows from equation 2.15 that the sample Huber

M -quantile estimator (M̂q,k) is defined by:

n−1

n∑
i=1

ψq,k(yi − M̂q,k) = 0 (2.17)

and is solved using IRLS as previously described.

M -quantiles based on the Huber influence function can be thought of as robust

expectiles. As previously mentioned, the Huber influence function is favourable as

it provides a tuning constant k which provides a balance between the robustness

and the efficiency of the estimator. It also provides an intuitive middle ground

between the expectile (where k →∞) and the quantile (where k → 0), as depicted

in Figure 2.1. With any finite choice of k, the influence function remains bounded

hence remains robust, and additionally unique solutions are guaranteed through

IRLS. It should be noted that M -quantile regression suffers the same problem of

crossing over as quantile regression does. This ongoing problem with quantile-like

regression approaches is not addressed, but it is worth keeping in mind this shortfall.

Throughout the remainder of the thesis the term ‘M -quantile’ will imply a Huber

M -quantile unless otherwise stated, and the q-th M -quantile with tuning constant

k will be denoted as Mq,k. Furthermore, the M -quantile estimator or M -quantile

estimates may sometimes be referred merely as the M -quantile or M -quantiles. This

is done to be concise, and only when the context makes the distinction clear.

Breckling and Chambers (1988) also extended M -quantile estimation to the
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Figure 2.1: The median and mean of an asymmetric distribution with
Mq=0.5,k=1.5 in between.

regression case, where M̂q,k(xi) = xTi β̂q,k, through solving:

n−1

n∑
i=1

ψq,k

(
yi − M̂q,k(xi)

)
xi = 0. (2.18)

While some M -estimators such as the quantile and expectile are naturally scale-

equivariant, M -quantiles are not. To ensure the estimator is scale-equivariant it is

necessary to include a scale parameter σq,k. This parameter must then be simulta-

neously estimated in the estimating equations like so:

n−1

n∑
i=1

ψq,k

(
yi − M̂q,k(xi)

σ̂q,k

)
xi = 0. (2.19)

It is desirable for this scale estimator to also be outlier-robust to maintain the overall

robustness of the M -quantile estimator.

One common robust scale estimator (along with the inter-quartile range) is the

median absolute deviation (MAD). The MAD was introduced to robust statistics

by Hampel (1974) and since then it has been a popular choice in robust estimation

due to it having the highest possible breakdown point of 50%. It is also very simple

to calculate:

MAD =
medi |yi −medj(yj)|

Φ−1(3
4
)

(2.20)

where medi() is the median estimator of all i observations in the sample, and
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Φ−1(3
4
) ≈ 0.6745 ensures the MAD is consistent with the standard deviation of

a normal distribution. The MAD estimator is intuitive for symmetric distributions

because it is proportional to the length of the smallest symmetric interval around

the median that includes 50% of the observations.

The first proposal of a scale estimator for M -quantile regression, which has since

been widely accepted, was suggested by Chambers and Tzavidis (2006) which makes

use of the MAD estimator:

σ̂q,k =
medi |yi − xTi β̂q,k|

Φ−1(3
4
)

(2.21)

which essentially aims to find the MAD of the residuals. However, this MAD es-

timator of the residuals is not actually the traditional MAD expression. The full

MAD expression from equation 2.20 applied to the residuals would be:

σ̂q,k =
medi |yi − xTi β̂q,k −medi∗(yi∗ − xTi∗β̂q,k)|

Φ−1(3
4
)

. (2.22)

The difference between these two expressions of σ̂q,k is that Chambers and Tzavidis

(2006) has assumed that medi(yi − xTi β̂q,k) = 0. This assumption is common

when estimating the mean or median because the corresponding residuals will centre

around zero when the residual distribution is symmetric. However in M -quantile

estimation when q 6= 0.5 the residuals will not be centred around 0 since estimates

all across the residual distribution are made. Hence the assumption that medi(yi −
xTi β̂q,k) = 0 cannot be justified, meaning that the corrected MAD estimator in

equation 2.22 should be the more appropriate choice over the ‘naive’ estimator in

equation 2.21. It remains to be seen in chapter 3 what consequences making this

improper assumption has on the M -quantile estimator.

The importance of the scale parameter in M -quantile estimation is not limited to

just ensuring equivariance. The scale parameter also has a role in which observations

are Huberised by the tuning constant k. Since the role of the scale parameter is to

standardise the observations, it affects which observations fall outside the tuning

constant threshold and are consequently Huberised. More explicitly, residuals are

Huberised when: ∣∣∣∣∣yi − M̂q,k(xi)

σ̂q,k

∣∣∣∣∣ ≥ k.

which is equivalent to ∣∣∣yi − M̂q,k(xi)
∣∣∣ ≥ kσ̂q,k. (2.23)

Hence it is important that the estimator of the scale parameter is sensibly chosen to

allow for appropriate Huberising by k. The effect that different scale estimators have
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on the M -quantile estimator is also explored in chapter 3, including a comparison

between the naive and corrected versions of the MAD scale estimator.

2.2.1 Applications of M-quantiles using q-scores

Until recently, there were rather few published accounts of any development or

applications of M -quantile regression models. One of the earlier and more impor-

tant applications of M -quantiles was introduced by Kokic et al. (1997). This paper

applied M -quantile regression to obtain performance measures which had very prac-

tical uses. The data set used to exhibit this was measuring farm productivity across

different farm variables. The response variable of interest was the gross returns

from each farm, measured against five covariates: labour, land, livestock, capital

and materials. The performance measure for the i-th farm could be found from the

M -quantile regression model through finding the value q∗i which solves:

Mq∗i ,k
(xi) = yi.

These q∗i performance measures have since been referred to as M -quantile coeffi-

cients, q-values and q-scores; the latter will be used throughout this thesis. These

q-scores can be thought of as ordered indices between 0 and 1, where the higher

the q-score the higher yi lies on the conditional distribution given xi. The q-scores

derived using quantile regression will represent which quantile corresponds to the

observation yi on the conditional distribution, hence in this case the q-scores would

be uniformly distributed. More generally, q-scores from M -quantiles can be viewed

as similar indices of yi given xi, but not necessarily uniform.

The q-scores can be calculated by first calculating the M -quantile estimates for

a uniform grid of q, e.g. q = 0.001, . . . , 0.999. In general, fitting M -quantile models

across a range of q is referred to as ensemble modelling, and is often implemented

since specific values of q are rarely of interest, except of course q = 0.5. So a fitted

ensemble M -quantile model across a grid of q will give fitted values M̂q,k(xi) for

each xi. The i-th q-score can be found quite simply by selecting the value q̂∗ in

which M̂q̂∗,k(xi) is closest to yi. If the M -quantile crossing over problem occurs this

will affect the credibility of the q-scores, hence in practice it is important to check

this does not occur.

The introduction of these q-scores opened up a new area of possible applica-

tions. The q-scores described by Kokic et al. (1997) were extended and found to

be very useful and applicable in SAE (Chambers and Tzavidis, 2006). Typically,

random-effects models are used in SAE which will be described further in section 2.4.

However, these models require strong distributional assumptions of not only the ran-

dom effects, but also the residuals. Chambers and Tzavidis (2006) proposed that
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the q-scores which are derived for each sampled unit could then be aggregated to-

gether in their respective small areas. These aggregated (mean or median) q-scores

can then be used to represent the area effects. The robustness properties of the

M -quantile models, as well as weaker distributional assumptions make it ideal when

sample sizes are small such as the case in SAE. They can also be easily adapted to

multilevel estimation problems, as was done by Tzavidis and Brown (2010) in their

application to modelling pupil performance in London schools.

Since the publication of Chambers and Tzavidis (2006), there have been nu-

merous applications of M -quantile models in SAE. Tzavidis, Salvati, et al. (2008)

demonstrated its usefulness in the context of poverty mapping by detailing the

methodology and then applying it to poverty data from Albania. Giusti, Pratesi,

and Salvati (2009) later used M -quantiles to model poverty in Tuscany. M -quantiles

were also used in estimating acidity in north-eastern US lakes (Pratesi, Ranalli, and

Salvati, 2008), and in an analysis of temporal gene expression data (Vinciotti and

Keming, 2009).

Non-parametric M -quantile models through the use of penalised splines were

suggested by Pratesi, Ranalli, and Salvati (2009). Importantly, this allowed for non-

linear relationships to be modelled. Salvati, Ranalli, and Pratesi (2011) developed

these non-parametric M -quantile models in the SAE context. It was shown that

these models outperform the standard mixed models when outliers are present in

the data. However, there were shortfalls due to the poor coverage of the estimator

of the mean-square error (MSE). This shortfall was rectified through a bootstrap

technique described in Marchetti, Tzavidis, and Pratesi (2012).

Another recent development in M -quantile models was by Salvati, Tzavidis,

et al. (2012) who enhanced M -quantile SAE models through the use of geographi-

cally weighted regression. This method incorporates the spatial aspects of the data

through fitting parameters locally rather than globally.

Recently, Bianchi et al. (2015) proposed an alternative approach to M -quantile

estimation using maximum likelihood. As previously stated, maximum likelihood

estimation is equivalent to minimisation of the M -estimate loss function when

ρ(y; θ) = − log f(y; θ). Hence given the influence function ψq,k(·) and the corre-

sponding loss function ρq,k(·), a density can be found from the simple rearrangement

f(y;θ) = exp[−ρq,k(y;θ)]. This mimics the same idea applied to quantile regres-

sion by Yu and Moyeed (2001) using the ALD. To generalise this to M -quantiles a

new density function was proposed by Bianchi et al. (2015) which was named the

Asymmetric Least Informative (ALI) distribution:

fq,k(y;µq,k, σq,k) =
1

Bqσq
exp

[
−ρq,k

(
y − µq,k
σq,k

)]
(2.24)
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Figure 2.2: ALI densities with a variation of parameter values.

where

Bq,k =
e−k

2(1−q)

2k(1− q)
+

√
π

4(1− q)
erf(k

√
1− q) +

√
π

4q
erf(k

√
q) +

e−k
2q

2kq

ensures that
∫
fq,k(y;µq,k, σq,k)dy = 1, and erf(x) = 2√

π

∫ x
0
e−t

2
dt. This distribu-

tion will be denoted as ALI(µq,k, σq,k, q, k) and the standard ALI distribution is

ALI(0, 1, q, k). Formulas for the cumulative distribution function and moments of

the ALI distribution are in Bianchi et al. (2015).

The ALI distribution is a very general and flexible distribution which include

the normal distribution when q = 0.5 and k → ∞ and the ALD when k → 0,

which includes the Laplace distribution when q = 0.5. The µq,k ∈ R and σq,k > 0

parameters act as the location and scale parameter respectively, while q ∈ (0, 1)

skews the distribution right or left depending on whether q is less than or greater

than 0.5. The k > 0 parameter increases the tails of the distribution as k gets

smaller. It is important to note that the spread of the distribution is also increased

as q goes further away from 0.5. The ALI distribution is related to M -quantile

estimation where µq,k acts as the M -quantile location estimate, σq,k as the nuisance

scale parameter and q and k the preselected parameters corresponding to which

quantile-like index is of interest and which tuning constant is desired. A selection

of ALI densities are shown in Figure 2.2.
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2.3 M-quantiles for discrete data

While M -quantile estimation has now become well established for continuous vari-

ables, the same cannot be said about discrete variables. Attempts have been made

to define M -quantiles for specific discrete distributions such as the Bernoulli distri-

bution (Chambers, Salvati, and Tzavidis, 2016), the Poisson distribution (Tzavidis,

Ranalli, et al., 2015) and the negative binomial distribution (Chambers, Dreassi, and

Salvati, 2014). All these attempts extended the methods of robust generalised linear

models (GLMs) by Cantoni and Ronchetti (2001). These methods incorporated a

quasi-likelihood approach to robust GLMs through the use of an influence function

to control response variable outliers and a weight function to control the leverage of

covariates. Through extending these methods it was required that a term a(β) be

added to ensure that the estimator was Fisher consistent. The estimating equations

suggested were:
n∑
i=1

{
ψ(ri)

1

σ (µi)
w(xi)µ

′
i − a(β)

}
= 0, (2.25)

where ri = (yi − µi) /σ (µi), µi = g−1(xTi β), µ′i = ∂µi/∂β, g(·) is a link function,

w(·) is a weight function designed to reduce the influence of observations with high

leverage, σ(µi) is the standard deviation of the fitted value and

a(β) =
n∑
i=1

{
E [ψ(ri)]σ

−1 (µi)w(xi)µ
′
i

}
. (2.26)

For binomial and Poisson models a(β) can be calculated explicitly as demonstrated

by Cantoni and Ronchetti (2001).

Cantoni and Ronchetti (2001) added the consistency term a(β) otherwise the

estimator could lead to inconsistent estimates of the mean; particularly for asym-

metric distributions. Fisher consistency requires that the condition E(U) = 0 is met,

where U is the quasi-score function. For GLMs this is essentially E
(

yi−µi
σ2V (µi)

)
which

equals 0 because E(yi) = µi. Introducing influence functions does not guarantee

this condition will hold. Clearly E
[
ψ
(

yi−µi
σ2V (µi)

)]
will not equal 0 if Y is symmetric

and ψ(·) is not, and vice versa. So using a robust influence function such as Hu-

ber’s required this adjustment a(β) to the quasi-likelihood function and hence the

estimating equations.

This quasi-likelihood approach by Cantoni and Ronchetti (2001) was extended

to M -quantile estimation for discrete data through the estimating equations:

n∑
i=1

{
ψq,k(ri,q,k)

1

σ (Mq,k(xi))
w(xi)M

′
q,k(xi)− a(βq,k)

}
= 0. (2.27)
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with ri,q,k = (yi −Mq,k(xi)) /σ (Mq,k(xi)), Mq,k(xi) = g−1(xTi βq,k), M ′
q,k(xi) =

∂Mq,k(xi)/∂βq,k, σ (Mq,k(xi)) is the standard deviation of the fitted value, and

a(βq,k) =
n∑
i=1

{
E [ψq(riq)]σ

−1 (Mq,k(xi))w(xi)M
′
q,k(xi)

}
. (2.28)

The a(βq,k) term ensures that Mq,k(xi) is Fisher consistent with the expectile re-

gardless of the tuning constant k. For asymmetric distributions where the mean is

not equal to the median this can be a problem, since Mq,k(xi) should approach the

median as k → 0, not remain at the mean. This issue is discussed in further detail

in chapter 4.

2.3.1 Discrete data and q-scores

As discussed, q-scores are an important aspect of M -quantile regression because

they provide relative positions on the residual distribution, and have shown to be

very useful in SAE. For continuous response data q-scores are intuitively constructed

without difficulty because yi = Mq∗i ,k
(xi) will always have a solution. However this

is not necessarily the case when the response is discrete such as with binary and

count data. In both these cases this formulation will not always have a solution

because when yi = 0 there is no such M -quantile which will equal 0. This is because

the link function correctly ensures that all estimates be greater than 0. One may

argue that in this case q∗i should equal zero but issues arise when one considers that

every yi = 0 will likely have a different xi. This means that the corresponding q∗i

values will remain constant at 0 regardless of a varying xi. Chambers, Salvati, and

Tzavidis (2016), Tzavidis, Ranalli, et al. (2015) and Chambers, Dreassi, and Salvati

(2014) each suggest possible solutions to calculating q-scores for binary and count

data.

For binary response data, Chambers, Salvati, and Tzavidis (2016) suggest three

methods to calculate q-scores but focus on one in particular which defines the q-score

q∗i as the solution to y∗i = xTi βq∗i , where

y∗i = logit (0.5 [Mq=0.5,k(xi) + yi]) . (2.29)

The issue with this approach is that it does not provide intuitive q-scores. For

example, suppose the probability estimate Mq=0.5,k(xi) is very close to zero then it

would be expected that yi = 0. Then in this case an expected q-score would be very

close to 0.5 because this is a very typical and likely outcome. If instead yi = 1 then

the q-score should be very close to one since it is very unlikely to occur and must be

considered somewhat of an outlier. However, q-scores derived using equation 2.29 do
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not fit this intuitive characteristic. In chapter 4 these q-scores are explored further

and an improved method is provided.

The approach applied to count response data is similar since counts of zero

suffer the same problem as the binary response case. Tzavidis, Ranalli, et al. (2015)

and Chambers, Dreassi, and Salvati (2014) offer almost identical approaches with a

Poisson and a negative binomial distribution assumption respectively. The q-scores

for count data are defined as

Mq∗i ,k
(xi) =


min

[
1− ε, 1

exp(xTi βq=0.5,k)

]
, if yi = 0

yi, if yi = 1, 2, . . .

(2.30)

where ε > 0 is a small preselected constant. So essentially all values of yi are treated

as in the continuous case except when yi = 0, where an adjustment is made. Two

issues arise with this approach. Firstly, adjusting only when yi = 0 and not a general

adjustment to all values of yi creates a forced skewness in the q-scores, and secondly

it requires a subjective selection of another nuisance parameter ε. It should be noted

that no alternative q-score approaches for count data are presented in this thesis,

and this remains an area of future research.

2.4 Small area estimation

Commonly, sampling surveys are used to measure characteristics of a population

within a large region, e.g. a country. These regions are usually divided into subre-

gions or subpopulations where inferences at this level may also be required. Due to

cost and time constraints the sample sizes within the subregions may not be large

enough to give reliable estimates directly from the sample. In such cases indirect

estimates are required to ‘borrow strength’ from the population to infer about the

subpopulation. Hence SAE is the estimation of subpopulations (small areas) where

sample sizes are small enough to benefit from an indirect or model-based approach.

These small areas can be geographic subregions such as provinces within a country,

but also non-geographic subgroups such as socioeconomic or age-sex groups.

The most common indirect approach to SAE is through the use of linear mixed

models (Rao, 2005). Let yij be the variable of interest for the i-th unit in small area j.

The vectors xij and zij represent units from the respective fixed and random-effects

design matrices, which are known for the entire population. The fixed and random-

effects parameters are given by β and γj respectively, where the latter specifies the

random effect for the j-th small area. Finally, εij denotes the residual. The linear
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mixed model is then given by

yij = xTijβ + zTijγj + εij. (2.31)

Small area estimates for the subpopulations are then found by:

ŷEBLUPj = N−1
j

∑
i∈sj

yij +
∑
i∈rj

(
xTijβ̂ + zTijγ̂j

) (2.32)

where Nj is the population size of small area j, sj denotes the nj units sampled in

area j, and rj the units in area j not sampled out of the Nj. This estimator known

as the empirical best linear unbiased predictor or EBLUP.

As briefly described earlier, the M -quantile small area estimator is found based

on aggregated q-scores within the small areas. Let q̂∗j be the aggregated q-scores

within area j, e.g. for the mean q̂∗j = n−1
j

∑
i∈sj q̂

∗
i . The estimator is then calculated

using:

ŷMQ
j = N−1

j

∑
i∈sj

yij +
∑
i∈rj

(
xTijβ̂q̂∗j ,k

) . (2.33)

It was shown in a simulation study in Chambers and Tzavidis (2006) that the M -

quantile small area estimator performs relatively similarly to the EBLUP even under

ideal structured models for the EBLUP.

2.4.1 Small area estimation for discrete data

SAE can be extended to binary and count data through the use of generalised linear

mixed models (GLMM). Let g(·) be a link function, yij be distributed from the

exponential family, and E(yij) = µij, then the GLMM is given by:

g(µij) = xTijβ + zTijγj .

Clearly, this is very similar to the standard linear mixed model in equation 2.31, and

so the small area estimator is derived almost identically as shown in equation 2.32:

ŷj = N−1
j

∑
i∈sj

yij +
∑
i∈rj

g−1
(
xTijβ̂ + zTijγ̂j

) . (2.34)

2.4.2 Small area estimation for categorical data

To extend small area estimators to categorical data it is necessary to extend the

binary data approaches to the categorical case. To extend the small area estimator
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in equation 2.34 to categorical data requires a multinomial logistic random-effects

model. Hartzel, Agresti, and Caffo (2001) unified multinomial logistic random-

effects model ideas and presented a model for non-ordered categorical data. Sup-

pose there were G categories in the data and let yij be the G-vector of categorical

responses for unit i in area j, with probabilities πij = (πij1, . . . , πijG). Also let xij

be the explanatory fixed-effect variables for each unit and zij be the random-effect

variables. Finally let βg be the fixed-effect parameter vector associated with the

g-th category and γjg be the random-effect parameter vector, which is dependent

on both the area and the category. If category G is arbitrarily set to be the base-

line category then the the multinomial logistic random-effects model for the g-th

category is given by:

log

(
πijg
πijG

)
= xTijβg + zTijγjg. (2.35)

The additional requirement of the model is specifying the structure of γj = (γj1, . . . ,

γj(G−1)). Hartzel, Agresti, and Caffo (2001) recommend that γj ∼ MVN(0,Σ)

where the covariance matrix Σ is unconstrained. It is important that it is uncon-

strained to allow the logit estimates for each category to have a different variance.

It also ensures that there is a correlation structure between categories because as-

sumed independence between categories is unrealistic since they arise from the same

area j. Also, if the logit estimates for one category increases, then intuitively the

logit estimate for the other categories will decrease since they must sum to one; this

would imply a negative correlation. Furthermore, it is important that Σ is uncon-

strained to ensure that the model is structurally the same regardless of the baseline

category. Constraints on Σ could then lead to estimates of πijg varying due to the

arbitrary choice of the baseline category which is clearly an undesirable property.

Molina, Saei, and José Lombard́ıa (2007) used a multinomial logistic random-

effects model for SAE on labour force data with three categories: unemployed,

employed and inactive. However the model they used specifies equal variance and

perfect correlation for γj , hence this constraint on the random-effects structure is

very restrictive.

A less restrictive random effects structure as described by Hartzel, Agresti, and

Caffo (2001) was utilised in SAE by Scealy (2010) and Saei and Taylor (2012). No

restrictions on Σ were employed in these cases, and were generally shown to yield

improved results to the constrained method by Molina, Saei, and José Lombard́ıa

(2007). López-Vizcáıno, Lombard́ıa, and Morales (2013) also applied multinomial

logistic random-effects model to SAE but with constrained independence between

the categories of the random effects.

As of yet there have been no similar categorical extensions to M -quantile esti-

mation, but a method is proposed in chapter 4.
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2.5 Application to farm data

To show how M -quantile estimation is applied to a real data example a farm data

set will be used. Chambers and Tzavidis (2006) demonstrated the application of

M -quantile regression in SAE using this farm data set. The farm data set will be

used in chapters 3 and 5 to motivate the practical application of M -quantiles with

the use of the methods presented in those chapters.

The farm data set is comprised of 1,652 broadacre farms spread across 29 regions

of Australia. The response variable of interest is the total costs of the farm in the

reference year (Farm Cost), with two covariates being the area (Farm Area) and

value (Farm V alue) of the farm. Hence the fitted regression model used is:

ln(Farm Cost) = β0,q,k + β1,q,k ln(Farm V alue) + β2,q,k ln(Farm Area) + rq,k

(2.36)

where rq,k are the residuals. It is of specific interest to find out how the relationship

between these variables differ between the 29 regions (small areas). A scatterplot of

the log of the variables is shown in Figure 2.3.

2.6 Summary

The information in this chapter provides background from which the material in

the subsequent chapters will build from. Firstly, M -estimation was introduced and

from this, M -quantile estimation for continuous data was described. Secondly, the

practical uses of these M -quantiles using q-scores were outlined. Thirdly, the M -

quantile extensions to discrete data were described including the challenges of q-

scores. Finally, a brief introduction to SAE was stated, and how M -quantiles can

be used in this field. The following three chapters build from these pre-existing

methods to advance M -quantile estimation, specifically in nuisance M -quantile scale

estimation, categorical data and model diagnostics.
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Farm costs
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Figure 2.3: Scatter plot of farm variables on a log scale.



Chapter 3

M-quantile scale estimators

3.1 Introduction

M -quantile estimation for continuous data requires estimating equations with an

added scale parameter to ensure that the M -quantile location estimator is scale-

equivariant. This scale parameter is a nuisance parameter because the estimate is

not of immediate interest. But although it is a nuisance parameter, it plays an

important role in M -quantile estimation beyond ensuring equivariance.

Suitable estimation of the scale parameter σq,k is important for M -quantile esti-

mation because this parameter can greatly affect which observations are Huberised

by the tuning constant k. This was highlighted in equation 2.23. So for exam-

ple, given a finite value of k, as σq,k → 0 the proportion of observations that are

Huberised increases to 1. Similarly, as σq,k →∞ the proportion of Huberised obser-

vations approaches 0. A suitable σq,k will lead to a desirable number of observations

being Huberised, which will ensure an appropriate level of robustness. Generally it

is the more extreme observations which are intended to be Huberised.

The more the observations are Huberised the more outlier-robust the estimates

of βq,k will become, however it is important not to Huberise too many observations

unnecessarily due to decreasing efficiency. Both σq,k and the tuning constant k con-

trol the level at which the unscaled observations should be Huberised. It is therefore

important to ensure that this interaction between σq,k and k behaves appropriately

across different distributions and different values of q.

Another motivation for exploring the suitability of the scale estimator is for

tuning constant selection. A common criticism of estimators which depend on tuning

constants like the Huber estimator is that they often require a subjective choice.

To remove this subjectivity the tuning constant can be selected based on some

optimisation criteria. For example, with the standard Huber estimator (Mq=0.5,k)

the tuning constant is optimised by maximising the asymptotic efficiency (Wang

22
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et al., 2007). M -quantile tuning constants could be optimised similarly. Due to the

dependence between σq,k and k in regard to Huberising it is important to consider

σq,k when trying to optimise k. If σq,k were to be less variable around changes to

q and k then the tuning constant can be optimised with less sensitivity to these

changes.

Appropriately estimating a nuisance scale parameter is not just for ensuring scale

equivariant M -quantile estimates. Not only does it ensure appropriate Huberising it

also has potential for better selection of tuning constants as q varies. It is important

to understand the effect that the scale estimator has on the M -quantile estimates,

and also how this effect differs between different scale estimators.

3.2 Four approaches to M-quantile scale estima-

tion

Four different approaches to M -quantile scale estimation for continuous data are

explored in this chapter. This includes three approaches already introduced to

M -quantiles: a ‘naive’ median absolute deviation (nMAD) estimator, a ‘corrected’

median absolute deviation (cMAD) estimator and a maximum likelihood (ML) es-

timator. It also includes a proposed approach using a method of moments (MM)

estimator. These four scale approaches are first individually described and their

attributes detailed, before their differences in practice are explored via a simulation

study and application to real data.

3.2.1 Naive median absolute deviation approach

This naive MAD approach is a widely used method of estimating σq,k in M -quantile

estimation. This is because it is defined this way in the seminal M -quantile re-

search in Chambers and Tzavidis (2006). This scale estimator is calculated using

equation 2.21. As discussed, this scale estimator is referred to as a ‘naive’ MAD ap-

proach because of the assumption that the median of the residuals will be zero. Not

making this assumption leads to a ‘corrected’ MAD estimator which is described in

the next section. Nevertheless, the naive MAD (nMAD) estimator still qualifies as

a viable scale estimator as it is invariant to scale, sign and location shifts.

Scale estimators can be expressed similarly to location M -estimators because

they can depend on solutions to estimating equations which use influence functions.

So in a regression case with p parameters in the βq,k vector, the additional scale

parameter makes a total of p + 1 parameters. In this case the influence function is
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a p+ 1 vector which for the naive MAD can be expressed as:

ψ
nMAD

(yi,xi;βq,k, σq,k) =

 ψq,k

(
yi−xTi βq,k

σq,k

)
xi

sign
{∣∣∣yi−xTi βq,k

σq,k

∣∣∣− Φ−1(3
4
)
} .

The estimates are then found by solving n−1
∑n

i=1ψnMAD
(yi,xi; β̂q,k, σ̂q,k) = 0.

Estimating the scale parameter using these estimating equations is equivalent to

using equation 2.21. The benefit of expressing the scale estimator using influence

functions is it provides a simple way to ensure the estimator is robust to outliers by

checking the function is bounded. In this case clearly the sign function is bounded.

Since this nMAD scale approach was introduced there have been no published

accounts of how well the approach performs and what effect it has on the estimates

of the βq,k parameter. As mentioned, MAD scale estimators including the nMAD is

intuitive for symmetric distributions because it corresponds to a symmetric interval

around the median. However when asymmetry is introduced the nMAD estimator

loses this intuitive meaning since symmetry is lost. Asymmetry can be introduced in

two ways for M -quantiles, as shown in Figure 3.1. Firstly and most obviously when

the data distribution is asymmetric. Rousseeuw and Croux (1993) argue that the

use of the MAD on highly skewed distributions may be inefficient and impractical.

Also in this case the estimator will Huberise more observations on the skewed side

of the distribution, which may not be ideal. The second type of asymmetry is when

q 6= 0.5. When q is extreme the location estimate will be far from the median, and

hence in this case the nMAD is hardly measuring the absolute deviation around the

median. Its intuitive meaning as an estimator is lost in these instances.

Further biases arise from the constant Φ−1(3/4) which ensures the nMAD esti-

mator is consistent with the standard deviation when there is a normal data distri-

bution. However when the data are not normal or when q 6= 0.5 this constant loses

its relevance. It remains to be seen whether these potential issues actually lead to

undesirable properties of the βq,k estimates.

3.2.2 Corrected median absolute deviation approach

The aforementioned ‘corrected’ MAD scale estimator is shown in equation 2.22 which

represents the traditional MAD estimator. The M -quantile regression estimator

with this cMAD scale estimator will have influence function:

ψ
cMAD

(yi,xi;βq,k, σq,k) =

 ψq,k

(
yi−xTi βq,k

σq,k

)
xi

sign
{∣∣∣yi−xTi βq,k−medi(yi−xTi βq,k)

σq,k

∣∣∣− Φ−1(3
4
)
} .
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Figure 5.8: Diagnostic plots for NOx emissions data
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Figure 5.9: Diagnostic plots for verbal test data
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Figure 5.10: Diagnostic plots for toxicity data
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Farm data

The diagnostic plots for the farm data set is shown in Figure 5.6. The top two plots

show that the q-scores are very close to the q-scores from normally distributed data,

as they both follow the red dotted reference line. Having a residual distribution so

close to a normal distribution indicates that there are not many outliers hence it

is not surprising that the optimal tuning constant in the third plot is at the upper

limit of k = 3.0. The fourth plot shows the q-scores scattered symmetrically around

0.5 however the red LOWESS line suggests that for the middle fitted values the

q-scores are more likely to be higher than 0.5, a trend also suggested in the fifth

plot, especially for q = 0.01. This trend appears to be quite minor though, with the

LOWESS lines perhaps being over-influenced by the lower and higher fitted values

where there is less data. The sixth plot shows a desirable stability in the proportions

of residuals less than 0. The symmetry assessment in the seventh plot indicates a

slight left-skew of the data, which is shown in a closer inspection of the second plot

which shows q-scores more frequent closer to 1 rather than 0. Finally the last plot

shows the coefficients behaving erratically for small q. It appears that the first slope

coefficient decreases sharply when q < 0.05 which results in the intercept coefficient

increasing significantly too. Hence this identifies a point of further exploration.

Animal data

The diagnostic plots for the second data set for animals is shown in Figure 5.7. The

M-M plot indicates that the M -quantiles for k = 1.345 are similar to what would

be expected under normality, however the q-scores in the second plot suggest it is

not too similar. Furthermore the third plot shows an optimal tuning constant of

k = 1.2 which is close to the default k = 1.345 which was chosen. This indicates

there are outliers present, and that the well fitting M-M plot suggests that these

outliers are being appropriately Huberised. This is suggested by the optimal tuning

constant being close to the tuning constant used. The fourth and fifth plots show

there may be a problem with the linear fit with a suggestion of a curved fit being

more appropriate. The sixth plot shows the proportions of residuals are not very

stationary, with proportions changing over the fitted values. The seventh figure

suggests a left skewed distribution, and lastly there is a noticeable change to the

coefficients at q = 0.2. A change like this indicates that there are outliers in the

lower part of the distribution which no longer get Huberised for q beyond this point.

The histogram of q-scores also suggests outliers in the lower part of the distribution,

with a mild spike in q-scores less than 0.05.
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NOx emission data

The third data set for NOx emissions offers a good example of how the diagnostic

plots behave with a large number of data (Figure 5.8). The first three plots strongly

suggest that the residual distribution is very close to a normal distribution. The

fourth and fifth plots indicate a slight underestimation for the lower fitted values.

Otherwise, the proportions of residuals less than 0 in the sixth plot shows reasonably

constant trends, there is a strong suggestion of symmetry in the seventh plot, and

the last plot shows homoscedasticity with the slopes rather constant across q.

Verbal test data

The verbal test data set is very small in comparison, with only a sample size of

n = 20. The diagnostic plots in Figure 5.9 show some limitations when the sample

size is this small. The M-M plot shows that at q ≈ 0.15 and q ≈ 0.8 there is sudden

divergence from normality. The second plot hints that this may happen due to

the gaps in data at these areas on the residual distribution. The q-scores are either

distributed near the centre or the extremes. This gap in data around the q = 0.1, 0.9

region is leading to sensitivity to changes in the M -quantile estimates across q. The

last plot shows this also. The peaks of q-scores in the extremes indicates outliers

which is why the third plot suggests a small tuning constant of k = 0.5. The fourth

and fifth plot show some suggestion of a non-linear relationship however with so few

data it is difficult to be sure of this. The sixth plot clearly does not perform that

well with erratic lines due to the small sample size. The seventh plot shows a hint of

a right-skewed distribution but mostly symmetric. Overall this reveals the shortfalls

of some of these plots with small sample sizes.

Toxicity data

The diagnostic plots for the toxicity data in Figure 5.10 show a definite non-normal

residual distribution. The M-M plot is definitely showing this, and the second and

seventh plot show there is a clear right-skewed distribution, with perhaps some

outliers present as the optimal k appears to be between 1.5 and 2.5. The fourth and

fifth plot show a reasonably good fit with no strong trends present. The sixth plot is

again quite erratic but it shows that for very small q the proportion of residuals less

than 0 remains relatively high around 0.2. This is due to the skewness. Finally, the

coefficient plot shows a considerable change in the slope for the seventh explanatory

variable over q which should be inspected further.
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5.7 Model selection using q-scores

Model selection in regression analysis is typically done via forward, backward or

stepwise selection based on some criteria to assess model fit, e.g. AIC, Mallow’s Cp

or adjusted R2. In this section a simple backward selection approach using q-scores

is introduced.

Consider a full M -quantile regression model with all possible explanatory vari-

ables included. As is often the case some explanatory variables do not have an effect

on the response variable hence may not be required in the regression model. Suppose

the q-scores of the full model were calculated, where each explanatory variable in

the model is contributing towards the q-score estimates. The stronger the effect the

explanatory variable has on the response variable, the more of an effect it has on the

q-score calculation. So if the removal of an explanatory variable does not affect the

resulting q-scores then that indicates that that explanatory variable does not have

an effect on the response variable, hence can be removed from the regression model.

Consider a case where the full model is merely one explanatory variable which is

actually independent of the response variable. Then theoretically the q-scores should

be the same regardless of whether the explanatory variable was included or not. In

other words, the q-scores of the full model compared to the reduced model will have

a perfect correlation. What this means is that the stronger the correlation between

the q-scores in the full model and the reduced model, the less of an association there

is between the response variable and the explanatory variable which was removed.

The q-score model selection method involves systematically removing explana-

tory variables one at a time which upon their removal have a minimal effect on the

q-scores. This effect on the q-scores can be measured using the correlation between

the q-scores of the full model and the reduced model. If the correlation coefficient is

greater than an arbitrarily high value, for example 0.95, then this effect can be con-

sidered minimal. This threshold correlation coefficient value can be modified from

0.95 depending on the required strength of the effect of the explanatory variables.

More precisely the model selection process for a full model with p explanatory

variables is as follows:

(1) Calculate the q-scores for the full M -quantile regression model.

(2) Remove the first explanatory variable from the model and recalculate the q-

scores. Return this explanatory variable and then remove the next one, until

q-scores are calculated for the removal of all p explanatory variables.

(3) Calculate the correlation coefficients for the relationship between each of the p

sets of q-scores and the q-scores for the full model.
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(4) Identify the highest correlation coefficient, and if it is higher than 0.95 then

remove the corresponding explanatory variable.

(5) Repeat steps 1-4 except instead of the full model use the reduced model with

the removed explanatory variable.

(6) Continue until no correlations are greater than 0.95. The remaining explanatory

variables are the selected variables.

To illustrate this method in practice consider the toxicology data set above.

This data set was comprised of a response variable with measurements of carboxylic

acid toxicity, with seven explanatory variables representing different attributes of

the carboxylic acids. For simplicity, the response variable is denoted by y and the

seven explanatory variables as x1, . . . , x7. The full regression model is given by:

y = β0,q,k + β1,q,kx1 + β2,q,kx2 + β3,q,kx3 + β4,q,kx4 + β5,q,kx5 + β6,q,kx6 + β7,q,kx7.+ rq,k

The q-scores for this full model as well as the seven reduced models with each

explanatory variable are calculated, and scatterplots of the relationships between

these q-scores are shown in Figure 5.11. Most reduced model q-scores have a very

high correlation with the full model q-scores, except for the model without x1 which

indicates that this variable has the largest association with y. The reduced model

with the highest correlation is for the reduced model without x4, and this correlation

is greater than 0.95. Hence this x4 explanatory variable should be removed.

The q-scores for this reduced model should be kept and now treated as the new

full model. This model should be further reduced by removing each of the remaining

variables one at a time until no correlations are greater than 0.95. For this toxicology

data set this will be repeated until three variables remain as shown in Figure 5.12.

There are no correlations left under 0.95 hence the model selection approach stops,

selecting the x1, x3, x6 explanatory variables. It is worth noting that a standard

backward selection approach based on AIC selects the same model, although this

will not be the case in general.

The advantages of this model selection approach as opposed to the standard

approaches such as AIC is it can be applied very generally to any regression model

where M -quantiles can be fitted. The M -quantile regression models and the model

selection method require no strong assumptions which is beneficial. Hence so long

as there is a suitable model fit then this model selection approach can be applied.

The model selection approach is not without flaws, and the main one is that it can

be very slow with large sample sizes, in which case the aforementioned standard

methods or cross-validation methods are likely to be better.
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Figure 5.11: Relationships between the q-scores for the full toxicology model
and the reduced models, with the correlation coefficients in the lower panels.
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Figure 5.12: Relationships between the q-scores for the full toxicology model
(with x1, x3 and x6) and the reduced models, with the correlation coefficients in
the lower panels.
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This M -quantile model selection method introduces the idea of how q-scores can

be used to compare regression models. The usefulness and problems with the method

remain a future research area which will be further explored in the subsequent

chapter.

5.8 Summary

A range of methods for M -quantile regression have been presented which add to

the usefulness and interpretation of these models. Most of these methods utilise the

q-scores which are unique to M -quantile models. The q-scores offer a new way of

representing the conditional distribution which can be used in any regression anal-

ysis. They provide a means to assess the full nature of the conditional distribution

as well as comparing to parametric distributions by using the inverse M -quantile

function. This function also provides a way to select a tuning constant which most

appropriately Huberises the residuals. Furthermore, the q-scores and inverse M -

quantile function offer ways to assess the model fit through diagnostic plots. The

methods presented in this chapter enhance the usability of M -quantile models as

well as improve their interpretability, and offer applications to more general areas

outside of SAE.



Chapter 6

Summary and further research

6.1 Summary

M -quantile estimation is a versatile and useful form of estimation which has po-

tential use in a range of areas. However, due to the relatively short time since it

was introduced to the literature it has remained somewhat underdeveloped as a

statistical tool. Huber M -quantiles provide a general suite of estimation options

incorporating overarching techniques of M -estimation, quantile regression and ro-

bust estimation. This includes commonly used estimates such as the mean, median,

quantiles and expectiles. The flexibility introduced by the tuning constant k pro-

vides an opportunity to optimise the trade-off between efficiency and robustness,

while the quantile-like index q allows for more comprehensive estimation of the data

distribution. With such a general estimation method there is potential for a wide

range of applications.

Despite this potential, M -quantile estimation has not been widely used in prac-

tice, with the exception of SAE. It is not so surprising that this is so. Perhaps the

biggest limitation of M -quantiles is their lack of interpretability. Unlike the median

or quantile, the M -quantile is very difficult to interpret, and there is no simple intu-

itive way of explaining it without knowledge of basic M -estimation. If one cannot

understand the estimator, one certainly will not pursue its use in practice. A sec-

ond limitation to its use in practice is due to the subjectivity in the choice of the

tuning constant. Having to choose the tuning constant requires further knowledge

on the best way to do this, which further complicates the estimation process. If

the tuning constant could be optimised based on the data this would eliminate this

subjectivity and reduce the complicatedness. Furthermore, it would also provide a

measure of required robustness given the data. A third reason why M -quantiles may

not be an attractive option to a researcher is due to an unfamiliarity of the uses of

quantile-like estimates beyond the quantiles. More generally M -quantile estimation,
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including quantile estimation, is effective in detecting heterogeneity and skewness

of residual distributions.

Before alleviating these limitations and also to enhance the potential for M -

quantile estimation it is essential that the standard framework of the estimators are

both theoretically and practically sound. The advances made in this thesis were

aimed to improve the usability of M -quantile estimators as well as strengthen the

theory of the estimators.

One essential, though seemingly unimportant, element of M -quantile estimation

is estimating the nuisance scale parameter to ensure equivariance. Focussing on

the scale parameter had been overlooked in the literature, and the effect of this

estimate on the M -quantile estimate was previously not well understood. Hence it

was important to address this gap of understanding and investigate scale estimators

used in M -quantile estimation. Firstly, the most commonly used scale estimator, a

‘naive’ MAD, was found to be erroneously generalised to M -quantiles, and a second

scale estimator using MLE was shown to be non-robust. Two scale estimators were

found to be more suitable for M -quantile estimation; the ‘corrected’ MAD and the

introduced estimator based on the method of moments (MM). Each was shown to

be better than the naive MAD estimator and both were robust. Furthermore, it

was highlighted that the corrected MAD estimator was insensitive to changes to q

and k. As finding an optimal k is important to M -quantile estimation in practice,

it is useful to have the scale estimator unchanging with k which provides a better

and less dynamic platform to optimise k. In cases when the stability of the scale

estimator may not be practical, the MM scale estimator provides an appropriate

alternative.

Although M -quantile estimation had already been extended to binary data,

there had yet to be a further extension to M -quantiles for categorical data. This

extension was non-trivial since binary M -quantiles need not sum to one like proba-

bilities, hence the multinomial logistic framework could not be employed. However,

through redefining the M -quantiles for binary data based on a simple mathematical

relationship between the probability and the M -quantile, the categorical extension

became possible. This categorical M -quantile method was shown to be useful in

SAE with contaminated data, as well as computationally efficient relative to the

methods using multinomial random-effects models. Furthermore, the redefined M -

quantile approach to binary data provides an alternative to the current one which

sometimes has convergence issues. While this redefined binary M -quantile method

generally does not perform as well, it is similar enough as a viable alternative. Nev-

ertheless the simplification of the approach to nominal data provided an effective

means to utilise M -quantiles with categorical data which was shown to be useful in

SAE, especially in the presence of outliers.
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Perhaps the most useful aspect of M -quantile estimation is the ability to calcu-

late q-scores. These q-scores provide an index for each data point corresponding to

where it lies on the residual distribution. These q-scores are fundamental to the use

of M -quantiles in SAE, however the characteristics of the q-scores had not been well

explored. It was shown that the q-scores are actually probabilities from a distribu-

tion function G(·) related to the data distribution F (·) and the influence function.

The distribution function for G(·) behaves like an inverse M -quantile function where

instead of estimating the M -quantile with a given q, the q index can be determined

for any M -quantile on a known distribution F (·). This inverse M -quantile function

has useful properties for use in model diagnostics. It was shown how the inverse M -

quantile function can be used to assess for normality of the residuals, and secondly it

was shown how it can be used to identify distribution characteristics of the residual

distribution. Thirdly, and most importantly, the inverse M -quantile function can be

used to calculate an optimal k with contaminated data. The optimal k is the value

at which the Huberising effect is most resistant to the contamination, while max-

imising k to maintain high efficiency. Following these diagnostic tools some further

diagnostic plots were shown to help verify when M -quantile regression estimates

are appropriately fitted in practice. The methods, tools and plots presented in this

chapter enhance the usability of M -quantiles for broader statistical purposes and

make them more user-friendly for more general researchers. So the interpretability

of the M -quantiles were improved through a broader understanding of the q-scores

which are merely probabilities of being less than the M -quantile estimate based on

an adjusted residual distribution. Admittedly, this interpretability is not completely

redeemed and remains a limitation to M -quantiles.

The methods in this thesis advance M -quantile estimation methods and en-

hances the potential to be used in practice more widely. Each chapter addressed the

aims of the thesis. Chapter 3 strengthened the theory of M -quantiles by identify-

ing a problem with the scale estimators and presenting alternatives which perform

better in general. In chapter 4 the applications of M -quantiles was diversified to

categorical data, and lastly chapter 5 enhanced the usability and interpretability of

M -quantiles through the introduction of diagnostic tools and insights into q-score

characteristics. However there still remains a lot of future work that is required in

order to continue the advancement of M -quantile estimation.

6.2 Further research

While the methods outlined in this thesis add to the overall advancement of M -

quantile estimation, there remain further advancements which can strengthen, ex-

tend and improve the usability of the M -quantiles even further.
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With the nuisance scale estimator now well explored in chapter 3, the corrected

MAD scale estimator was shown to be generally the most appropriate for M -quantile

estimation. As stated, this is partially due to this estimator being the least sensitive

to choices of q and k. The benefit of having a scale estimator resilient to changing

q and particularly k is it provides a fixed framework from which an optimal tuning

constant can be selected. However selecting an optimal tuning constant begs the

question of how it should be optimised.

Often a tuning constant of k = 1.345 is used in concordance with 95% efficiency

for normal data. But what if efficiency is not a particular concern or if your data

is not normal? Then this value is essentially arbitrary. Instead of using this value,

then one would suggest a post-analysis of the down-weighted residuals should be

performed to assess the appropriateness of the tuning constant choice. This can be

cumbersome, and also subjective. One common criticism of M -quantile estimation

is this subjectivity involved in choosing the tuning constant. Although it can be

argued that an ‘expert’ choice of tuning constant is suitable, there is still value in

a less subjective tuning constant selection. At the very least, this can help validate

the expert choice. And beyond this it can provide those inexperienced in M -quantile

estimation a value of k from which to start from. So a means to optimise k with some

more objective guidance is certainly valuable, and an important aspect of improving

the usability of M -quantiles.

In chapter 5 it was shown that the tuning constant k could be optimised using

the inverse M -quantile function on contaminated continuous data. But this is merely

one way of optimising k, and is specifically useful for contaminated data problems.

The optimal tuning constant for the q = 0.5 case with continuous data was calculated

by Wang et al. (2007) through maximising the asymptotic efficiency. This method

of optimisation could be generalised to the M -quantile case with general q. Perhaps

the greatest obstacle for this generalisation is determining whether to optimise k

for a general (global) q or conditional on q (local). Exploring methods for both of

these options, and comparing and contrasting their performance in practice would

be very useful. Furthermore the inverse M -quantile method could also be compared

and assessed to these methods. Investigating other methods of optimising k could

also be sought, including cases with non-continuous data.

Finding an optimal value of k is conditional on using the Huber influence func-

tion which has become the default choice in M -quantile estimation. However there

are cases in which the Huber function is not an ideal choice. The ideal influence

function in terms of efficiency is a function of the data distribution. So clearly, one

single influence function such as the Huber function cannot be ideal when the data

distribution changes. Generally the Huber influence function will perform well on

symmetric data distributions with heavy tails. This is because the Huber function
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is itself symmetric. However there are two general scenarios where the Huber func-

tion does not perform as well in respect to efficiency: when the data distribution is

asymmetric, and secondly, when estimating M -quantiles away from the centre, i.e.

when q 6= 0.5. This was highlighted in figure 3.1.

The symmetry of the Huber function allows it to Huberise both tails of a dis-

tribution evenly. However, when the tails of the data distribution are asymmetric

the Huberising may be unbalanced. In this case it would be ideal to Huberise more

observations in the heavier skewed tail. A tuning constant to adjust for the asym-

metry would rectify this problem, although a second tuning constant would perhaps

over-complicate the estimator. However further research into this may find that the

gain in efficiency due to a more practical asymmetric Huberising may be worth the

added complication.

In cases when q is specified away from 0.5 the M -quantile estimate will be

away from the centre of the data distribution. However the Huber function will

still Huberise symmetrically around the M -quantile estimate. So when the M -

quantile estimate is in the tail the Huberising may occur for a large proportion of

the observations close to the centre. The result is a down-weighting of too many

observations which reduces the efficiency of the estimator. This problem can be

further assessed and potential solutions could be made. For example, an adjustment

to k could be made as a function of q to compensate for the M -quantile estimate

being off centre.

These same issues with asymmetric distributions also occur with non-continuous

data such as binary and count data. Each of these distributions are asymmetric

except for special cases. Hence addressing the impact of a symmetric based influence

function on these distributions may also be worthwhile to research in the future.

Another area of research relating to the nuisance scale parameter could be to

explore the parameter space and relationship between the location and scale parame-

ters. There are infinitely many combinations of parameters which fit the M -quantile

estimating equation, and only four such possibilities were introduced. An optimal

M -quantile parameter set could be identified, and then certain estimators could

be compared to this set. Perhaps even a projection of the possible parameter sets

could be found. Such a projection could then provide a way to correct estimates to

a pre-chosen universal and unique M -quantile parameter set.

In chapter 4 an M -quantile method was described for categorical data, based on

a simplified expression of M -quantiles for Bernoulli variables. Although attempts

were made to generalise the method for binary data by Chambers, Salvati, and Tza-

vidis (2016) to categorical data it was not feasible due to the lack of the constraint

in the summation to one of the binary M -quantiles. The proposed method is rather

simple and lacks the quasi-likelihood framework that Chambers, Salvati, and Tza-
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vidis (2016) employed. This simplification has consequentially created shortfalls for

the categorical M -quantile model, and improvements can potentially be made.

One of the most noticeable shortfalls of the categorical M -quantile model is that

all M -quantile estimates are based on the estimate of the probability. As was shown

in the binary case the Chambers, Salvati, and Tzavidis (2016) generally performs

better than the proposed method, mainly due to the greater flexibility across q

and a weaker distributional assumption. The consequence of the M -quantiles being

a function of the probability and q is a restriction to the model fit. Firstly the

slope coefficients across all q must be the same, with only intercept adjustments

differentiating the M -quantiles. Hence the fit of the probabilities in the centre of

the data distribution dictates the fit in the extremes of the data distribution when

q is close to 0 or 1. This is a concerning property. Secondly, the effect of the tuning

constant k is an adjustment to the fitted probabilities which causes a single-break

discontinuity when k is small which is an undesirable property. Thirdly, the proposed

binary and categorical M -quantile model is based on the assumption that the data

is from the Bernoulli or multinomial distribution. This is in conflict with one of the

most desirable features ofM -quantiles which is its lack of distributional assumptions.

The dependence on the probability is also a concern to the robustness of the M -

quantiles, as the probability is a mean which is not robust. To overcome this, robust

estimates of the probabilities are required, but robust estimates of the probabilities

for categorical data is a challenging area of research where improvements could

be made. Currently, robust methods of the probabilities is limited to a trinomial

case which needs to be generalised to a multinomial case with any given number of

groups. This is an area where future research would be valuable.

With these non-trivial shortfalls present in the categorical M -quantile model it

shows that there is room for improvement. Constructing an M -quantile estimator

which does not have these shortfalls is an area of future research. The proposed

model offers a basic portrayal of categorical M -quantiles and how they can be used

in SAE. Perhaps it provides the framework from which better M -quantile models

can be constructed. Alternatively there may be a way to generalise the Chambers,

Salvati, and Tzavidis (2016) method to categorical data which would likely be an

improvement to the proposed method.

Another issue that the categorical M -quantile model faces is the bias of the small

area estimates shown in chapter 4. This bias exists because when k is finite the M -

quantiles at q = 0.5 are not consistent with the probabilities. If an improved model

cannot be constructed perhaps an adjustment term can be added to the proposed

model. This adjustment could rectify the issue of bias when k is small and improve

its applicability in SAE.

In chapter 5 it was shown how q-scores for M -quantiles are in fact distribution
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function probabilities of a different, but known distribution. And in SAE the area-

level q-scores are just aggregated unit-level q-scores within each small area. Future

research could be directed at exploring the asymptotic properties of the q-scores

and then subsequently whether the q-score aggregations have certain distributional

qualities. If so they would open up improved capabilities for inference in SAE,

including confidence intervals for both unit-level and aggregated q-scores. The beta

distribution approximation of the q-score distribution across (0, 1) may be the best

starting point.

Finally, to make M -quantile estimation usable for general users an R package

should be implemented. This R package could provide all functions for M -quantile

estimation as well as their use in SAE. This would also provide a domain for all M -

quantile codes to be deposited in one place, with the potential for others to improve

and build on the library of code. It will also provide documentation to guide users

performing M -quantile estimation. This will greatly add to the usability of M -

quantiles for analysts in the general domain.
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Appendix A

Appendix One

A.1 Asymptotic variance calculations

As previously stated in equation 3.8, the asymptotic variance of an M -estimator can

be found using a sandwich estimator withA(θq,k) andB(θq,k). The four approaches

to M -quantile estimation with different scale estimators all use influence functions

which are presented in chapter 3. The explicit derivations of these sandwich esti-

mators are shown in this section. Calculations for the naive and corrected MAD

are so similar that only the former is shown, with the extension to the latter being

trivial. Hence the naive MAD approach is simply referred to as the MAD approach.

So derivations of A(θq,k) and B(θq,k) for the three approaches are provided below.

Before showing the derivations the notation is introduced. For simplicity the q

and k subscripts are removed in this section so the M -quantile regression parameter

θq,k = (βq,k, σq,k) is changed to θ = (β, σ). Now let εi =
yi−xTi β

σ
and let εhi |ba be

shorthand notation of εhi Iεi∈(a,b). The mean of εhi |ba can be thought of as the empirical

partial h-th moment of εi. When h = 0, ε0i |ba is the indicator function.

First derivations of A(θ) are made. Though A(θ) is a (p + 1) square matrix,

there are four distinct equations to solve, the partial derivatives based on βj and σ

of the location influence functions and the scale influence function. Note that βj is

the j-th element of β. For all three approaches the (p+1) influence function vectors

all have the same first p elements, and it is only the final element which identifies σ

which differ. Hence for all three approaches:

E

[
− ∂

∂βj
ψq,k (εi)xi,m

]
=

2

nσ

n∑
i=1

(
(1− q)ε0i |0−kσ + qε0i |kσ0

)
xi,jxi,m

and

E

[
− ∂

∂σ
ψq,k (εi)xi,m

]
=

2

nσ2

n∑
i=1

(
(1− q)ε1i |0−kσ + qε1i |kσ0

)
xi,m
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where m ∈ 1, . . . p indicates which of the first p elements of the influence function

vector is being differentiated.

The partial derivatives of the final element of the influence function vector differs

between the three approaches. For the MAD approach:

E

[
− ∂

∂βj
sign

{
|εi| − Φ−1(

3

4
)

}]
=

2

n

[
f

(
σΦ−1(

3

4
)

)
− f

(
−σΦ−1(

3

4
)

)] n∑
i=1

xi,j

and

E

[
− ∂

∂σ
sign

{
|εi| − Φ−1(

3

4
)

}]
= 2Φ−1(

3

4
)

[
f

(
σΦ−1(

3

4
)

)
+ f

(
−σΦ−1(

3

4
)

)]
.

For the ML approach:

E

[
− ∂

∂βj
ψq,k (εi) εi − 1

]
=

2

nσ

n∑
i=1

(
−(1− q)kε0i |−kσ−∞ +

2(1− q)
σ

ε1i |0−kσ +
2q

σ
ε1i |kσ0 + qkε0i |∞kσ

)
xi,j

and

E

[
− ∂

∂σ
ψq,k (εi) εi − 1

]
=

2

nσ2

n∑
i=1

(
−(1− q)kε1i |−kσ−∞ +

2(1− q)
σ

ε2i |0−kσ +
2q

σ
ε2i |kσ0 + qkε1i |∞kσ

)
.

For the MM approach, let γq,k = EΩ

{
ψ2
q,k(u)

}
:

E

[
− ∂

∂βj
ψ2
q,k (εi)− γq,k

]
=

8

nσ2
q

n∑
i=1

(
(1− q)2ε1i |0−kσ + q2ε1i |kσ0

)
xi,j

and

E

[
− ∂

∂σ
ψ2
q,k (εi)− γq,k

]
=

8

nσ3

n∑
i=1

(
(1− q)2ε2i |0−kσ + q2ε2i |kσ0

)
.

Hence A(θ) are constructed for all three approaches.

For B(θ) there are three distinct equations, with the first being the same for

all approaches:

E [ψq,k (εi)xi,jψq,k (εi)xi,m] = E
[
ψ2
q,k (εi)xi,jxi,m

]
=

4

n

n∑
i=1

(
(1− q)2k2ε0i |−kσ−∞ +

(
1− q
σ

)2

ε2i |0−kσ +
( q
σ

)2

ε2i |kσ0 + q2k2ε0i |∞kσ

)
xi,jxi,m.
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For the MAD approach the remaining elements of B(θ) are:

E

[
ψq,k (εi)xi,msign

{
|εi| − Φ−1(

3

4
)

}]
=

2
n

∑n
i=1

(
−(1− q)kε0i |−kσ−∞ + 1−q

σ
ε1i |
−kΦ−1( 3

4
)

−kσ − 1−q
σ
ε1i |0−kΦ−1( 3

4
)
− q

σ
ε1i |

kΦ−1( 3
4

)

0 +

q
σ
ε1i |kσkΦ−1( 3

4
)
+ qkε0i |∞kσ

)
xi,m if k > Φ−1(3

4
)

2
n

∑n
i=1

(
−(1− q)kε0i |

−kΦ−1( 3
4

)
−∞ − 1−q

σ
ε1i |−kσ−kΦ−1( 3

4
)
− 1−q

σ
ε1i |0−kσ −

q
σ
ε1i |kσ0 −

q
σ
ε1i |

kΦ−1( 3
4

)

kσ + qkε0i |∞kΦ−1( 3
4

)

)
xi,m if k ≤ Φ−1(3

4
)

and

E

[(
sign

{
|εi| − Φ−1(

3

4
)

})2
]

= 1.

For the ML approach:

E [ψq,k (εi)xi,m {ψq,k (εi) εi − 1}] =

4

nσ

n∑
i=1

(
(1− q)2k2ε1i |−kσ−∞ +

(
1− q
σ

)2

ε3i |0−kσ +
( q
σ

)2

ε3i |kσ0 + q2k2ε1i |∞kσ

)
xi,m

and

E
[
{ψq,k (εi) εi − 1}2] =

4

nσ2

n∑
i=1

(
(1− q)2k2ε2i |−kσ−∞ +

(
1− q
σ

)2

ε4i |0−kσ +
( q
σ

)2

ε4i |kσ0 + q2k2ε2i |∞kσ

)
− 1.

For the MM approach:

E
[
ψq,k (εi)xi,m

{
ψ2
q,k (εi)− γq,k

}]
=

8

n

n∑
i=1

(
(1− q)3(−k)3ε0i |−kσ−∞ +

(
1− q
σ

)3

ε3i |0−kσ +
( q
σ

)3

ε3i |kσ0 + q3k3ε0i |∞kσ

)
xi,m

and

E
[{
ψ2
q,k (εi)− γq,k

}2
]

=

16

n

n∑
i=1

(
(1− q)4k4ε0i |−kσ−∞ +

(
1− q
σ

)4

ε4i |0−kσ +
( q
σ

)4

ε4i |kσ0 + q4k4ε0i |∞kσ

)
− γ2

q,k.

Hence B(θ) is now constructed for all three approaches and the asymptotic variance

can be calculated by plugging in θ̂ into the equations (which is θ̂q,k in chapter 3).

The R code for these derivations is given in section B.1.
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A.2 Robust trinomial estimation

A method for robust GLMs was proposed by Cantoni and Ronchetti (2001) which

allowed for robust estimates of π when the response variable was binary. This

method can be extended to categorical data with G = 3, by solving marginally two

of the three categories in a similar way to the binary case. Due to the restriction on

there being G = 3 groups this method is suitable for trinomial data only. However

this is not to suggest that a generalisation to multinomial data with G > 3 is not

feasible.

Robust estimation of (π1,π2,π3) using a Huber influence function is done by

first selecting a reference group, say group 3 for example. Let yi be the trinomial

response vector for the i-th unit out of a total of n, and let there be p covariates

requiring regression coefficients for group g: βg = (βg0, . . . , βgp)
T , where g ∈ {1, 2}.

So β = (βT1 ,β
T
2 ) is a vector of length 2(p+ 1). Define the probabilities as:

πig =
exp

(
xTi βg

)
1 + exp (xTi β1) + exp (xTi β2)

leaving

πi3 =
1

1 + exp (xTi β1) + exp (xTi β2)
.

Estimates of β are made using the influence function vector ψ(yi;xi,β) where the

element for the g-th group and the p-th covariate is given by:

ψgp(yig;xi, βgp) = ψk

(
yig − πig√

Vig

)
wi
√
Vigxip − a(βgp)

which is almost identical to the proposal by Cantoni and Ronchetti (2001). Hence

Vig = πig(1− πig), wi are weights, and a(βgp) is a Fisher consistency term. This can

then be solved almost identically to the binary case.

A sandwich estimator of the asymptotic variance can be derived using:

V (β) ≈[
−E

(
∂

∂β
ψ(yi;xi,β)

)]−1

E
(
ψ(yi;xi,β)ψ(yi;xi,β)T

) [
−E

(
∂

∂β
ψ(yi;xi,β)

)]−1

.

And then with this estimate of the covariance matrix of the coefficient vector, the

variance of the predicted multinomial M -quantiles can be found using the delta

method, since they are merely functions of β as shown in equations 4.18 and 4.19:

V [Mq,k,g(β)] =
∂Mq,k,g

∂β
V (β)

∂Mq,k,g

∂β
.
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Where g ∈ 1, 2, 3, including the reference group at G = 3.



Appendix B

Appendix Two - Code

B.1 Code for M-quantile scale estimation

### Density function for ALI distribution

dALID <- function(x, q, k, mu = 0, sig = 1) {

B <- sig/(2*k*(1-q))*exp(-k^2*(1-q)) - sig*sqrt(pi/(4*(1-q)))*(erf(-k*sqrt(1-q))) +

sig*sqrt(pi/(4*q))*erf(k*sqrt(q)) + sig/(2*k*q)*(exp(-k^2*q))

ifelse(x <= mu-k*sig, 1/B*exp(-2*(1-q)*(-k*((x-mu)/sig) - k^2/2)),

ifelse(x <= mu & x > mu-k*sig, 1/B*exp(-2*(1-q)*(((x-mu)/sig)^2/2)),

ifelse(x <= mu+k*sig & x > mu, 1/B*exp(-2*q*(((x-mu)/sig)^2/2)),

ifelse(x > mu+k*sig, 1/B*exp(-2*q*(k*((x-mu)/sig) - k^2/2)), -1))))

}

### Distribution function for ALI distribution

pALID <- function(x, q, k, mu = 0, sig = 1) {

B <- sig/(2*k*(1-q))*exp(-k^2*(1-q)) - sig*sqrt(pi/(4*(1-q)))*(erf(-k*sqrt(1-q))) +

sig*sqrt(pi/(4*q))*erf(k*sqrt(q)) + sig/(2*k*q)*(exp(-k^2*q))

ifelse(x <= mu-k*sig, sig/(2*B*k*(1-q))*exp(2*k*(1-q)*((x-mu)/sig) + k^2*(1-q)),

ifelse(x <= mu & x > mu-k*sig, sig/(2*B*k*(1-q))*exp(-k^2*(1-q)) +

(sig/B)*sqrt(pi/(4*(1-q)))*(erf(((x-mu)/sig)*sqrt(1-q)) - erf(-k*sqrt(1-q))),

ifelse(x <= mu+k*sig & x > mu, sig/(2*B*k*(1-q))*exp(-k^2*(1-q)) -

(sig/B)*sqrt(pi/(4*(1-q)))*erf(-k*sqrt(1-q)) +

(sig/B)*sqrt(pi/(4*q))*(erf(((x-mu)/sig)*sqrt(q))),

ifelse(x > mu+k*sig, sig/(2*B*k*(1-q))*exp(-k^2*(1-q)) -

(sig/B)*sqrt(pi/(4*(1-q)))*erf(-k*sqrt(1-q)) +

(sig/B)*sqrt(pi/(4*q))*(erf(k*sqrt(q))) -

sig/(2*B*k*q)*(exp(-2*k*q*((x-mu)/sig) + k^2*q) - exp(-k^2*q)), -1))))

}

### M-quantile estimator for method of moments (MM) approach

QRLM.MM <- function (x, y, q = 0.5, k2 = 1.345, case.weights = rep(1, nrow(x)),

var.weights = rep(1, nrow(x)), ..., w = rep(1, nrow(x)),

maxit = 20, acc = 1e-04, test.vec = "resid")
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{

irls.delta <- function(old, new) sqrt(sum((old - new)^2)/max(1e-20, sum(old^2)))

irls.rrxwr <- function(x, w, r) {

w <- sqrt(w)

max(abs((matrix(r*w,1,length(r)) %*% x)/sqrt(matrix(w,1,length(r)) %*% (x^2))))/

sqrt(sum(w*r^2))

}

nmx <- deparse(substitute(x))

if (is.null(dim(x))) {

x <- as.matrix(x)

colnames(x) <- nmx

}

else x <- as.matrix(x)

if (is.null(colnames(x)))

colnames(x) <- paste("X", seq(ncol(x)), sep = "")

if (qr(x)$rank < ncol(x))

stop("x is singular: singular fits are not implemented in rlm")

if (!(any(test.vec == c("resid", "coef", "w", "NULL")) || is.null(test.vec)))

stop("invalid testvec")

if (length(var.weights) != nrow(x))

stop("Length of var.weights must equal number of observations")

if (any(var.weights < 0))

stop("Negative var.weights value")

if (length(case.weights) != nrow(x))

stop("Length of case.weights must equal number of observations")

w <- (w * case.weights)/var.weights

temp <- lm.wfit(x, y, w, method = "qr")

coef <- temp$coef

resid <- temp$resid

done <- FALSE

conv <- NULL

n1 <- nrow(x) - ncol(x)

qest <- matrix(0, nrow = ncol(x), ncol = length(q))

qwt <- matrix(0, nrow = nrow(x), ncol = length(q))

qfit <- matrix(0, nrow = nrow(x), ncol = length(q))

qres <- matrix(0, nrow = nrow(x), ncol = length(q))

qscale <- NULL

# Initial scale estimate from MAD

scale <- median(abs(resid/sqrt(var.weights)))/0.6745

for(i in 1:length(q)) {

for (iiter in 1:maxit) {

if (!is.null(test.vec))

testpv <- get(test.vec)

gamma <- 4*((1-q[i])^2*k2^2*pALID(-k2, q[i], k2) +

q[i]^2*k2^2*(1-pALID(k2, q[i], k2)) +

(1-q[i])^2*(integrate(function(x) {x^2*dALID(x, q[i], k2)}, -k2, 0)$value) +
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q[i]^2*(integrate(function(x) {x^2*dALID(x, q[i], k2)}, 0, k2)$value) )

scale <- sqrt(sum(ifelse(resid <= 0, 4*(1-q[i])^2*pmin(resid^2,(k2*scale)^2),

4*q[i]^2*pmin(resid^2,(k2*scale)^2)))/(n1*gamma))

if (scale == 0) {

done <- TRUE

break

}

w <- psi.huber(resid/(scale * sqrt(var.weights)), k = k2) * case.weights

ww <- 2 * (1 - q[i]) * w

ww[resid > 0] <- 2 * q[i] * w[resid > 0]

w <- ww

temp <- lm.wfit(x, y, w, method = "qr")

coef <- temp$coef

resid <- temp$residuals

if (!is.null(test.vec))

convi <- irls.delta(testpv, get(test.vec))

else convi <- irls.rrxwr(x, wmod, resid)

conv <- c(conv, convi)

done <- (convi <= acc)

if (done)

break

}

if (!done)

warning(paste("rlm failed to converge in", maxit, "steps at q = ", q[i]))

qest[, i] <- coef

qscale[i]<-scale

qwt[, i] <- w

qfit[, i] <- temp$fitted.values

qres[,i] <- resid

}

list(fitted.values = qfit, residuals = qres, q.values = q,

q.weights = qwt, coef = qest, qscale = qscale)

}

### M-quantile estimator for corrected MAD (cMAD) approach

QRLM.cMAD <- function (x, y, offset, k = 1.345, case.weights = rep(1, nrow(x)),

var.weights = rep(1, nrow(x)), init.weights = rep(1, nrow(x)),

maxit = 50, acc = 1e-04, q = 0.5)

{

psi.fn <- function(u, k = 1.345) pmin(1, k/abs(u))

irls.delta <- function(old, new) sqrt(sum((old - new)^2)/max(1e-20,

sum(old^2)))

if (qr(x)$rank < ncol(x))

stop("X matrix is singular")

if (length(var.weights) != nrow(x))
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stop("Length of var.weights must equal number of observations")

if (any(var.weights < 0))

stop("Negative var.weights value")

if (length(case.weights) != nrow(x))

stop("Length of case.weights must equal number of observations")

if (any(case.weights < 0))

stop("Negative case.weights value")

if (length(init.weights) != nrow(x))

stop("Length of init.weights must equal number of observations")

if (any(init.weights < 0))

stop("Negative init.weights value")

if (missing(offset))

offset <- matrix(0, nrow = nrow(x), ncol = length(q))

if (nrow(offset) != nrow(x))

stop("Offset row dimension incorrect")

if (ncol(offset) != length(q))

stop("Offset column dimension incorrect")

w <- (init.weights * case.weights)/var.weights

temp <- lm.wfit(x, y - offset[, round(mean(1:length(q)))],

w, method = "qr")

coef <- temp$coef

resid <- temp$resid

resid.init <- resid

done <- FALSE

conv <- NULL

scale <- median(abs(resid/sqrt(var.weights) -

median(resid/sqrt(var.weights))))/qnorm(3/4)

qest <- matrix(0, nrow = ncol(x), ncol = length(q))

qwt <- matrix(0, nrow = nrow(x), ncol = length(q))

qfit <- matrix(0, nrow = nrow(x), ncol = length(q))

qres <- matrix(0, nrow = nrow(x), ncol = length(q))

qscale <- numeric(length(q))

for (i in 1:length(q)) {

for (iiter in 1:maxit) {

resid.old <- resid

scale <- median(abs(resid/sqrt(var.weights) -

median(resid/sqrt(var.weights))))/qnorm(3/4)

if (scale == 0) {

done <- TRUE

break

}

w <- psi.fn(resid/(scale * sqrt(var.weights)), k = k)

w <- (w * case.weights)/var.weights

ww <- 2 * (1 - q[i]) * w

ww[resid > 0] <- 2 * q[i] * w[resid > 0]

w <- ww

temp <- lm.wfit(x, y - offset[, i], w, method = "qr")
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coef <- temp$coef

resid <- temp$residuals

convi <- irls.delta(resid.old, resid)

conv <- c(conv, convi)

done <- (convi <= acc)

if (done)

break

}

if (!done)

warning(paste("QRLM failed to converge in", maxit,

"steps at q = ", q[i]))

qest[, i] <- coef

qwt[, i] <- w

qfit[, i] <- offset[, i] + temp$fitted.values

qres[, i] <- resid

qscale[i] <- scale

}

list(fitted.values = qfit, residuals = qres, q.values = q,

q.weights = qwt, coefficients = qest, scale = qscale)

}

### Estimate asymptotic variance of MAD approach

MADx.var <- function(y, x, beta, sigma, q, k, dist = "norm", two.par = TRUE) {

ddist <- get(paste("d", dist, sep = ""))

pdist <- get(paste("p", dist, sep = ""))

nd <- ncol(x)

n <- nrow(x)

resid <- y - x%*%beta

#mu <- beta[1]

par1 <- mean(resid)

par2 <- sd(resid)

if (two.par) {

m0 <- function(lower, upper)

pdist(upper, par1, par2) - pdist(lower, par1, par2)

m1 <- function(lower, upper)

integrate(function(x) {(x)*ddist(x, par1, par2)}, lower, upper)$value

m2 <- function(lower, upper)

integrate(function(x) {(x)^2*ddist(x, par1, par2)}, lower, upper)$value

m3 <- function(lower, upper)

integrate(function(x) {(x)^3*ddist(x, par1, par2)}, lower, upper)$value

m4 <- function(lower, upper)

integrate(function(x) {(x)^4*ddist(x, par1, par2)}, lower, upper)$value

} else {

m0 <- function(lower, upper)

pdist(upper, par1) - pdist(lower, par1)
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m1 <- function(lower, upper)

integrate(function(x) {(x)*ddist(x, par1)}, lower, upper)$value

m2 <- function(lower, upper)

integrate(function(x) {(x)^2*ddist(x, par1)}, lower, upper)$value

m3 <- function(lower, upper)

integrate(function(x) {(x)^3*ddist(x, par1)}, lower, upper)$value

m4 <- function(lower, upper)

integrate(function(x) {(x)^4*ddist(x, par1)}, lower, upper)$value

}

l2 <- -sigma*qnorm(3/4)

u2 <- sigma*qnorm(3/4)

l1 <- -sigma*k

u1 <- sigma*k

mu = 0

A <- matrix(NA, nd + 1, nd + 1)

for (i in 1:nd) {

for (j in 1:nd) {

A[i, j] <- (2/sigma)*((1-q)*m0(l1, mu) + q*m0(mu, u1))*t(x[,i])%*%x[,j]/n

A[i, nd + 1] <- (2/sigma^2)*((1-q)*m1(l1, mu) + q*m1(mu, u1))*mean(x[,i])

A[nd + 1, j] <- 2*(ddist(sigma*qnorm(3/4), par1, par2) -

ddist(-sigma*qnorm(3/4), par1, par2))*mean(x[,j])

A[nd + 1, nd + 1] <- (2*qnorm(3/4))*(ddist(mu - sigma*qnorm(3/4), par1, par2) +

ddist(mu + sigma*qnorm(3/4), par1, par2))

}

}

B <- matrix(NA, nd + 1, nd + 1)

for (i in 1:nd) {

for (j in 1:nd) {

B[i, j] <- 4*((1-q)^2*k^2*m0(-Inf, l1) + (1-q)^2/(sigma^2)*m2(l1, mu) +

q^2/sigma^2*m2(mu, u1) + q^2*k^2*m0(u1, Inf))*t(x[,i])%*%x[,j]/n

if (k > qnorm(3/4)) {

B[i, nd + 1] <- 2*((1-q)*(-k)*m0(-Inf, l1) + (1-q)/(sigma)*m1(l1, l2) -

(1-q)/(sigma)*m1(l2, mu) - q/(sigma)*m1(mu, u2) +

q/(sigma)*m1(u2, u1) + q*k*m0(u1, Inf))*mean(x[,i])

B[nd + 1, j] <- 2*((1-q)*(-k)*m0(-Inf, l1) + (1-q)/(sigma)*m1(l1, l2) -

(1-q)/(sigma)*m1(l2, mu) - q/(sigma)*m1(mu, u2) +

q/(sigma)*m1(u2, u1) + q*k*m0(u1, Inf))*mean(x[,j])

} else {

B[i, nd + 1] <- 2*((1-q)*(-k)*m0(-Inf, l2) - (1-q)/(sigma)*m1(l2, l1) -

(1-q)/(sigma)*m1(l1, mu) - q/(sigma)*m1(mu, u1) -

q/(sigma)*m1(u1, u2) + q*k*m0(u2, Inf))*mean(x[,i])
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B[nd + 1, j] <- 2*((1-q)*(-k)*m0(-Inf, l2) - (1-q)/(sigma)*m1(l2, l1) -

(1-q)/(sigma)*m1(l1, mu) - q/(sigma)*m1(mu, u1) -

q/(sigma)*m1(u1, u2) + q*k*m0(u2, Inf))*mean(x[,j])

}

B[nd + 1, nd + 1] <- 1

}

}

V = solve(A)%*%B%*%t(solve(A))

return(V)

}

### Estimate asymptotic variance of ML approach

MLx.var <- function(y, x, beta, sigma, q, k, dist = "norm", two.par = TRUE) {

ddist <- get(paste("d", dist, sep = ""))

pdist <- get(paste("p", dist, sep = ""))

nd <- ncol(x)

n <- nrow(x)

resid <- y - x%*%beta

#mu <- beta[1]

par1 <- mean(resid)

par2 <- sd(resid)

if (two.par) {

m0 <- function(lower, upper)

pdist(upper, par1, par2) - pdist(lower, par1, par2)

m1 <- function(lower, upper)

integrate(function(x) {(x)*ddist(x, par1, par2)}, lower, upper)$value

m2 <- function(lower, upper)

integrate(function(x) {(x)^2*ddist(x, par1, par2)}, lower, upper)$value

m3 <- function(lower, upper)

integrate(function(x) {(x)^3*ddist(x, par1, par2)}, lower, upper)$value

m4 <- function(lower, upper)

integrate(function(x) {(x)^4*ddist(x, par1, par2)}, lower, upper)$value

} else {

m0 <- function(lower, upper)

pdist(upper, par1) - pdist(lower, par1)

m1 <- function(lower, upper)

integrate(function(x) {(x)*ddist(x, par1)}, lower, upper)$value

m2 <- function(lower, upper)

integrate(function(x) {(x)^2*ddist(x, par1)}, lower, upper)$value

m3 <- function(lower, upper)

integrate(function(x) {(x)^3*ddist(x, par1)}, lower, upper)$value
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m4 <- function(lower, upper)

integrate(function(x) {(x)^4*ddist(x, par1)}, lower, upper)$value

}

l1 <- -sigma*k

u1 <- sigma*k

mu = 0

A <- matrix(NA, nd + 1, nd + 1)

for (i in 1:nd) {

for (j in 1:nd) {

A[i, j] <- (2/sigma)*((1-q)*m0(l1, mu) + q*m0(mu, u1))*t(x[,i])%*%x[,j]/n

A[i, nd + 1] <- (2/sigma^2)*((1-q)*m1(l1, mu) + q*m1(mu, u1))*mean(x[,i])

A[nd + 1, j] <- 2/sigma*(-k*(1-q)*m0(-Inf, l1) + 2*(1-q)/sigma*m1(l1, mu) +

2*q/sigma*m1(mu, u1) + k*q*m0(u1, Inf))*mean(x[,j])

A[nd + 1, nd + 1] <- 2/sigma^2*(-k*(1-q)*m1(-Inf, l1) +

2*(1-q)/sigma*m2(l1, mu) + 2*q/sigma*m2(mu, u1) +

k*q*m1(u1, Inf))

}

}

B <- matrix(NA, nd + 1, nd + 1)

for (i in 1:nd) {

for (j in 1:nd) {

B[i, j] <- 4*((1-q)^2*k^2*m0(-Inf, l1) + (1-q)^2/(sigma^2)*m2(l1, mu) +

q^2/sigma^2*m2(mu, u1) + q^2*k^2*m0(u1, Inf))*t(x[,i])%*%x[,j]/n

B[i, nd + 1] <- 4/sigma*(k^2*(1-q)^2*m1(-Inf, l1) +

(1-q)^2/sigma^2*m3(l1, mu) + q^2/sigma^2*m3(mu, u1) +

k^2*q^2*m1(u1, Inf))*mean(x[,i])

B[nd + 1, j] <- 4/sigma*(k^2*(1-q)^2*m1(-Inf, l1) + (1-q)^2/sigma^2*m3(l1, mu) +

q^2/sigma^2*m3(mu, u1) + k^2*q^2*m1(u1, Inf))*mean(x[,j])

B[nd + 1, nd + 1] <- (4/sigma^2*(k^2*(1-q)^2*m2(-Inf, l1) +

(1-q)^2/sigma^2*m4(l1, mu) + q^2/sigma^2*m4(mu, u1) +

k^2*q^2*m2(u1, Inf))) - 1

}

}

V = solve(A)%*%B%*%t(solve(A))

return(V)

}

### Estimate asymptotic variance of MM approach

MMx.var <- function(y, x, beta, sigma, q, k, dist = "norm", two.par = TRUE) {

ddist <- get(paste("d", dist, sep = ""))
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pdist <- get(paste("p", dist, sep = ""))

nd <- ncol(x)

n <- nrow(x)

resid <- y - x%*%beta

#mu <- beta[1]

par1 <- mean(resid)

par2 <- sd(resid)

if (two.par) {

m0 <- function(lower, upper)

pdist(upper, par1, par2) - pdist(lower, par1, par2)

m1 <- function(lower, upper)

integrate(function(x) {(x)*ddist(x, par1, par2)}, lower, upper)$value

m2 <- function(lower, upper)

integrate(function(x) {(x)^2*ddist(x, par1, par2)}, lower, upper)$value

m3 <- function(lower, upper)

integrate(function(x) {(x)^3*ddist(x, par1, par2)}, lower, upper)$value

m4 <- function(lower, upper)

integrate(function(x) {(x)^4*ddist(x, par1, par2)}, lower, upper)$value

} else {

m0 <- function(lower, upper)

pdist(upper, par1) - pdist(lower, par1)

m1 <- function(lower, upper)

integrate(function(x) {(x)*ddist(x, par1)}, lower, upper)$value

m2 <- function(lower, upper)

integrate(function(x) {(x)^2*ddist(x, par1)}, lower, upper)$value

m3 <- function(lower, upper)

integrate(function(x) {(x)^3*ddist(x, par1)}, lower, upper)$value

m4 <- function(lower, upper)

integrate(function(x) {(x)^4*ddist(x, par1)}, lower, upper)$value

}

l1 <- -sigma*k

u1 <- sigma*k

mu = 0

A <- matrix(NA, nd + 1, nd + 1)

for (i in 1:nd) {

for (j in 1:nd) {

A[i, j] <- (2/sigma)*((1-q)*m0(l1, mu) + q*m0(mu, u1))*t(x[,i])%*%x[,j]/n

A[i, nd + 1] <- (2/sigma^2)*((1-q)*m1(l1, mu) + q*m1(mu, u1))*mean(x[,i])

A[nd + 1, j] <- (8/sigma^2)*((1-q)^2*m1(l1, mu) +

q^2*m1(mu, u1))*mean(x[,j])#*t(x[,i])%*%x[,j]/n

A[nd + 1, nd + 1] <- (8/sigma^3)*((1-q)^2*m2(l1, mu) + q^2*m2(mu, u1))

}

}
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gamma <- 4*((1-q)^2*k^2*pALID(-k, q, k) + q^2*k^2*(1-pALID(k, q, k)) +

(1-q)^2*(integrate(function(x) {x^2*dALID(x, q, k)}, -k, 0)$value) +

q^2*(integrate(function(x) {x^2*dALID(x, q, k)}, 0, k)$value) )

B <- matrix(NA, nd + 1, nd + 1)

for (i in 1:nd) {

for (j in 1:nd) {

B[i, j] <- 4*((1-q)^2*k^2*m0(-Inf, l1) + (1-q)^2/(sigma^2)*m2(l1, mu) +

q^2/sigma^2*m2(mu, u1) + q^2*k^2*m0(u1, Inf))*t(x[,i])%*%x[,j]/n

B[i, nd + 1] <- 8*((1-q)^3*(-k)^3*m0(-Inf, l1) + (1-q)^3/(sigma^3)*m3(l1, mu) +

q^3/sigma^3*m3(mu, u1) + q^3*k^3*m0(u1, Inf))*mean(x[,i])

B[nd + 1, j] <- 8*((1-q)^3*(-k)^3*m0(-Inf, l1) + (1-q)^3/(sigma^3)*m3(l1, mu) +

q^3/sigma^3*m3(mu, u1) + q^3*k^3*m0(u1, Inf))*mean(x[,j])

B[nd + 1, nd + 1] <- 16*((1-q)^4*(-k)^4*m0(-Inf, l1) +

(1-q)^4/(sigma^4)*m4(l1, mu) + q^4/sigma^4*m4(mu, u1) +

q^4*k^4*m0(u1, Inf)) - gamma^2

}

}

V = solve(A)%*%B%*%t(solve(A))

return(V)

}

### Calculate q-scores

QSCORE <- function(y, yhatq, qvals)

{

n <- length(y)

if(nrow(yhatq) != n) stop("y-dimensions do not agree")

Q <- length(qvals)

if(ncol(yhatq) != Q) stop("q-dimensions do not agree")

qvec <- c(qvals[1]/n,qvals,(n-1+qvals[Q])/n)

qscore <- rep(0,n)

for(i in 1:n) {

nq <- (1:Q)[abs(y[i]-yhatq[i,])==min(abs(y[i]-yhatq[i,]))]

lq <- length(nq)

if(lq>1) {

if(y[i]>yhatq[i,nq[lq]]) nq <- nq[lq]

else nq <- nq[1]

}

q1 <- qvec[nq+1]

if(y[i]>yhatq[i,nq]) {

q2 <- qvec[nq+2]

if(nq==Q) fac <- runif(1)

else fac <- (y[i]-yhatq[i,nq])/( yhatq[i,nq+1]-yhatq[i,nq])
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qscore[i] <- q1*(1-fac)+q2*fac

}

else {

q2 <- qvec[nq]

if(nq==1) fac <- runif(1)

else fac <- (y[i]-yhatq[i,nq-1])/( yhatq[i,nq]-yhatq[i,nq-1])

qscore[i] <- q1*fac+q2*(1-fac)

#5

}

}

qscore[qscore>1] <- 1

qscore[qscore<0] <- 0

qscore

}

B.2 Code for M-quantile estimation for nominal

data

### Robust estimates of trinomial probabilities

# Code by Nicola Salvati

RobMultifun <- function (x, y, ni=rep(1,nrow(x)), maxit = 500, acc = 1e-06,

weights.x = FALSE, k = 100)

{

require(nnet)

require(MASS)

basepsi<-function(x)

{

tmp <- psi.huber(x,k=k) *x

tmp

}

# assign("basepsi",basepsi,frame=1)

basepsiprime <- function(x)

{

tmp<-1*(abs(x)<k)

tmp

}

#Stopping rule

irls.delta <- function(old, new) abs(max(old-new))/abs(max(old))

if (qr(x)$rank < ncol(x))
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stop("X matrix is singular")

n<-nrow(x)

ifelse (weights.x,w.x <- sqrt(1-hat(x)),w.x <- rep(1,length=n))

assign("w.x",w.x)

p<-ncol(x)

done.all <- FALSE

conv.all <- NULL

J=3

qest <- array(rep(0,(J-1)),dim=c((J-1),ncol(x)))

vest <- array(rep(0,(J-1)),dim=c((J-1),ncol(x)))

qfit <- array(rep(0,nrow(x)),dim=c(nrow(x),(J)))

qres <- array(rep(0,nrow(x)),dim=c(nrow(x),(J)))

#We fit the multinomial for computing the starting values

temp.rob <- multinom(y~x-1, trace = F,Hess=TRUE)

beta.old1<-as.numeric(coef(temp.rob)[1,])

beta.old2<-as.numeric(coef(temp.rob)[2,])

for (iiter in 1:maxit)

{

g.objective1 <- function(beta)

{

eta1 <- x%*%beta

eta2 <- x%*%beta.old2

probab <- exp(eta1)/(1+exp(eta1)+exp(eta2))

probab[exp(eta1)==Inf] <- 1-1e-10

probab[probab==1] <- 1-1e-10

probab[probab==0] <- 1e-10

mu <- ni*probab

V <- ni*probab * (1 - probab)

r.stand <- (y[,2]-mu)/sqrt(V)

#deriv.mu <- ni*(exp(eta1)*(1+exp(eta2)))/((1+exp(eta1)+exp(eta2))^2)

jinf <- floor(mu-k*sqrt(V))

jsup <- floor(mu+k*sqrt(V))

if(k==Inf)

{

esp.cond <- numeric(n)

} else {

indic <- ifelse(jinf+1<=1 & jsup>=1,1,0)

esp.cond <- -k*pbinom(jinf,ni,probab)+

k*(1-pbinom(pmin(jsup,ni),ni,probab))+

1/sqrt(V)*ifelse(ni==1,probab*indic,

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab))) -

mu/sqrt(V)*(pbinom(pmin(jsup,ni),ni,probab) - pbinom(jinf,ni,probab))

}

a.const <- apply(x*as.vector((1/n)*sqrt(V)*w.x*esp.cond), 2,sum)
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apply(x*as.vector((1/n)*sqrt(V)*w.x*basepsi(r.stand)),2,sum)-a.const

}

#assign("g.objective",g.objective,frame=1)

grad.g1 <- function(beta)

{

delta <- .Machine$double.eps^.5

Ident <- diag(1,length(beta))

1/delta*(apply(beta+delta*Ident,2,g.objective1)-as.vector(g.objective1(beta)))

}

# Main

done <- 0

repeat

{done <-done +1

g.old <- g.objective1(beta.old1)

grad.g.old <- grad.g1(beta.old1)

csi <- solve(grad.g.old,-g.old)

beta.new1 <- as.vector(beta.old1+csi)

if(abs(max(beta.old1-beta.new1))/abs(max(beta.old1)) < acc) break

beta.old1 <- beta.new1

if(done>maxit)break

NULL

}

if (done>maxit) warning(paste("RobMultinom failed to converge in", maxit,

"steps at q = ", q[i],"in equation 1"))

g.objective2 <- function(beta)

{

eta1 <- x%*%beta.old1

eta2 <- x%*%beta

probab <- exp(eta2)/(1+exp(eta1)+exp(eta2))

probab[exp(eta2)==Inf] <- 1-1e-10

probab[probab==1] <- 1-1e-10

probab[probab==0] <- 1e-10

mu <- ni*probab

V <- ni*probab * (1 - probab)

r.stand <- (y[,3]-mu)/sqrt(V)

#deriv.mu <- ni*(exp(eta2)*(1+exp(eta1)))/((1+exp(eta1)+exp(eta2))^2)

jinf <- floor(mu-k*sqrt(V))

jsup <- floor(mu+k*sqrt(V))

if(k==Inf)

{

esp.cond <- numeric(n)

} else {

indic <- ifelse(jinf+1<=1 & jsup>=1,1,0)

esp.cond <- -k*pbinom(jinf,ni,probab)+
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k*(1-pbinom(pmin(jsup,ni),ni,probab))+

1/sqrt(V)*ifelse(ni==1,probab*indic,

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab))) -

mu/sqrt(V)*(pbinom(pmin(jsup,ni),ni,probab) - pbinom(jinf,ni,probab))

}

a.const <- apply(x*as.vector((1/n)*sqrt(V)*w.x*esp.cond), 2,sum)

apply(x*as.vector((1/n)*sqrt(V)*w.x*basepsi(r.stand)),2,sum)-a.const

}

#assign("g.objective",g.objective,frame=1)

grad.g2 <- function(beta)

{

delta <- .Machine$double.eps^.5

Ident <- diag(1,length(beta))

1/delta*(apply(beta+delta*Ident,2,g.objective2)-as.vector(g.objective2(beta)))

}

# Main

done <- 0

repeat

{done <-done +1

g.old <- g.objective2(beta.old2)

grad.g.old <- grad.g2(beta.old2)

csi <- solve(grad.g.old,-g.old)

beta.new2 <- as.vector(beta.old2+csi)

if(abs(max(beta.old2-beta.new2))/abs(max(beta.old2)) < acc) break

beta.old2 <- beta.new2

if(done>maxit)break

NULL

}

if (done>maxit) warning(paste("RobMultinom failed to converge in", maxit,

"steps at q = ", q[i],"in equation 2"))

convi.all <- irls.delta(c(beta.old1,beta.old2), c(beta.new1,beta.new2))

conv.all <- c(conv.all, convi.all)

done.all <- (convi.all <= acc)

if (done.all)

break

}

if (!done.all)

warning(paste("RobMultinom failed to converge in", maxit, "steps"))

eta1 <- x%*%beta.old1

eta2 <- x%*%beta.old2
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probab1 <- exp(eta1)/(1+exp(eta1)+exp(eta2))

probab1[exp(eta1)==Inf] <- 1-1e-10

probab1[probab1==1] <- 1-1e-10

probab1[probab1==0] <- 1e-10

mu1 <- ni*probab1

qest[1,] <- beta.old1

qfit[,2] <- mu1

qres[,2] <-y[,2]-mu1

probab2 <- exp(eta2)/(1+exp(eta1)+exp(eta2))

probab2[exp(eta2)==Inf] <- 1-1e-10

probab2[probab2==1] <- 1-1e-10

probab2[probab2==0] <- 1e-10

mu2 <- ni*probab2

qest[2,] <- beta.old2

qfit[,3] <- mu2

qres[,3] <-y[,3]-mu2

qfit[,1] <- ni-mu1-mu2

qres[,1] <-y[,1]- qfit[,1]

# Asymptotic estimated variance of the robust estimator beta1

mu <- ni*probab1

V <- ni*probab1 * (1 - probab1)

deriv.mu <- ni*(exp(eta1)*(1+exp(eta2)))/((1+exp(eta1)+exp(eta2))^2)

jinf <- floor(mu-k*sqrt(V))

jsup <- floor(mu+k*sqrt(V))

probab=probab1

if(k==Inf)

{

esp.cond <- numeric(n)

} else {

indic <- ifelse(jinf+1<=1 & jsup>=1,1,0)

esp.cond <- -k*pbinom(jinf,ni,probab)+

k*(1-pbinom(pmin(jsup,ni),ni,probab))+

1/sqrt(V)*ifelse(ni==1,probab*indic,

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab))) -

mu/sqrt(V)*(pbinom(pmin(jsup,ni),ni,probab) - pbinom(jinf,ni,probab))

}

a.const <- apply(x*as.vector((1/n)*sqrt(V)*w.x*esp.cond*deriv.mu), 2,sum)

if(k==Inf)

{

esp.carre.cond <- 1

} else {

indic1 <- ifelse(jinf+1<=1 & jsup>=1,1,0)

indic2 <- ifelse(jinf+1<=1 & jsup>=1 & ni==2,1,0)
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esp.carre.cond <- k^2*(pbinom(jinf,ni,probab)+

1-pbinom(pmin(jsup,ni),ni,probab))+

1/V*(ifelse(ni==1 | ni==2 ,ni*probab*(1-probab)^(ni-1)*indic1+

4*probab^2*indic2,probab^2*ni*(ni-1)*

(pbinom(pmin(jsup-2,ni-2),pmax(ni-2,2), probab)-

pbinom(jinf-2,pmax(ni-2,2),probab))+

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab)))-

2*mu*ifelse(ni==1,probab*indic1,mu*(pbinom(pmin(jsup-1,ni-1),

pmax(ni-1,1),probab)-pbinom(jinf-1,pmax(ni-1,1),probab)))+

mu^2*(pbinom(pmin(jsup,ni),ni,probab)-pbinom(jinf,ni,probab)))

}

matQaux <- as.vector(esp.carre.cond/V*w.x^2*deriv.mu^2)

matQ1 <- 1/n*t(x)%*%(matQaux*x)

matQ2 <- a.const%*%t(a.const)

matQ <- matQ1-matQ2

if(k==Inf)

{

esp.psi.score <- 1/sqrt(V)

} else {

indic1 <- ifelse(jinf+1<=1 & jsup>=1,1,0)

indic2 <- ifelse(jinf+1<=1 & jsup>=1 & ni==2,1,0)

indic3 <- ifelse(jsup+1<=1,1,0)

indic4 <- ifelse(jinf>=1,1,0)

esp.psi.score <- k*mu/V*(pbinom(jinf,ni,probab)-1

+pbinom(pmin(jsup,ni),ni,probab))+

k/V*(ifelse(ni==1,probab*indic3,mu*(1-pbinom(pmin(jsup-1,ni-1),

pmax(ni-1,1),probab)))-

ifelse(ni==1,probab*indic4,mu*pbinom(jinf-1,pmax(ni-1,1),probab)))+

1/V/sqrt(V)*(ifelse(ni==1 | ni==2, ni*probab*(1-probab)^(ni-1)*indic1+

4*probab^2*indic2,probab^2*ni*(ni-1)*

(pbinom(pmin(jsup-2,ni-2),pmax(ni-2,2),probab) -

pbinom(jinf-2,pmax(ni-2,2),probab))+

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab)))+

-2*mu*ifelse(ni==1,probab*indic1,mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),

probab)-pbinom(jinf-1,pmax(ni-1,1),probab)))+

mu^2*(pbinom(pmin(jsup,ni),ni,probab)-pbinom(jinf,ni,probab)))

}

matMaux <- as.vector(esp.psi.score/sqrt(V)*w.x*deriv.mu^2)

matM <- 1/n*t(x)%*%(matMaux*x)

matMinv <- solve(matM)

as.var <- 1/n*matMinv%*%matQ%*%matMinv
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vest[1,]<-as.numeric(diag(as.var))

# Asymptotic estimated variance of the robust estimator beta2

mu <- ni*probab2

V <- ni*probab2 * (1 - probab2)

deriv.mu <-ni*(exp(eta2)*(1+exp(eta1)))/((1+exp(eta1)+exp(eta2))^2)

jinf <- floor(mu-k*sqrt(V))

jsup <- floor(mu+k*sqrt(V))

probab=probab2

if(k==Inf)

{

esp.cond <- numeric(n)

} else {

indic <- ifelse(jinf+1<=1 & jsup>=1,1,0)

esp.cond <- -k*pbinom(jinf,ni,probab)+

k*(1-pbinom(pmin(jsup,ni),ni,probab))+

1/sqrt(V)*ifelse(ni==1,probab*indic,

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab))) -

mu/sqrt(V)*(pbinom(pmin(jsup,ni),ni,probab) - pbinom(jinf,ni,probab))

}

a.const <- apply(x*as.vector((1/n)*sqrt(V)*w.x*esp.cond*deriv.mu), 2,sum)

if(k==Inf)

{

esp.carre.cond <- 1

} else {

indic1 <- ifelse(jinf+1<=1 & jsup>=1,1,0)

indic2 <- ifelse(jinf+1<=1 & jsup>=1 & ni==2,1,0)

esp.carre.cond <- k^2*(pbinom(jinf,ni,probab)+

1-pbinom(pmin(jsup,ni),ni,probab))+

1/V*(ifelse(ni==1 | ni==2 ,ni*probab*(1-probab)^(ni-1)*indic1+

4*probab^2*indic2,probab^2*ni*(ni-1)*

(pbinom(pmin(jsup-2,ni-2),pmax(ni-2,2), probab)-

pbinom(jinf-2,pmax(ni-2,2),probab))+

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab)))-

2*mu*ifelse(ni==1,probab*indic1,mu*(pbinom(pmin(jsup-1,ni-1),

pmax(ni-1,1),probab)-pbinom(jinf-1,pmax(ni-1,1),probab)))+

mu^2*(pbinom(pmin(jsup,ni),ni,probab)-pbinom(jinf,ni,probab)))

}

matQaux <- as.vector(esp.carre.cond/V*w.x^2*deriv.mu^2)

matQ1 <- 1/n*t(x)%*%(matQaux*x)

matQ2 <- a.const%*%t(a.const)
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matQ <- matQ1-matQ2

if(k==Inf)

{ esp.psi.score <- 1/sqrt(V)

} else {

indic1 <- ifelse(jinf+1<=1 & jsup>=1,1,0)

indic2 <- ifelse(jinf+1<=1 & jsup>=1 & ni==2,1,0)

indic3 <- ifelse(jsup+1<=1,1,0)

indic4 <- ifelse(jinf>=1,1,0)

esp.psi.score <- k*mu/V*(pbinom(jinf,ni,probab)-1

+pbinom(pmin(jsup,ni),ni,probab))+

k/V*(ifelse(ni==1,probab*indic3,mu*(1-pbinom(pmin(jsup-1,ni-1),

pmax(ni-1,1),probab)))-

ifelse(ni==1,probab*indic4,mu*pbinom(jinf-1,pmax(ni-1,1),probab)))+

1/V/sqrt(V)*(ifelse(ni==1 | ni==2, ni*probab*(1-probab)^(ni-1)*indic1+

4*probab^2*indic2,probab^2*ni*(ni-1)*

(pbinom(pmin(jsup-2,ni-2),pmax(ni-2,2),probab) -

pbinom(jinf-2,pmax(ni-2,2),probab))+

mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),probab)-

pbinom(jinf-1,pmax(ni-1,1),probab)))+

-2*mu*ifelse(ni==1,probab*indic1,mu*(pbinom(pmin(jsup-1,ni-1),pmax(ni-1,1),

probab)-pbinom(jinf-1,pmax(ni-1,1),probab)))+

mu^2*(pbinom(pmin(jsup,ni),ni,probab)-pbinom(jinf,ni,probab)))

}

matMaux <- as.vector(esp.psi.score/sqrt(V)*w.x*deriv.mu^2)

matM <- 1/n*t(x)%*%(matMaux*x)

matMinv <- solve(matM)

as.var2 <- 1/n*matMinv%*%matQ%*%matMinv

vest[2,]<-as.numeric(diag(as.var2))

list(fitted.values = qfit, residuals = qres, coefficients = qest, var.est = vest)

}

### Create dummy variable from categorical vectors

my.dummy <- function (x, data = NULL, sep = "", drop = TRUE, fun = as.integer,

verbose = FALSE)

{

if (is.null(data)) {

name <- as.character(sys.call(1))[2]

name <- sub("^(.*\\$)", "", name)

name <- sub("\\[.*\\]$", "", name)

}

else {
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if (length(x) > 1)

stop("More than one variable provided to produce dummy variable.")

name <- x

x <- data[, name]

}

if (drop == FALSE && class(x) == "factor") {

x <- factor(x, levels = levels(x), exclude = NULL)

}

else {

x <- factor(x, exclude = NULL)

}

if (length(levels(x)) < 2) {

if (verbose)

warning(name, " has only 1 level. Producing dummy variable anyway.")

return(matrix(rep(1, length(x)), ncol = 1, dimnames = list(rownames(x),

c(paste(name, sep, x[[1]], sep = "")))))

}

mm <- model.matrix(~x - 1, model.frame(~x - 1), contrasts = FALSE)

colnames.mm <- colnames(mm)

if (verbose)

cat(" ", name, ":", ncol(mm), "dummy varibles created\n")

mm <- matrix(fun(mm), nrow = nrow(mm), ncol = ncol(mm), dimnames = list(NULL,

colnames.mm))

colnames(mm) <- sub("^x", paste(name, sep, sep = ""), colnames(mm))

if (!is.null(row.names(data)))

rownames(mm) <- rownames(data)

return(mm)

}

### Calculate categorical M-quantiles for three groups

multMQ = function(Y, X, q = 0.5, k = 100, maxit = 1000)

{

#require(dummies)

require(nnet)

if (is.null(dim(Y))){

Y1 <- my.dummy(Y)

} else {

Y1 <- Y

}

p <- ncol(X)

J <- ncol(Y1)

ni <- apply(Y1, 1, sum)

kn <- ifelse(k>=100, 1, k^2/(1+k^2))

if (J == 3) {
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beta_hat<- t(RobMultifun(x = X, y = Y1, ni = ni, k = k, maxit = maxit)$coef)

}

fitted <- array(NA, c(nrow(X), J, length(q)))

mn.coef <- array(NA, c(ncol(X), J-1, length(q)))

# Coef

for (i in 1:length(q)) {

mn.coef[,,i]<- beta_hat + c(log(q[i]/(1-q[i])),rep(0, ncol(X)-1))

# Fitted

m <- cbind(1/(1 + apply(exp(X%*%beta_hat + log((1-q[i])/q[i])), 1, sum) ),

exp(X%*%beta_hat + log(q[i]/(1-q[i])))/

(1 + apply(exp(X%*%beta_hat), 1, sum) -

exp(X%*%beta_hat) +exp(X%*%beta_hat + log(q[i]/(1-q[i])))))

l <- cbind(kn/(apply(exp(X%*%beta_hat + log((1-q[i])/q[i])), 1, sum) ),

kn*exp(X%*%beta_hat + log(q[i]/(1-q[i])))/

(1 + apply(exp(X%*%beta_hat), 1, sum) - exp(X%*%beta_hat)))

u <- cbind(1 - kn*apply(exp(X%*%beta_hat + log((1-q[i])/q[i])), 1, sum),

1 - kn*(1 + apply(exp(X%*%beta_hat), 1, sum) -

exp(X%*%beta_hat))/exp(X%*%beta_hat + log(q[i]/(1-q[i]))))

MP <- m < kn & m > 1 - kn

LP <- l < kn & l < 1 - kn

UP <- u > kn & u > 1 - kn

fitted[,,i] <- m

fitted[,,i][LP] <- l[LP]

fitted[,,i][UP] <- u[UP]

}

out = list(fitted = fitted, coef = mn.coef)

}

### Calculate categorical q-scores

qscore.mult <- function (Y, X, k = 100)

{

if (is.null(dim(Y))){

Y1 <- my.dummy(Y)

} else {

Y1 <- Y

}

p <- multMQ(Y1, X, q = 0.5, k = k)$fitted[,,1]

qu<-NULL

for (h in 1:NCOL(Y1))
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{

Y2<-matrix(0,NROW(Y1),NCOL(Y1))

Y2[,h]<-1

ni <- apply(Y2, 1, sum)

a <- pbinom(Y2-1, ni, p)

b <- pbinom(Y2, ni, p)

u <- matrix((a + b)/2, NROW(Y1), NCOL(Y1))

qu <- rbind(qu,u)

}

weights<-NULL

J <- NCOL(qu)

for (i in 1:J)

{

weights<-c(weights,Y1[,i])

}

SLL<-kronecker(matrix(1,NCOL(Y1),1),1:NROW(Y1))

q <- cbind(tapply(qu[,1]*weights, SLL, sum)/tapply(weights, SLL,sum),

tapply(qu[,2]*weights, SLL, sum)/tapply(weights, SLL,sum),

tapply(qu[,3]*weights, SLL, sum)/tapply(weights, SLL,sum))

return(qscores=q)

}

B.3 Code for M-quantile diagnostic plots

### Inverse M-quantile funciton for normal distribution

Gms.cMAD <- function(y, s, k = 1.345) {

numerator <- -k*pnorm(y-k*s)+(1/s)*(-dnorm(y)+dnorm(y-k*s)-

y*(pnorm(y)-pnorm(y-k*s)))

denominator <- numerator - ((1/s)*(-dnorm(y+k*s)+dnorm(y)-

y*(pnorm(y+k*s)-pnorm(y)))+k-k*pnorm(y+k*s))

return(numerator/denominator)

}

# Normal fit

norm.fit <- function(m.1, k = 1.345) {

q <- (1:length(m.1$q.values))/(length(m.1$q.values) + 1)

plot(q, Gms.cMAD((apply(m.1$fitted.values, 2, median) -

apply(m.1$fitted.values, 2, median)[(length(q)+1)/2])/m.1$scale,

s = 1, k = k), ylab = expression(paste(hat(q), "*")))

abline(0,1, col = 2, lwd = 2, lty = 2)
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}

# Q-score histogram

qhist <- function(Qdata, k = 1.345) {

nt = 10000

hist(Qdata, 20, col = "grey", prob = T, main = "", xlab = "q")

Gn <- Gms.cMAD(qnorm(seq(1/nt, 1-(1/nt), length.out = nt)), 1, k = k)

hGn <- hist(Gn, 100, plot = F)

with(hGn, lines(mids, density, type = "l", col = "red", lty = 2, lwd = 2))

legend("top", "Normal q-scores", col = 2, lty = 2, lwd = 2)

}

# Optimal k

optk <- function(y, X, q = seq(0.01, 0.99, 0.01), k = 1.345,

kgrid = seq(0.5, 3, 0.1)) {

kmat <- numeric(length(kgrid))

for (i in 1:length(kgrid)) {

m2 <- QRLM.cMAD(x = X, y = y, k = kgrid[i], q = q, maxit = 200)

kmat[i] <- sum((Gms.cMAD(apply(m2$residuals, 2, median) -

apply(m2$residuals, 2, median)[50], m2$scale, k = 3) - q)^2)

}

plot(kgrid, kmat, ylab = expression(d[j]), xlab = expression(k[j]))

abline(v=kgrid[which.min(kmat)], lty = 2, col = "grey80")

}

# Fitted vs q-scores

fit.q <- function(m.1, Qdata.1, main = "",

qvals = c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)){

qs <- (1:length(m.1$q.values))/(length(m.1$q.values) + 1)

cols <- brewer.pal(length(qvals), "Spectral")

plot(m.1$fitted[ , qs == 0.5], Qdata.1, xlab = "Fitted values",

ylab = "Q-scores", col = "grey", main = main)

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = 0)

points(m.1$fitted[ , m.1$q.values == 0.5], Qdata.1, col = "grey")

lines(lowess(x = m.1$fitted[ , qs == 0.5], y = Qdata.1), col = 2, lwd = 2)

abline(h=0.5, lty = 2)

legend("bottomleft", paste0("q=",qvals), col = cols, lty = 1, cex = 0.7)

}

# Fitted vs residuals

fit.res <- function(m.1, main = "",

qvals = c(0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99)){

qs <- (1:length(m.1$q.values))/(length(m.1$q.values) + 1)

cols <- brewer.pal(length(qvals), "Spectral")

plot(-100, -100, ylim = c(min(m.1$resid), max(m.1$resid)), main = main,

xlim = c(min(m.1$fitted), max(m.1$fitted)), xlab = "Fitted values",

ylab = "Residuals")
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rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = 0)

for (i in 1:length(qvals))

points(m.1$fitted[, qs==qvals[i]], m.1$resid[,qs==qvals[i]],

col = addTrans(cols[i], 90))

for (i in 1:length(qvals))

lines(lowess(x = m.1$fitted[ , qs==qvals[i]], y = m.1$resid[, qs==qvals[i]]),

lty = 1, col = cols[i],lwd = 2)

legend("topright", paste0("q=",qvals), col = cols, pch = 19, cex = 0.7)

}

# Proportions of residuals

prop.res <- function(m.1, X, cd = c(1,5,10,25,50,75,90,95,99)/100, main = "") {

cols <- brewer.pal(length(cd), "Spectral")

qs <- (1:length(m.1$q.values))/(length(m.1$q.values) + 1)

plot(-1,-1, xlim = c(min(m.1$fitted), max(m.1$fitted)), ylim = c(0,1),

xlab = "Fitted values",

ylab = expression(paste("Proportion of ", r[q]," < 0")), main = main)

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = 0)

bin <- matrix(NA, nrow = length(cd), ncol = nrow(m.1$fitted))

for(i in 1:length(cd)) {

resp <- m.1$resid[, qs == cd[i]] < 0

glm1 <- glm(resp ~ X[,-1], family = "binomial")

bin[i,] <- glm1$fitted

ord <- order(m.1$fitted[, qs == cd[i]])

lines(m.1$fitted[ord, qs == cd[i]], bin[i, ord], col = cols[i], lwd = 2)

}

legend("bottomright", paste0("q=",cd), col = cols, lty = 1, cex = 0.7)

}

# Assess symmetry

sym.comp <- function(m.1, cvalues = c(1,seq(5, 45, 5), 49)/100, main = ""){

cols <- brewer.pal(length(cvalues), "Spectral")

qs <- (1:length(m.1$q.values))/(length(m.1$q.values) + 1)

plot(-100, 100, main = main,

xlim = c(0, mean(abs(m.1$fitted[,qs == 0.5] - m.1$fitted[,1]))),

ylim = c(0, mean(m.1$fitted[,length(qs)] - m.1$fitted[,qs == 0.5])),

xlab = expression(M["q=0.5"](x)- M["q=0.5-t"](x)),

ylab = expression(M["q=0.5+t"](x)- M["q=0.5"](x)))

rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "white")

for (i in 1:length(cvalues)){

points(mean(abs(m.1$fitted[, qs == 0.5] - m.1$fitted[, qs == cvalues[i]])),

mean(m.1$fitted[, qs == (1-cvalues[i])] - m.1$fitted[,qs == 0.5]),

col = cols[i], pch = 19, cex = 2)

}

abline(0, 1, lty = 2)

legend("topleft", paste("t =", cvalues), col = cols[length(cols):1],

pch = 19, cex = 0.5)
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}

# Coefficients

coef.q <- function(m.1, main = "") {

qs <- (1:length(m.1$q.values))/(length(m.1$q.values) + 1)

m1.coef <- t((m.1$coef-apply(m.1$coef, 1, mean)))

matplot(qs, m1.coef, main = main, type = "l", xlab = "q",

ylab = "Coefficient estimates", lwd = 2, lty = 1:ncol(m1.coef),

col = 1:ncol(m1.coef))

leg <- c(expression(paste(beta[0], " ")), expression(beta[1] ),expression(beta[2]),

expression(beta[3]), expression(beta[4]), expression(beta[5]), expression(beta[6]),

expression(beta[7]), expression(beta[8]),expression(beta[9]),expression(beta[10]))

legend("bottomright", leg[1:ncol(m1.coef)], lty = 1:ncol(m1.coef),

col = 1:ncol(m1.coef), lwd = 2)

}

### Diagnostic plots of M-quantiles

MQ.diag.plots <- function(y, X, q = seq(0.01, 0.99, 0.01), k = 1.345) {

require(RColorBrewer)

m.1 <- QRLM.cMAD(x = X, y = y, k = k, q = q, maxit = 500, acc = 1e-8)

Qdata <- QSCORE(y = y, yhatq = m.1$fitted.values, qvals = q)

par(mfrow = c(4, 2), mar = c(4.2,4.2,1, 0.5))

norm.fit(m.1, k)

qhist(Qdata, k)

optk(y, X, q, k)

fit.q(m.1, Qdata)

fit.res(m.1)

prop.res(m.1, X)

sym.comp(m.1)

coef.q(m.1)

}




