New Cyclic Peptides via Ring-Closing Metathesis Reactions and Their Anti-Bacterial Activities

Timothy P. Boyle
University of Wollongong

John B. Bremner
University of Wollongong, jbremner@uow.edu.au

Jonathan Coates
Avexa

John Deadman
Avexa

Paul A. Keller
University of Wollongong, keller@uow.edu.au

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/scipapers

Part of the Life Sciences Commons, Medicinal-Pharmaceutical Chemistry Commons, Organic Chemistry Commons, and the Social and Behavioral Sciences Commons

Recommended Citation
Boyle, Timothy P.; Bremner, John B.; Coates, Jonathan; Deadman, John; Keller, Paul A.; Pyne, Stephen G.; and Rhodes, David I.: New Cyclic Peptides via Ring-Closing Metathesis Reactions and Their Anti-Bacterial Activities 2008.

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
New Cyclic Peptides via Ring-Closing Metathesis Reactions and Their Anti-Bacterial Activities

Abstract
As part of a program investigating cyclic peptides with an internal aromatic hydrophobic scaffold as potential novel anti-bacterial agents, we explored the synthesis of simple tyrosine-based systems. These were prepared via key intermediates containing internal allylglycine and allyltyrosine residues for subsequent ring closing metathesis reactions. Although the resulting anti-bacterial activity against Staphylococcus aureus was modest, this represents a novel and simple route to this class of compounds. One intermediate acyclic dipeptide precursor showed good activity against S. aureus with an MIC of 7.8 µg/mL.

Keywords
cyclic peptide, anti-bacterial, cyclic peptoid, RCM, metathesis, peptide macrocycles, CMMB

Disciplines
Life Sciences | Medicinal-Pharmaceutical Chemistry | Organic Chemistry | Physical Sciences and Mathematics | Social and Behavioral Sciences

Publication Details
This article was originally published as Boyle, TP, Bremner, JB, Coates, J, Deadman, J, Keller, PA, Pyne, SG & Rhodes, DI, New Cyclic Peptides via Ring-Closing Metathesis Reactions and Their Anti-Bacterial Activities, Tetrahedron, 64(49), 2008, 11270-11290. Original journal article available here

Authors
Timothy P. Boyle, John B. Bremner, Jonathan Coates, John Deadman, Paul A. Keller, Stephen G. Pyne, and David I. Rhodes

This journal article is available at Research Online: https://ro.uow.edu.au/scipapers/153
New Cyclic Peptides via Ring-Closing Metathesis Reactions and Their Anti-Bacterial Activities

Timothy P. Boyle, John B. Bremner, Jonathan Coates, John Deadman, Paul A. Keller, Stephen G. Pyne, David I. Rhodes

School of Chemistry, University of Wollongong, Wollongong, NSW 2522 Australia
Fax: +61 2 4221 4692; Tel: +61 2 4221 4287.
jbremner@uow.edu.au  keller@uow.edu.au  spyne@uow.edu.au

b Avexa Ltd, 576 Swan St, Richmond, Vic Australia 3121.
Fax: +61 3 9208 4100; Tel: +61 3 9208 4094.

Abstract
As part of a program investigating cyclic peptides with an internal aromatic hydrophobic scaffold as potential novel anti-bacterial agents, we explored the synthesis of simple tyrosine-based systems. These were prepared via key intermediates containing internal allylglycine and allyltyrosine residues for subsequent ring closing metathesis reactions. Although the resulting anti-bacterial activity against Staphylococcus aureus was modest, this represents a novel and simple route to this class of compounds. One intermediate acyclic dipeptide precursor showed good activity against S. aureus with an MIC of 7.8 µg/mL.

1. Introduction
The need for new, novel anti-bacterial agents is becoming increasingly important with the escalating number of cases of multi-drug resistant bacterial infections being reported. A number of compounds targeting these resistant strains have recently been reported, e.g. linezolid, however, resistance to these new molecules has already started to emerge. Vancomycin has long been cast as the drug-of-last-resort and has been in use for a number of years, despite the increasing prevalence of VRE (vancomycin resistant Enterococci) and now vancomycin resistant Staphylococcus aureus. The complicated ring systems of vancomycin limits investigations into extensive structure-activity relationships based on the parent structure. Therefore, we instigated a programme investigating the synthesis of potential anti-bacterial agents using some structural elements of vancomycin, but dramatically simplifying the hydrophobic scaffold to simple moieties that hold a tripeptide in a defined conformation. Thus far, we have reported cyclic peptides containing hydrophobic scaffolds based on 1,1′-binaphthyls, carbazoles, indoles and benzo[b]thiophenes with numerous derivatives showing significant anti-bacterial activity (Figure 1). We report here the synthesis and anti-bacterial activity against S. aureus of an additional, simpler hydrophobic scaffold based on a phenyl unit, exemplified by the cyclic tripeptide 4, together with acyclic peptide precursors of this system.
2. Results and Discussion

Our target structure is typified by the cyclic peptide 11 (Scheme 1), the hydrochloride salt of 4 (R = Lys or Arg side chains). The tripeptide precursor of 11 features a key protected terminal amino group-containing amino acid (Lys; in later work this was replaced by an Arg residue with a protected guanidino moiety) and an allyltyrosine which provides two roles: the aromatic moiety serves as the hydrophobic unit and the olefin enables the cyclisation to be undertaken via a reliable ring-closing metathesis (RCM) reaction\textsuperscript{14} with the third unit of the tripeptide, an allylglycine unit. The modular synthetic strategy also allows for the rapid generation of analogues including variations in the amino acid configuration (\(R\) or \(S\)) as well as variations in the amino acid side-chains themselves, e.g. the RCM of two incorporated allyltyrosine units.

The synthesis of 11 was realized (Scheme 1) in a six-step sequence starting with commercially available L-allylglycine 5. The acid 5 was esterified\textsuperscript{15} using thionyl chloride in a solution of anhydrous methanol at 0 °C, to give 6 in quantitative yield. The synthesis of the dipeptide 7 used typical EDCI/HOBt peptide coupling conditions\textsuperscript{16} reacting 6 with commercially available Fmoc-D-Lys(Boc)-OH and resulted in a 94% yield of 7 after column chromatography. Removal of the base labile Fmoc group from the dipeptide 7 was achieved using standard conditions\textsuperscript{17} of a 1% piperidine/acetonitrile solution to yield the free amine 8 in 99% yield.

\[ (E/Z) \]
Scheme 1: Synthesis of Cyclic Peptides: a) MeOH, SOCl₂, 0 °C-RT, 16 h, 100%. b) Fmoc-D-Lys(Boc)-OH, EDCI, HOBT, DIPEA, DMF, 0 °C-RT, 16 h, 94%. c) 1% piperidine/CH₃CN, RT, 3 h, 99%. d) 14, EDCI, HOBT, DMF, 0 °C-RT, 16 h, 69%. e) Grubbs [Ru] catalyst, benzylidene bis(tricyclohexylphosphine)dichlororuthenium, CH₂Cl₂, Δ, 48 h, 75%. f) i) TFA/CH₂Cl₂ (1:1); ii) 1M HCl/ether, RT, 3 h, 49%.

We next required the N-protected allyltyrosine 14 which was generated by treating commercially available ethyl (2S)-2-acetamido-3-(4-hydroxyphenyl)propanoate 12 with K₂CO₃ and then allylbromide to produce the L-O-allyl-tyrosine derivative 13 in quantitative yield with no further purification required (Scheme 2). The ethyl ester of 13 was hydrolysed by reaction with 2 equivalents of LiOH in 3:1 THF-H₂O and afforded, after acidification, the free carboxylic acid 16 in quantitative yield (Scheme 2). The corresponding D-analogue of 14 was also required for the generation of analogues, but this required a slightly modified synthetic strategy based upon the commercial availability of compounds (Scheme 3). Therefore, the acid catalysed esterification of D-tyrosine 15 with thionyl chloride in methanol yielded the methyl ester 16 in quantitative yield as the ammonium salt which was then treated with 5 M sodium acetate at 0 °C to produce the free amine. Acetic anhydride was added to the aqueous solution and the N-acetyl derivative 17 precipitated in 76% yield. The last two steps of the synthesis were performed in the same manner as described for the synthesis of 13 and 14 to yield the corresponding D-analogues 18 and 19 in 85 and 88% yield, respectively.
Scheme 2: Synthesis of L-N-acetyl-O-allyltyrosine: a) allyl bromide, DMF, K₂CO₃, RT, 16 h, 100%. b) i. 2 eq. LiOH, THF/H₂O, RT, 16 h; ii. 10% HCl, 100%.

Scheme 3: Synthesis of D-N-acetyl-O-allyltyrosine: a) MeOH, SOCl₂, 0 °C-RT, 16 h, 100%. b) Ac₂O, NaOAc, 0 °C, 76%. c) allyl bromide, DMF, K₂CO₃, RT 16 h, 85%. d) LiOH, THF/H₂O, RT, 16 h, 88%.

The coupling of the α-amino dipeptide 8 to the allyltyrosine 14 (Scheme 8) used standard EDCI/HOBt peptide coupling conditions to yield 9 in 69% yield after purification by column chromatography. A ring closing metathesis (RCM) reaction of the peptide 9 with Grubbs’ first generation catalyst (benzylidene bis(tricyclohexylphosphene)dichlororuthenium) gave 10 as a mixture of E and Z isomers in 75% yield, which could not be separated. The E:Z ratio and alkene coupling constants could not be determined by analysis of the ¹H NMR spectra due to overlapping peaks, but all the spectroscopic data was consistent with the cyclic structure 10. Subsequent Boc deprotection of 10 with TFA and anion exchange by treatment with HCl/ether followed by precipitation gave the amine hydrochloride salt 11 in 49% yield.

This modular approach to novel cyclic peptide synthesis allowed for the rapid generation of analogues to probe structure-activity relationships (SARs) upon testing for anti-bacterial activity. Therefore, we synthesised and tested a series of analogues that included:

a) Variations in the stereochemistry at C2 (D- and L-allylGly), C5 (D- and L-amino acids) and C8 (D- and L-allyltyrosine).

b) Variations in the C5 amino acid including the N-terminal side chains of Lys, Arg and N-guanidylLys.

c) Some of the N-deprotected acyclic di- and tripeptide intermediates synthesised.
d) The replacement of allylGly with a second allyltyrosine.

Scheme 4: ‘X’ in structures represents the amino acid side chain as defined under ‘C5’ in the associated tables. a) MeOH, SOCl₂, 0 °C-RT, 16 h. b) Fmoc-D or L-Lys(Boc)-OH, EDCI, HOBt, DIPEA, DMF, 0 °C-RT, 16 h. c) 1% pip/CH₃CN, RT, 3 h. d) 14 or 19, EDCI, HOBt, DMF, 0 °C-RT, 16 h. e) Grubb [Ru] catalyst - benzylidene bis(tricyclohexylphosphine)dichlororuthenium, CH₂Cl₂, ∆, 48 h. f) i. TFA/ CH₂Cl₂ (1:1) ii. 1M HCl/ether, RT, 3 h, 49%.
While not exhaustively producing all possible variations defined above, a selection of target compounds were synthesised using the same synthetic strategy as outlined in Scheme 1. Scheme 4 shows the generation of deprotected cyclic tyrosine-based molecules 11 and 44–49. Schemes 5 and 6 summarise the deprotection of the intermediate di- and tripeptides respectively that were also tested for anti-bacterial activity. The acyclic N-guanidineLys derivatives 62 and 63 were also N-deprotected (Scheme 7) to allow for biological testing as their hydrochloride salts and the corresponding cyclic tyrosine versions of these derivatives were more conveniently synthesised from 10 and this is exemplified by the synthesis of 65 (Scheme 8).

Scheme 5: Synthesis of the deprotected acyclic dipeptide derivatives. a) i) TFA/CH$_2$Cl$_2$, (1:1), ii. 1M HCl/ether, RT, 3 h. ‘X’ in structures represents the amino acid side chain as defined under ‘C5’ in the associated tables.

<table>
<thead>
<tr>
<th>C2</th>
<th>C5</th>
<th>P</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>L</td>
<td>D-Arg</td>
<td>Pmc</td>
</tr>
<tr>
<td>24</td>
<td>L</td>
<td>L-Arg</td>
<td>Pmc</td>
</tr>
<tr>
<td>25</td>
<td>D</td>
<td>D-Arg</td>
<td>Pmc</td>
</tr>
<tr>
<td>26</td>
<td>D</td>
<td>L-Arg</td>
<td>Pmc</td>
</tr>
</tbody>
</table>

Scheme 6: Synthesis of the deprotected acyclic tripeptide derivatives. a) i) TFA/CH$_2$Cl$_2$, (1:1), ii. 1M HCl/ether, RT, 3 h. ‘X’ in structures represents the amino acid side chain as defined under ‘C5’ in the associated tables.

<table>
<thead>
<tr>
<th>C2</th>
<th>C5</th>
<th>P</th>
<th>C8</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>L</td>
<td>D-Lys</td>
<td>Boc</td>
<td>L</td>
</tr>
<tr>
<td>32</td>
<td>L</td>
<td>L-Lys</td>
<td>Boc</td>
<td>L</td>
</tr>
<tr>
<td>33</td>
<td>L</td>
<td>D-Arg</td>
<td>Pmc</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>L</td>
<td>L-Arg</td>
<td>Pmc</td>
<td>L</td>
</tr>
<tr>
<td>35</td>
<td>D</td>
<td>D-Arg</td>
<td>Pmc</td>
<td>L</td>
</tr>
<tr>
<td>36</td>
<td>D</td>
<td>L-Arg</td>
<td>Pmc</td>
<td>L</td>
</tr>
</tbody>
</table>
Scheme 7: Synthesis of the deprotected acyclic tripeptide derivatives containing the guanidated lysine amino acid side chain. a) i. TFA, CH₂Cl₂ (1:1); ii. Tf-N=C(NHBoc)₂, Et₃N, RT, 16 h. b) i) TFA/CH₂Cl₂, (1:1), ii. 1M HCl/ether, RT, 3 h. ‘X’ in structures represents the amino acid side chain as defined under ‘C5’ in the associated tables.

Scheme 8: Synthesis of the cyclic tripeptide containing the guanidated lysine amino acid side chain. a) i. TFA/CH₂Cl₂ (1:1), ii) Tf-N=C(NHBoc)₂, Et₃N, RT, 16 h. b) i. TFA/CH₂Cl₂, (1:1), ii. 1M HCl/ether, RT, 3 h, 87% (2 steps).

The synthesis of the cyclic tripeptides containing two tyrosine residues is outlined in Scheme 9. This necessitated access to the ester protected allyltyrosine 69 which was generated analogously to those established in the synthesis of the tyrosines 14 and 19 (Schemes 2 and 3). The completion of the synthesis of the cyclic dityrosine derivatives also used standard conditions as indicated in Scheme 9. Some acyclic tyrosine dipeptides 70 - 82 were also generated to supplement SAR studies and these are summarised in Scheme 10.
Scheme 9: a) i) MeOH, SOCl₂, 0 °C-RT, 16 h; ii) (Boc)₂O, DMF, RT; 16% (2 steps) b) allyl bromide, DMF, K₂CO₃, RT 16 h, 76%. c) TFA/CH₂Cl₂ (1:1) ii. 1 M HCl/ether, RT, 3 h, 100% d) Fmoc-D-Lys(Boc)-OH, EDCI, HOBT, DIPEA, DMF, 0 °C-RT, 16 h, 75%. e) 1% pip/CH₂CN, RT, 3 h, 97%. f) 14, EDCI, HOBT, DMF, 0 °C-RT, 16 h, 37%. g) Grubbs [Ru] catalyst - benzylidene bis(tricyclohexylphosphine)dichlororuthenium, CH₂Cl₂, ∆, 48 h, 41%. h) i. TFA/CH₂Cl₂ (1:1) ii. 1M HCl/ether, RT, 3 h, 49%.

Scheme 10: Synthesis of the L-allyltyrosine dipeptide derivatives: a) Fmoc-D- or L-Lys(Boc)-OH or Fmoc-D- or L-Arg(PMC)-OH, EDCI, HOBT, DIPEA, DMF, 0 °C-RT, 16 h. b) i. TFA/CH₂Cl₂ (1:1) ii. 1M HCl/ether, RT, 3 h. ‘X’ in structures represents the amino acid side chain as defined under ‘C5’ in tables.
3. Anti-bacterial Testing Results

The anti-bacterial activity results against *S. aureus* ATCC6538P (Figure 2) were measured as minimum inhibitory concentration (MIC), the lowest concentration of compound necessary to prevent bacterial growth. The activities ranged from an MIC of 7.8 µg/mL for compound 81 to an MIC >125 µg/mL (inactive) for a number of compounds. Vancomycin was used as the standard/control and typically had an MIC range of 1.25-2.5 µg/mL.

The most active cyclic compound tested was the dityrosine peptide 75, which had a moderate activity of 15.6 µg/mL. As expected, the D-lysine cyclic peptide 11, which is conformationally similar to the binaphthyl lead compound 1 (Figure 1), had moderate activity (MIC 62.5 µg/mL) and was the most active of the mono-tyrosine compounds. The D-arginine and D-lysine cyclic peptides (45 and 11 respectively) had the same activity indicating no advantage in arginine over lysine as the basic residue, although the lack of activity with the presence of the homoarginine sidechains suggests an optimum chain length for antibacterial activity. Generally the presence of a C-terminal residue L-amino acid residue and an adjacent D-amino acid with a basic residue gives rise to better activity, e.g. 49 versus 45 versus 48.

The greatest activity was found, unexpectedly, with the dipeptide intermediate 81 which was as active as the binaphthyl lead compound 1 with an MIC of 7.8 µg/mL. This can be attributed to the Fmoc group acting as a hydrophobic scaffold, in a similar manner to the binaphthyl moiety of 1. As the molecule also contains a protonated sidechain it meets our previously established criteria for antibacterial activity. This compound also has the minimal structural features consistent with the anti-staphylococcal pharmacophore proposed for short cationic peptides\textsuperscript{18} The other dipeptide analogues featuring O-allyltyrosine (79, 80 and 82) as the C-terminal residue instead of C2-allylglycine (50-53) also resulted in promising antibacterial activity (MIC 15.6-31.5 µg/mL). The allylglycine analogues, with either the D- or L-configuration, all showed poor anti-bacterial activity (MIC of 125 µg/mL) significantly less active than the corresponding O-allyltyrosine compounds Indicating that some form of hydrophobic moiety is required at the C-terminal end. The tripeptide acyclic intermediates failed to produce any significant anti-bacterial activity.

The location of the O-allyltyrosine residue at the C-terminus is more favourable than a C2-allylglycine residue (e.g. 81 vs 51) suggesting that a hydrophobic entity is required for optimum activity at this end of the molecule. The acyclic dipeptides also show a preference for arginine over lysine basic side chains. These smaller dipeptides have a degree of conformational freedom and it is most likely beneficial, and synthetically easier, to develop smaller acyclic compounds.
Figure 2: Minimum inhibitory concentration (MIC) data for the anti-bacterial testing of the acyclic di- and tripeptides and the cyclic tripeptide derivatives synthesized.

The third major observation was the hydrophobicity of the molecules. The tyrosine derivative 81, which mimics the binaphthyl in the lead compound 1, is significantly smaller and less hydrophobic than the scaffold/template of the lead 1. The Fmoc fluorenyl ring system (e.g. in 81) is more...
hydrophobic than a tyrosine residue and more isosteric with the binaphthyl ring system of the lead compound. It is clear that the presence of the more hydrophobic Fmoc group increases the activity of the compounds in relation to the tyrosine derivative.

4. Conclusions
We have synthesised a series cyclic peptides based upon allyltyrosine and allylglycine moieties. The key cyclisation was achieved via a ring closing metathesis reaction. The anti-bacterial activity of the cyclic peptides and their acyclic precursors revealed that for optimum activity:

- The compounds do not have to be macrocyclic, but can be straight chain peptides.
- The D-Configuration is preferred for the basic residue, and arginine is preferable over lysine. Also, the side chain in homoarginine is too long and renders the compounds inactive.
- The L-configuration is preferred for the C-terminal amino acid residue.
- A small hydrophobic group is required near the C-terminus whereas a larger hydrophobic group is required at the N-terminus.

5. Experimental
5.1 General
Melting point determinations were carried out on a Gallenkamp melting point apparatus. Chemical ionization (CI) and electron impact (EI) mass spectra were obtained on a Shimadzu QP-5000 mass spectrometer by a direct insertion technique with an electron beam energy of 70 eV. Electrospray (ESI) mass spectra were obtained on a VG Autospec spectrometer. High-resolution mass spectra (HRMS) were determined on a micromass QTof2 spectrometer using polyethylene glycol or polypropylene glycol as the internal standard. The \( m/z \) values are stated with their peak intensity as a percentage in parentheses. Optical rotations were measured using a Jasco polarimeter with a 10 mm path length. Proton and carbon nuclear magnetic resonance (NMR) spectra were obtained as specified on a Varian Mercury 300 MHz or Varian Inova 500 MHz spectrometer. Spectra were recorded in the specified deuterated solvent, and referenced to the residual non-deuterated solvent signal. Chemical shifts (δ) in ppm were measured relative to the internal standard. Where samples exhibited (\( E \)) and (\( Z \)) isomers the chemical shifts are separated by (/). In general, the two forms could not be separated by flash chromatography. Analytical thin layer chromatography (TLC) was carried out on Merck silica gel 60 F\(_{254}\) pre-coated aluminium plates with a thickness of 0.2 mm. All column chromatography was performed under ‘flash’ conditions on Merck silica gel 60 (230-400 mesh). Chromatography solvent mixtures were measured by volume. Organic solvent extracts were dried with anhydrous magnesium sulfate. All compounds were judged to be of greater than 95% purity based upon \( ^1H \) NMR and TLC analysis. The Grubbs ruthenium catalyst used was specifically
benzylidene bis(tricyclohexylphosphine) dichlororuthenium. Other general experimental procedures have been reported previously.\textsuperscript{11}

Proton and carbon NMR spectra for all compounds were assigned using the numbering systems as illustrated in Figure 3. Cyclic peptoids were named using the IUPAC “superatom” convention, in which the aromatic ring is considered equivalent to, and sequentially numbered like, all other atoms in the macrocycle.\textsuperscript{19}

![Figure 3: ‘Superatom’ convention for the numbering of macrocycles.]

5.2. General Synthetic Procedures

5.2.1. N-Boc and Pmc Deprotection (Procedure A)
The N-Boc or Pmc protected amine (1 equiv.) was stirred for 3 h in 1:1 CH\textsubscript{2}Cl\textsubscript{2}/TFA solution at rt. The solvent was removed under reduced pressure, and the residue was re-suspended in a minimal volume of methanol. The solution was then treated with an excess of 1M HCl/ diethyl ether solution and the solvent again evaporated. The crude product was purified by recrystallization/ precipitation from CH\textsubscript{2}Cl\textsubscript{2} and/ or MeOH by addition of diethyl ether.

5.2.2. Peptide Coupling (Procedure B)
To a solution of the acid (1 equiv.) in DMF at rt was added HOBr (1.1 equiv.), EDCI (1 equiv.) and the amine (1.2 equiv.). If the amine was a hydrochloride salt, DIPEA (1 equiv.) was also added. The mixture was allowed to stir for 16 h before the reaction was quenched with water until precipitation occurred. The solid was collected by vacuum filtration, and washed thoroughly with water. The amorphous product was dried under vacuum over P\textsubscript{2}O\textsubscript{5} to yield the desired peptide.

5.2.3. N-Fmoc Deprotection (Procedure C)
The Fmoc protected amine was stirred in 1% piperidine/acetonitrile for 3 h at rt. The solvent was removed under reduced pressure and the crude product was purified by flash column chromatography (15:1, CH\textsubscript{2}Cl\textsubscript{2}/MeOH) to yield the free amine.
5.2.4. *Macrocyclization by Olefin Metathesis (Procedure D)*

To a solution of the precursor tripeptide in CH$_2$Cl$_2$ (to 0.004 M) was added Grubbs ruthenium catalyst (15 mol%) and the resulting solution was heated at reflux for 48 h before the solvent was removed by evaporation and the product isolated by flash column chromatography (15:1, CH$_2$Cl$_2$/MeOH) to yield the corresponding macrocycle.

5.3. *Synthesis of Allylated Tyrosine Amino Acids*

5.3.1. *Ethyl (2S)-2-acetamido-3-(4-allyloxyphenyl)propanoate (13)*

To a solution of ethyl (2S)-2-acetamido-3-(4-hydroxyphenyl)propanoate monohydrate 12 (2.69 g, 9.98 mmol) and anhydrous K$_2$CO$_3$ (2.75 g, 20.0 mmol) in DMF (15 mL) was added allyl bromide (2.42 g, 19.96 mmol). The resulting mixture was allowed to stir for 16 h under nitrogen before the reaction was quenched with water (30 mL) and extracted with ethyl acetate (3 x 50 mL). The combined extracts were washed with water (5 x 50 mL), dried and the solvent was evaporated to yield the title compound (2.91 g, 9.98 mmol, 100%) as a white solid, which had spectral data in agreement with that reported.$^{20}$ [α]$^D$$^{25}$$^+$23.1 (c. 0.1, EtOH).$^{20}$ Mp 69-70 °C (lit. 69.5 °C).$^{20}$

5.3.2. *(2S)-2-Acetamido-3-(4-allyloxyphenyl)propanoic acid (14)*

To a solution of 13 (2.90 g, 9.98 mmol) in THF/water, (3:1, 80 mL) was added lithium hydroxide monohydrate (838 mg, 20.0 mmol) and the resulting suspension was allowed to stir for 16 h. The reaction mixture was diluted with water (30 mL) and the THF was removed by evaporation. The aqueous layer was extracted with CH$_2$Cl$_2$ (40 mL) to remove unreacted starting material. The aqueous phase was acidified with 10% HCl and the resulting precipitate was extracted with CH$_2$Cl$_2$ (3 x 40 mL). The combined extracts were dried and evaporated to yield the title compound (2.62 g, 9.98 mmol, 100%) as white needles, which had spectral data in agreement with that reported.$^{20}$ Mp 170-172 °C (lit. 200 °C).$^{20}$
5.3.3. Methyl (2R)-2-amino-(4-hydroxyphenyl)-2-propanoate hydrochloride (16)

To a solution of (2R)-2-amino-3-(4-hydroxyphenyl)propanoic acid 15 (1.07 g, 5.9 mmol) in anhydrous MeOH (10 mL) at 0 °C was added dropwise thionyl chloride (2 mL). The resulting mixture was allowed to stir for 16 h before the solvent was removed by evaporation to yield the title compound (1.36 g, 5.9 mmol, 100%) as a white solid, which was spectroscopically identical to that reported.\(^{21}\) \([\alpha]_D^{23}\) -27.7 (c. 0.1, EtOH). (lit. \([\alpha]_D^{24}\) -27.1 (c. 2.0, MeOH))\(^{21}\) Mp 176 °C (lit. 134-136 °C).\(^{21}\)

5.3.4. Methyl (2R)-2-acetamido-3-(4-hydroxyphenyl)propanoate (17)

A solution of the HCl salt 16 (1.09 g, 6.02 mmol) in water (3 mL) was cooled to 0 °C before the addition of 5 M sodium acetate solution (35 mL) and a small amount of ice. Acetic anhydride (10 mL) was added and the resulting precipitate was collected by vacuum filtration and dried to yield the title compound (1.09 g, 4.58 mmol, 76%) as a white solid, which was spectroscopically identical to that reported.\(^{21}\) \([\alpha]_D^{25}\) -27.2 (c. 0.1, EtOH) (lit. \([\alpha]_D^{25}\) -26.6 (c. 0.1, MeOH))\(^{21}\) Mp 132-133 °C (lit. 134-135.5 °C).\(^{21}\)

5.3.5. Methyl (2R)-2-acetamido-3-(4-allyloxyphenyl)propanoate (18)

To a solution of 17 (989 mg, 4.17 mmol), and anhydrous K\(_2\)CO\(_3\) (1.15 g, 8.34 mmol) in DMF (10 mL) was added allyl bromide (1.01 g, 8.34 mmol) and the resulting mixture was allowed to stir for 16 h under a nitrogen atmosphere. The reaction was quenched with water (30 mL), extracted with ethyl acetate (3 x 30 mL), and the combined organics were washed with water (5 x 20 mL) before drying. The solvent was evaporated to yield the title compound (985 mg, 3.56 mmol, 85%) as a pale yellow solid. \([\alpha]_D^{25}\) -24.2 (c. 0.1, EtOH). Mp 90 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): δ 6.97 (d, \(J = 8.7\) Hz, 2H, ArH2’ and ArH6’); 6.80 (d, \(J = 8.7\) Hz, 2H, ArH3’ and ArH5’); 6.09 (d, \(J = 7.8\) Hz, 1H, NH); 6.07 – 5.95 (m, 1H, H2”); 5.37 (dd, \(J = 1.8, 17.4\) Hz, 1H, H3’’); 5.25 (dd, \(J = 1.8, 10.5\) Hz,
1H, H3b’’); 4.83 – 4.77 (m, 1H, H2); 4.47 (d, J = 5.5 Hz, 2H, H1’’); 3.68 (s, 3H, OCH3); 3.08 – 2.94 (m, 2H, H3); 1.99 (s, 3H, NCOCH3). 13C NMR (CDCl3, 75 MHz): δ 172.1, C1; 169.6, NCO; 157.6, ArC4; 133.1, C2’’; 130.1, ArCH2’ and ArCH6’; 127.9, ArCl’; 117.5, C3’’; 114.7, ArCH3’ and ArCH5’; 68.6, C1’’; 53.2, C2; 52.2, OCH3; 36.9, C3; 22.9, NCOCH3. MS (CI, +ve) m/z 278 (100%) [MH+]. HRMS (ESI) calcd for C15H19NO4 277.131408, found 277.130309.

5.3.6. (2R)-2-Acetamido-3-(4-Allyloxyphenyl)propanoic acid (19)

To a solution of 18 (900 mg, 3.25 mmol) in THF/water, 3:1 (10 mL) was added lithium hydroxide monohydrate (273 mg, 6.5 mmol), and the resulting suspension was allowed to stir for 16 h. The reaction mixture was diluted with water (30 mL) and the THF was removed in vacuo. The aqueous layer was extracted with diethyl ether (40 mL) to remove unreacted starting material. The aqueous phase was acidified with 10% HCl and the resulting precipitate was extracted with CH2Cl2 (3 x 40 mL). The combined CH2Cl2 fractions were dried and concentrated to yield the title compound (750 mg, 2.85 mmol, 88%) as a white solid. [α]D23 -23.2 (c. 0.1, EtOH). Mp 75 °C. 1H NMR (D6 acetone, 300 MHz): δ 7.27 (d, J = 7.8 Hz, 1H, NH); 7.17 (d, J = 8.7 Hz, 2H, ArH2’ and ArH6’); 6.86 (d, J = 8.7 Hz, 2H, ArH3’and ArH5’); 6.12 – 6.00 (m, 1H, H2’’); 5.40 (dd J = 1.5 Hz, 17.5 Hz, 1H, H3a’’); 5.23 (dd, J = 1.5, 10.5 Hz, 1H, H3b’’); 4.67 (dd, J = 8.1, 10.5 Hz 1H, H2); 4.53 (d, J = 5.1 Hz, 2H, H1’’); 3.11 (dd, J = 5.4, 14.1 Hz, 1H, 3Hb); 2.93 (dd, J = 8.1, 14.1, 1H, 3Ha); 1.89 (s, 3H, NCOCH3). 13C NMR (D6 acetone, 75 MHz): δ 173.1, C1; 170.4, NCO; 158.4, ArC4; 134.8, C2’; 131.1, ArCH2’ and ArCH6’; 130.2, ArCl’; 117.2, C3’’; 115.3, ArCH3’ and ArCH5’; 69.2, C1’’; 54.5, C2; 37.3, C3; 22.6, NCOCH3. MS (CI, +ve) m/z 264 (100%) [MH+]. HRMS calcd for C14H18NO4 264.123583, found 264.123770.
5.4. **Synthesis of methylester allyl glycines (6 and 21)**

5.4.1. **Methyl (2S)-2-amino-4-pentenoate hydrochloride (6)**

To a suspension of (2S)-2-amino-4-pentanoic acid 5 (200 mg, 1.74 mmol) in MeOH (6 mL) at 0 °C was added dropwise thionyl chloride (1 mL). The resulting solution was allowed to stir for 16 h before the solvent was removed by evaporation and the product crystallized with ether. The ether was removed by evaporation to yield the title compound (287 mg, 1.74 mmol, 100%) as a white solid, which had spectral data in agreement with that reported.\(^{15}\) Mp 172-174 °C (lit. 174-176 °C).\(^{15}\)

5.4.2. **Methyl (2R)-2-amino-4-pentenoate hydrochloride (21)**

This was prepared from (2R)-2-amino-4-pentenoic acid (200 mg, 1.74 mmol) in methanol (6 mL) using the same procedure as for the synthesis of 6 above, to yield the title compound (287 mg, 1.74 mmol, 100%) as a white solid which was spectroscopically identical to that reported.\(^{22}\) Mp 135-140 °C.

5.5. **Synthesis of Protected Dipeptides (7, 22-26)**

5.5.1. **Methyl (2S,5R)-2-allyl-3-aza-9-(tert-butoxycarboxamido)-5-(9H-9-fluorenylmethyloxycarboxamido)-4-oxononanoate (7)**

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from 6 (186 mg, 1.62 mmol) and (2R)-6-tert-butoxycarboxamido-2-(9H-9-fluorenylmethyloxycarboxamido)hexanoic acid (633 mg, 1.35 mmol) to afford 7 (733 mg, 1.27 mmol, 94%) as a cream solid. Mp 117-120 °C.\(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.76 (d, \(J = 7.6\) Hz, 2H, ArH\(^{1''}\) and ArH\(^{8''}\)); 7.59 (d, \(J = 7.6\) Hz, 2H, ArH\(^{4''}\) and ArH\(^{5''}\)); 7.39 (t, \(J = 7.6\) Hz, 2H, ArH\(^{3''}\) and ArH\(^{6''}\)); 7.31 (ddd, \(J = 9.0,\) 7.2, 1.2 Hz, 2H, ArH\(^{2''}\) and ArH\(^{7''}\)); 6.75 (d, \(J = 7.2\) Hz,
1H, NH); 5.74 – 5.57 (m, 1H, H2’); 5.11 – 5.05 (m, 2H, H3’); 4.70 – 4.62 (m, 2H, H2 and NH); 4.38 (d, J = 6.7 Hz, 2H, OCH2-H9’); 4.26 – 4.18 (m, 2H, H5 and H9”); 3.71 (s, 3H, OCH3); 3.10 (d, J = 6.3 Hz, 2H, H9); 2.62 – 2.44 (m, 2H, H1’); 1.88 – 1.83 (m, 2H, H8); 1.70 – 1.63 (m, 2H, H7); 1.49 – 1.37 (m 2H, H7); 1.43 (s, 9H, C(CH3)3). 13C NMR (CDCl3, 75 MHz): δ 171.6, C4; 171.2, C1; 156.0, NCO2; 143.5, ArC8a” and ArC9a”; 141.1, ArC4a” and ArC4b”; 131.9, C2; 127.6, ArCH3” and ArCH6”; 126.9, ArCH2” and ArCH7”; 125.0, ArCH1” and ArCH8”; 119.8, C3’; 119.2, ArCH4” and ArCH5”; 79.1, C(CH3)3; 67.1, CH2-C9”; 54.7, C5; 52.5, OCH3; 51.5, C2; 47.1, C9”; 39.8, C9; 36.4, C6; 32.2, C6; 29.7, C8; 28.5, C(CH3)3; 22.4, C7. MS ( ESI, +ve) m/z 579.9 (80%) [MH+], 479.9 (100%) [MH+ - Boc]). HRMS calcd for C32H42N5O7: 580.3023, found 580.3041.

5.5.2. Methyl (2S,5S)-2-allyl-3-aza-9-(tert-butoxycarboxamido)-5-(9H-9-fluorenylmethyloxycarboxamido)-4-oxononoate (22)

To a solution of 6 (430 mg, 2.61 mmol) and (2S)-6-tert-butoxycarboxamido-2-(9H-9-fluorenylmethyloxy)carboxamido hexanoic acid (1.22 g, 2.61 mmol) in CH2Cl2 (10 mL) was added EDCI (500 mg, 2.61 mmol) and a catalytic quantity of DMAP. The resulting mixture was allowed to stir at RT for 16 h. The reaction was diluted with CH2Cl2 (25 mL), then the organic layer was washed with brine (2 x 25 mL) and water (2 x 25 mL) and dried, before being concentrated. The crude product was purified by flash column chromatography (25:1 CH2Cl2/MeOH) to afford the title compound (1.31 g, 2.27 mmol, 87%) as a cream coloured solid. Mp 123-126 °C. 1H NMR (CDCl3, 300 MHz): δ 7.76 (d, J = 7.6 Hz, 2H, ArH1” and ArH8”); 7.59 (d, J = 7.6 Hz, 2H, ArH4” and ArH5”); 7.40 (t, J = 7.6 Hz, 2H, ArH3” and ArH6”); 7.31 (ddd, J = 9.0, 7.2, 1.2 Hz, 2H, ArH2” and ArH7”); 6.46 (bs, 1H, NH); 5.73 – 5.62 (m, 1H, H2’); 5.44 (s, 1H, NH); 5.12 – 5.07 (m, 2H, H3’); 4.80 (bs, 1H, NH); 4.65 – 4.61 (m, 1H, H2); 4.39 (d, J = 7.2 Hz, 2H, OCH2-
5.5.3. Methyl (2S,5R)-2-allyl-3-aza-5-(9H-9-fluorenylmethyloxycarboxamido)-8-[ (2,2,5,7,8-
pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (23)

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from 6 (287 mg, 1.74 mmol) and (2R)-2-(9H-9-fluorenylmethyloxycarboxamido)-8-[ (2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]pentanoic acid (961 mg, 1.45 mmol) to afford 23 (1.01 g, 1.31 mmol, 90%) as a brown solid; [α]D 23 +11.5 (c 0.011, MeOH). IR (neat) νmax 1538, 1445, 1238, 1166, 1109, 736. Mp 96-100 °C. 1H NMR (CDCl3, 300 MHz): δ 7.70 (d, J = 7.5 Hz, 2H, ArH1′ and ArH8’); 7.52 (d, J = 7.2 Hz, 2H, ArH4′ and ArH5’); 7.35 (bs, 1H, NH); 7.33 (dd, J = 7.2, 7.2 Hz, 2H, ArH3’ and ArH6’); 7.20 (t, J = 7.2 Hz, 2H, ArH2” and ArH7’); 6.35 (s, 2H, NH); 6.26 (bs, 2H, NH); 5.78 – 5.56 (m, 1H, H2’); 5.03 (d, J = 18.0 Hz, 1H, H3’a); 4.98 (d, J = 10.2 Hz, 1H, H3’a’); 4.53 (dd, J = 7.2, 12.9 Hz, 1H, H2); 4.27 (d, J = 6.6 Hz, 2H, OCH3-H9’); 4.17 – 4.02 (m, 2H, H5 and H9’); 3.63 (s, 3H, OCH3); 3.30 – 3.12 (m, 2H, H8); 2.57 (s, 3H, 7’’-CH3); 2.54 (s, 3H, 5’’-CH3); 2.50 – 2.47 (m, 4H, H1’ and H4’’); 2.06 (s, 3H, 8’’-CH3); 1.96 – 1.78 (m, 2H, H7); 1.71 (t, J = 6.6 Hz, 2H, H3’’); 1.66 – 1.52 (m, 2H, H6); 1.24 (s, 6H, 2 x 2’’-CH3). 13C NMR (CDCl3, 75 MHz): δ 171.9, C4; 171.6, C1; 156.2, NCO; 143.7, ArC8a’’ and ArC9a’’; 142.7, ArC4a’’ and ArC4b’’; 131.9, C2; 127.7, ArCH3’’ and ArCH6’’; 127.0, ArCH2’’ and ArCH7’’; 125.0, ArCH1’’ and ArCH8’’; 119.9, C3’; 119.3, ArCH4’’ and ArCH5’’; 79.1, C(CH3)3; 67.0, C(CH2-C9’’); 54.5, C5; 52.4, OCH3; 50.6, C2; 47.0, C9’; 39.8, C9; 36.1, C1’; 32.0, C6; 29.9, C8; 28.3, C(CH3)3; 22.2, C7. MS (ESI, +ve) m/z 580.5 (10%) [MH+], 130.5 (100%) [MH+ (less allylgly)]. HRMS calcd for C32H42N3O7 580.3023, found 580.3025.
5.5.4. Methyl (2S,5S)-2-allyl-3-aza-5-(9H-9-fluorenlymethyloxycarboxamido)-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (24)

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from 6 (287 mg, 1.74 mmol) and (2S)-2-(9H-9-fluorenlymethyloxycarboxamido)-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]pentanoic acid (961 mg, 1.45 mmol) to afford 24 (936 mg, 1.21 mmol, 83%) as a brown solid; [α]D 23 +12.1 (c 0.013, MeOH). IR (neat) νmax 1543, 1450, 1233, 1109, 741. Mp 90-94 °C. Mp 90-94 °C. 1H NMR (CDCl3, 300 MHz): δ 7.71 (d, J = 7.5 Hz, 2H, ArH1” and ArH8”); 7.54 (d, J = 7.0 Hz, 2H, ArH4” and ArH5”); 7.39 (bs, 1H, NH) 7.34 (t, J = 7.5 Hz, 2H, ArH3” and ArH6”); 7.22 (t, J = 7.5 Hz, 2H, ArH2” and ArH7”); 6.34 (bs, 1H, NH); 6.12 (d, J = 7.5 Hz 1H, NH); 5.71 – 5.58 (m, 1H, H2’); 5.03 (d, J = 17.0 Hz, 1H, H3’a’); 4.98 (d, J = 17.0 Hz, 1H, H3’a’); 4.57 – 4.50 (m, 1H, H2); 4.40 – 4.32 (m, 1H, H5); 4.29 (d, J = 7.2 Hz, 2H, OCH2-H9”); 4.13 – 4.08 (m, 1H, H9”); 3.65 (s, 3H, OCH3); 3.34 – 3.14 (m, 2H, H1’); 2.58 (s, 3H, 7”‘-CH3); 2.55 (s, 3H, 5”‘-CH3); 2.54 – 2.42 (m, 4H, H1’ and H4’’); 2.07 (s, 3H, 8”‘-CH3); 1.95 – 1.82 (m, 2H, H6); 1.73 (t, J = 6.5 Hz, 2H, H3”’); 1.65 – 1.54 (m, 2H, H7); 1.26 (s, 6H, 2 x 2”‘-CH3). 13C NMR (CDCl3, 75 MHz): δ 172.0, C4; 171.0, C1; 156.3, ArC6”’; 153.5, 5-NCO2; 143.6, CN3; 143.5, ArC8a”’; 141.0, ArC8a” and ArC9a”; 137.8, ArC4a” and ArC4b”; 135.3, ArC7”’; 134.7,
ArC5”’; 132.9, C2; 127.5, ArC3” and ArC6”; 126.9, ArC2” and ArC7”; 125.0, ArC4” and ArC5”; 124.0, ArC8””; 119.8, ArC1” and ArC8”; 118.8, C3’; 117.8, ArC4a; 73.6, C2”; 67.2, CH2-C9”; 54.1, C5; 52.4, C2; 52.3, OCH3; 47.0, C9”; 40.5, C8; 35.7, C1’; 32.7, C3””; 29.9, C6; 26.8, C2”’-CH3; 25.2, C7; 21.4, 5”’-CH3; 18.6, 7”’-CH3; 17.6, C4”; 12.2, 8”’-CH3. MS (ESI, +ve) m/z 774 (20%) [MH+], 130 (100%) [allylGly]. HRMS calcd for C41H52N5O8S 774.3537, found 774.3517.

5.5.5. Methyl (2R,5R)-2-allyl-3-aza-5-(9H-9-fluorenylmethyloxycarboxamido)-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (25)

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from 21 (287 mg, 1.74 mmol) and (2R)-2-(9H-9-fluorenylmethyloxycarboxamido)-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]pentanoic acid (961 mg, 1.45 mmol) to afford 25 (1.01 g, 1.31 mmol, 90%) as a brown solid; [α]D23 +5.3 (c 0.008, MeOH). IR (neat) νmax 1724, 1545, 1449, 1236, 1167, 1108, 742. Mp 96-98°C. 1H NMR (CDCl3, 500 MHz): δ 7.70 (d, J = 7.5 Hz, 2H, ArH1” and ArH8”); 7.53 (d, J = 5.0 Hz, 2H, ArH4” and ArH5”’); 7.40 (d, J = 4.5 Hz, 1H, NH); 7.34 (t, J = 7.5 Hz, 2H, ArH3” and ArH6”’); 7.22 (t, J = 7.5 Hz, 2H, ArH2” and ArH7”’); 6.34 (s, 2H, NH); 6.12 (bs, 2H, NH); 5.69 – 5.55 (m, 1H, H2”); 5.03 (d, J = 17.0 Hz, 1H, H3a”); 4.98 (d, J = 10.0 Hz, 1H, H3b”); 4.53 (dd, J = 7.2, 12.9 Hz, 1H, H2); 4.36 (dd, J = 8.5, 12.5 Hz, 1H, H5); 4.29 (d, J = 7.0 Hz, 2H, 9”’-CH2); 4.08 – 4.04 (m, 1H, H9”’); 3.65 (s, 3H, OCH3); 3.28 – 3.17 (m, 2H, H8); 3.22 (bs, 1H, NH); 2.58 (s, 3H, 7”’-CH3); 2.55 (s, 3H, 5”’-CH3); 2.51 – 2.39 (m, 4H, H1’ and H4”’); 2.07 (s, 3H, 8”’-CH3); 1.96 – 1.80 (m, 2H, H7); 1.73 (t, J = 6.5 Hz, 2H, H3”’); 1.66 – 1.54 (m, 2H, H6); 1.25 (s, 6H, 2 x 2”’-CH3). 13C NMR (CDCl3, 75 MHz): δ 172.0, C4; 171.8, C1; 156.2, ArC6”’; 153.4, 5-NCO2; 143.6, ArC8a”’; 143.5, CN3; 141.0, ArC8a” and ArC9a”’; 135.2, ArC4a” and ArC4b”; 134.6, ArC7”’; 133.0, ArC5”’; 132.2, C2”; 127.5, ArCH3” and ArCH6”’; 126.8, ArCH2” and ArCH7”’; 125.0, ArCH4” and ArCH5”’; 123.8, ArC8”’;
119.7, ArCH1′′ and ArCH8′′; 118.6, C3′; 117.8, ArC4a′′′; 73.5, C2′′′; 67.0, 9′-CH3; 52.3, C5; 52.1, C2; 52.2, OCH3; 47.0, C9′; 40.4, C8; 35.7, C1′; 32.7, C3′′; 29.8, C6; 26.7, C2′′′-CH3; 25.3, C7; 21.4, C5′′′-CH3; 18.6, C7′′′-CH3; 17.5, C4′′′; 12.1, C8′′′-CH3. MS (ESI, +ve) m/z 774 (100%) [MH+]. HRMS calcd for C41H52N5O8S 774.3537, found 774.3524.

5.5.6. **Methyl (2R,5S)-2-allyl-3-aza-5-(9H-9-fluorenylmethyloxycarboxamido)-8-[2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino]-4-oxooctanoate (26)**

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 21 (287 mg, 1.74 mmol) and (2S)-2-(9H-9-fluorenylmethyloxycarboxamido)-8-[2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino)pentanoic acid (961 mg, 1.45 mmol) to afford 26 (1.00 g, 1.29 mmol, 89%) as a brown foam; [α]D 23 +60.2 (c 0.006, MeOH). IR (neat) νmax 1667, 1541, 1449, 1237, 1166, 1107, 761, 741. Mp 90-92 °C. 1H NMR (CDCl3, 300 MHz): δ 7.70 (d, J = 7.6 Hz, 2H, ArH1′′ and ArH8′′); 7.51 (d, J = 7.6 Hz, 2H, ArH4′′ and ArH5′′); 7.33 (t, J = 7.2 Hz, 2H, ArH3′′ and ArH6′′); 7.20 (t, J = 7.2 Hz, 2H, ArH2′′ and ArH7′′); 6.42 (d, J = 7.6 Hz, 1H, NH); 6.34 (s, 1H, NH); 6.20 (bs, 1H, NH); 5.60 – 5.69 (m, 1H, H2′); 5.02 (d, J = 18.1 Hz, 1H, H3a′′); 4.97 (d, J = 10.5 Hz, 1H, H3a′); 4.53 (dd, J = 7.6, 13.1 Hz, 1H, H2); 4.26 (d, J = 7.2 Hz, 3H, H5 and 9′′-CH2); 4.06 (t, J = 7.2 Hz, 1H, H9′); 3.63 (s, 3H, OCH3); 3.23 (bs, 2H, H8 ); 2.57 (s, 3H, 7′′′-CH3); 2.54 (s, 3H, 5′′′-CH3); 2.41 – 2.51 (m, 4H, H1′ and H4′′′); 2.07 (s, 3H, 8′′′-CH3); 1.86 – 1.94 (m, 2H, H6); 1.70 (t, J = 6.7 Hz, 2H, H3′′); 1.54 – 1.62 (m, 2H, H7); 1.23 (s, 6H, 2 x 2′′′-CH3). 13C NMR (CDCl3, 75 MHz): δ 172.0, C4; 171.8, C1; 156.2, ArC6′′′; 153.2, 5-NCO2; 143.6, CN3; 143.5, ArC8a′′′; 141.0, ArC8a′′ and ArC9a′′; 135.3, ArC4a′′ and ArC4b′′; 134.7, ArC7′′′; 133.1, ArC5′′′; 132.3, C2′; 127.5, ArC3′ and ArC6′′; 126.9, ArC2′′ and ArC7′′; 125.0, ArC4′′ and ArC5′′; 123.9, ArC8′′; 119.7, ArC1′′ and ArC8′′; 118.8, C3′; 117.8, ArC4a; 73.5, C2′′′; 67.2, 9′′-CH2; 52.3, C5; 52.2, C2; 51.9, OCH3; 47.0, C9′; 40.5, C8; 35.9, C1′; 32.7, C3′′′; 30.0, C6; 26.7, C2′′′-CH3; 25.5, C7; 21.4, 5′′′-
CH₃; 18.6, 7‴-CH₃; 17.6, C4‴; 12.1, 8‴-CH₃. MS (ESI, +ve) m/z 774 (12%) [MH⁺], 130 (100%) [allylGly]. HRMS calcd for C₄₁H₅₂N₅O₈S 774.3537, found 774.3536.

5.6. Synthesis of Deprotected Dipeptides (8, 27-31)

5.6.1. Methyl (2S,5R)-2-allyl-5-amino-3-aza-9-(tert-butoxycarboxamido)-4-oxononanoate (8)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 7 (715 mg, 1.23 mmol) to yield 8 (436 mg, 1.22 mmol, 99%) as a cream oil, and was spectroscopically identical to that reported in the literature.⁹

5.6.2. Methyl (2S,5S)-2-allyl-5-amino-3-aza-9-(tert-butoxycarboxamido)-4-oxononanoate (27)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 22 (1.27 g, 2.19 mmol) to yield 27 (778 mg, 2.18 mmol, 100%) as a cream oil.¹¹H NMR (CDCl₃, 300 MHz): δ 7.81 (d, J = 8.0 Hz, 1H, NH); 5.85 – 5.45 (m, 1H, H2‴); 5.15 – 5.02 (m, 2H, H3‴); 4.76 (bs, 1H, NH); 4.60 – 4.50 (m, 1H, H2); 3.75 (s, 3H, OCH₃); 3.39 (dd, J = 4.6, 7.6 Hz, 1H, H5); 3.12 (d, J = 6.3 Hz, 2H, H9); 2.65 – 2.42 (m, 2H, H1‴); 1.85 – 1.45 (m, 8H, H6, H7, H8 and NH₂); 1.44 (s, 9H, C(CH₃)₃).¹³C NMR (CDCl₃, 75 MHz): δ 174.8, C4; 172.1, C1; 156.0, NCO₂; 132.2, C2‴; 118.9, C3‴; 78.9, C(CH₃)₃; 54.8, C5; 52.2, C2; 51.1, OCH₃; 40.0, C9; 36.4, C1‴; 34.4, C6; 29.7, C8; 28.3, C(CH₃)₃; 22.6, C7. MS (ESI, +ve) m/z 358.5 (85%) [MH⁺], 258.4 (100%) [MH⁺ - Boc]. HRMS calcd for C₁₇H₃₂N₃O₅ 358.2342, found 358.2339.
5.6.3. Methyl (2S,5R)-2-allyl-5-amino-3-aza-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (28)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 23 (717 mg, 0.93 mmol) to yield 28 (407 mg, 0.74 mmol, 80%) as a cream oil, and was spectroscopically identical to that reported in the literature.11

5.6.4. Methyl (2S,5S)-2-allyl-5-amino-3-aza-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (29)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 24 (749 mg, 0.97 mmol) to yield 29 (259 mg, 0.47 mmol, 48%) as a cream oil, [α]D23 -12.2 (c 0.013, MeOH), which was spectroscopically identical to that reported.11

5.6.5. Methyl (2R,5R)-2-allyl-5-amino-3-aza-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (30)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 25 (693 mg, 0.900 mmol) to yield 30 (387 mg, 0.0700 mmol, 78%) as a cream oil. 1H NMR (CDCl3, 300 MHz): δ 7.87 (d, J = 7.5 Hz, 1H, NH); 6.35 (bs, 3H, NH); 5.75 – 5.61 (m, 1H, H2′); 5.09 (d, J = 16.2 Hz, 1H, H3a′); 5.09 (d, J = 12.0 Hz, 1H, H3b′); 4.56 – 4.50 (m, 1H, H2); 3.72 (s, 3H, OCH3); 3.43 – 3.40 (m 1H, H5); 3.19 (d, J = 5.4 Hz, 2H, H8); 2.56 (s, 3H, 7″-CH3); 2.54 (s, 3H, 5″-CH3); 2.66 – 2.50 (m, 2H, H1″); 2.10 (s, 3H, 8″-CH3); 2.05 (bs, 2H, H7); 1.80 (t, J = 6.3 Hz, 2H, H2″); 1.58 – 1.56 (m, 2H, H6);
1.30 (s, 6H, 2 x 2''-CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 175.2, C4; 172.0, C1; 156.1, ArC6"; 153.4, CN₃; 135.3, ArC7"; 134.6, ArC5"; 133.2, ArC8a"; 132.2, C2'; 123.9, ArC8"; 118.9, C3'; 117.8, ArC4a; 73.6, C2"; 54.2, C5; 52.4, OCH₃; 51.6, C2; 36.2, C1'; 32.8, C4"; 32.0, C6; 26.8, 2''-CH₃; 25.3, C7; 21.5, C3"; 18.6, 5''-CH₃; 17.5, 7''-CH₃; 12.2, 8''-CH₃. MS (ESI, +ve) m/z 552.1 (40%) [MH⁺], 243.0 (100%) [MH⁺ less allylGly]. HRMS calcd for C₂₆H₄₂N₅O₆S 552.2856, found 552.2829.

5.6.6. Methyl (2R,5S)-2-allyl-5-amino-3-aza-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]-4-oxooctanoate (31)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 26 (788 mg, 1.01 mmol) to yield 31 (552 mg, 1.00 mmol, 99%) as a cream oil; [α]D²³ +11.6 (c 0.017, MeOH). IR (neat) νmax 1672, 1543, 1445, 1238, 1166, 1109. ¹H NMR (CDCl₃, 300 MHz): δ 7.86 (d, J = 7.5 Hz, 1H, NH); 6.33 (bs, 3H, NH); 5.74 – 5.60 (m, 1H, H2'); 5.12 (d, J = 16.8 Hz, 1H, H3a'); 5.11 (d, J = 10.8 Hz, 1H, H3b'); 4.53 (dd, J = 7.2, 12.9 Hz, 1H, H2); 3.71 (s, 3H, OCH₃); 3.41 (d, J = 7.2 Hz, 1H, H5); 3.23 – 3.15 (m, 2H, H8); 2.64 – 2.43 (m, 2H, H1'); 2.57 (s, 3H, 7''-CH₃); 2.55 (s, 3H, 5''-CH₃); 2.10 (s, 3H, 8''-CH₃); 1.82 – 1.71 (m, 4H, H7 and H3'); 1.63 – 1.52 (m, 2H, H6); 1.30 (s, 6H, 2 x 2''-CH₃). ¹³C NMR (CDCl₃, 75 MHz): δ 175.2, C4; 172.0, C1; 156.1, ArC6"; 153.3, CN₃; 135.3, ArC7"; 134.6, ArC5"; 133.2, ArC8a"; 132.2, C2'; 123.9, ArC8"; 119.0, C3'; 117.8, ArC4a"; 73.6, C2"; 54.2, C5; 52.3, OCH₃; 51.5, C2; 40.7, C8; 36.1, C1'; 32.8, C4"; 31.9, C6; 26.8, 2''-CH₃; 25.2, C7; 21.5, C3'; 18.5, 5''-CH₃; 17.5, 7''-CH₃; 12.2, 8''-CH₃. MS (ESI, +ve) m/z 552.1 (50%) [MH⁺], 162.7 (100%). HRMS calcd for C₂₆H₄₂N₅O₆S 552.2856, found 552.2834.
5.7. Synthesis of Protected Tripeptides (9, 32–37)

5.7.1. Methyl (2S,5R,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-[4-tert-butoxycarboxamido]butyl]-4,7,10-trioxoundecanoate (9)

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from 8 (440 mg, 1.20 mmol) and 14 (270 mg, 1.03 mmol) to afford 9 (424 mg, 0.70 mmol, 69%) as a white solid. Mp 149-150 °C. $^1$H NMR (CDCl$_3$, 300 MHz): δ 7.20 (d, $J = 8.0$ Hz, 1H, NH); 7.11 (d, $J = 8.4$ Hz, 2H, ArH$_{2''''}$ and ArH$_6''''$); 6.84 (d, $J = 8.4$ Hz, 2H, ArH$_3''''$ and ArH$_5''''$); 6.67 (d, $J = 8.0$ Hz, 1H, NH); 6.48 (d, $J = 7.2$ Hz, 1H, NH); 6.10 – 5.96 (m, 1H, H$_2''''$); 5.72 – 5.61 (m, 1H, H$_2'$); 5.41 (dd, $J = 1.3$, 17.3 Hz, 1H, H$_3_a'''$); 5.28 (dd, $J = 1.3$, 10.5 Hz, 1H, H$_3_b'''$); 5.11 – 5.07 (m, 2H, H$_3'$$'$); 4.75 (t, $J = 5.9$ Hz, 1H, H$_2$); 4.66 – 4.53 (m, 1H, H$_8$); 4.50 (d, $J = 5.5$ Hz, 2H, H$_1''''$); 4.42 (dd, $J = 7.6$, 13.1 Hz, 1H, H$_5$); 3.71 (s, 3H, OCH$_3$); 3.06 – 2.96 (m, 4H, H$_4'$ and ArCH$_2$); 2.61 – 2.43 (m, 2H, H$_1'$); 1.97 (s, 3H, H$_{11}$); 1.44 (s, 9H, C(CH$_3$)$_3$); 1.42 – 1.32 (m, 6H, H$_1''$, H$_2''$ and H$_3''$). $^{13}$C NMR (CDCl$_3$, 75 MHz): δ 172.0, C$_7$; 171.1, C$_1$; 170.7, C$_4$; 170.2, C$_{10}$; 157.4, NCO$_2$; 155.9, ArC$_4''''$; 133.0, C$_2'$; 132.3, C$_2'''$; 130.1, ArCH$_2''''$ and ArCH$_6''''$; 128.4, ArC$_1''''$; 118.8, C$_3'$; 117.6, C$_3'''$; 114.8, ArCH$_3'''$ and ArCH$_5'''$; 79.0, C(CH$_3$)$_3$; 68.8, C$_1'''$; 55.4, C$_5$; 52.8, OCH$_3$; 52.4, C$_8$; 51.8, C$_2$; 40.1, C$_4'''$; 37.5, ArCH$_2$; 36.3, C$_1'$; 31.6, C$_1''$; 29.7, C$_3''$; 28.5, C(CH$_3$)$_3$; 23.1, C$_{11}$; 22.3, C$_2''$. MS (ESI, +ve) $m/z$ 603.4 (40%) [MH$^+$], 503.4 (100%) [MH$^+$ - Boc]. HRMS calcd for C$_{31}$H$_{47}$N$_4$O$_8$ 603.3394, found 603.3389.
5.7.2. Methyl (2S,5S,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(4-[tert-butoxycarboxamido]butyl)-4,7,10-trioxoundecanoate (32)

To a solution of 27 (782 mg, 2.19 mmol) and 14 (576 mg, 2.19 mmol) in CH$_2$Cl$_2$ (10 mL) was added EDCI (420 mg, 2.19 mmol) and a catalytic quantity of DMAP. The resulting mixture was allowed to stir at RT for 16 h. The reaction was diluted with CH$_2$Cl$_2$ (25 mL) and the organic layer was washed with brine (2 x 25 mL) and water (2 x 25 mL) and dried, before being concentrated by evaporation. The crude product was purified by flash column chromatography (25:1 CH$_2$Cl$_2$/ MeOH) to afford the title compound (664 mg, 1.10 mmol, 50%) as a 1:1 mixture of 2 epimers, as a white solid. Mp 112-114 °C. $^1$H NMR (CDCl$_3$, 300 MHz): $\delta$ 7.09 (m, 2H, ArH$_{3'''}$ and ArH$_{6'''}$); 6.91 (d, $J = 8$ Hz, 1H, NH); 6.88 – 6.79 (m, 2H, ArH$_{3'''}$ and ArH$_{5'''}$); 6.69 (d, $J = 8.0$ Hz, 1H, NH); 6.55 (bs, 1H, NH); 6.10 – 5.97 (m, 1H, H$_{1''''}$); 5.77 – 5.60 (m, 1H, H$_2'$); 5.42 – 5.24 (m, 4H, H$_3'$ and H$_3''''$); 4.96 (bs, 1H, H$_2$); 4.86 (bs, 1H, H$_8$); 4.80 – 4.60 (m, 2H, H$_2''''$); 4.48 (dd, $J = 3.0$, 8.4 Hz, 1H, H$_5$); 3.74/3.71 (s, 3H, OCH$_3$); 3.12 – 2.92 (m, 4H, H$_4''$ and ArCH$_2$); 2.57 – 2.44 (m, 2H, H$_1'$); 1.98/1.96 (s, 3H, OCH$_3$); 3.12 – 2.92 (m, 4H, H$_4''$ and ArCH$_2$); 2.57 – 2.44 (m, 2H, H$_1'$); 1.98/1.96 (s, 3H, OCH$_3$); 3.12 – 2.92 (m, 2H, H$_1'$); 1.43 (s, 9H, C(CH$_3$)$_3$); 1.28 (s, 2H, H$_3''$). $^{13}$C NMR (CDCl$_3$, 75 MHz): $\delta$ 171.8, C$_7$; 171.7, C$_1$; 171.4/171.2, C$_4$; 170.3, C$_{10}$; 157.3/157.2, NCO$_2$; 155.9, ArC$_4''''$; 133.1/133.0, C$_2$; 130.2/130.1, ArCH$_2''''$ and ArCH$_6''''$; 128.8/128.7, ArC$_1''''$; 118.6, C$_3'$; 117.5/117.4, C$_3''''$; 114.4/114.3, ArCH$_3''''$ and ArCH$_5''''$; 78.6, C(CH$_3$)$_3$; 68.5, C$_1''''$; 54.0, C$_5$; 52.4, OCH$_3$; 52.1, C$_8$; 52.1, C$_2$; 39.9, C$_4''''$; 38.0, ArCH$_2$; 35.8, C$_1'$; 32.7/32.2, C$_1''''$; 29.6/29.3, C$_3''''$; 28.3, C(CH$_3$)$_3$; 22.9/22.7, C$_{11}$; 22.3/22.0, C$_2''$. MS (ESI, +ve) $m/z$ 603.4 (35%) [MH$^+$], 503.4 (100%) [MH$^+$ (less Boc)]. HRMS calcd for C$_{31}$H$_{47}$N$_4$O$_6$ 603.3394, found 603.3397.
5.7.3. Methyl (2S,5R,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-[[2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino]propyl]-4,7,10-trioxoundecanoate (33)

The title compound was synthesised using the general peptide coupling procedure (Procedure B) using 28 (387 mg, 0.70 mmol) and 14 (153 mg, 0.58 mmol) to afford 33 (336 mg, 0.42 mmol, 73%) as a light brown solid. IR (neat) $\nu_{\text{max}}$ 1653, 1636, 1539, 1508, 1241, 1107. Mp 172-176 °C.

$^1$H NMR (CDCl$_3$, 500 MHz): $\delta$ 7.75 (d, $J = 7.5$ Hz, 1H, NH); 7.11 (d, $J = 8.7$ Hz, 2H, ArH$''''$ and ArH$'''''$); 6.78 (d, $J = 8.4$ Hz, 2H, ArH$'''$ and ArH$'''$); 6.36 (bs, 2H, NH); 6.18 (bs, 1H, NH); 6.05 – 5.92 (m, 1H, H$''''$); 5.76 – 5.62 (m, 1H, H$''$); 5.36 (dd, $J = 1.5, 17.4$ Hz, 1H, H$_3''''$); 5.24 (dd, $J = 1.5, 10.5$ Hz, 1H, H$_3'''''$); 5.08 (d, $J = 15.6$ Hz, 1H, H$_3''''$); 5.04 (d, $J = 8.4$ Hz, 1H, H$_3'' '''$); 4.52 – 4.44 (m, 2H, H$_2''''$ and H$_5''''$); 4.42 (d, $J = 4.8$ Hz, 1H, H$_1'''''$); 4.38 – 4.28 (m, 1H, H$_8''''$); 3.69 (s, 3H, OCH$_3$); 3.14 – 3.00 (m, 2H, H$_3''''$); 3.01 – 2.85 (m, 2H, ArCH$_2$); 2.63 (t, $J = 6.9$ Hz, 2H, H$_4''''$); 2.59 (s, 3H, 7''''-CH$_3$); 2.57 (s, 3H, 5''''-CH$_3$); 2.65 – 2.45 (m, 2H, H$_1'''$); 2.09 (s, 3H, 8''''-CH$_3$); 1.93 (s, 3H, H$_{11}'$); 1.80 (t, $J = 6.6$ Hz, 2H, H$_3''''$); 1.56 – 1.48 (m, 4H, H$_1''$ and H$_2''$); 1.30 (s, 6H, 2 x 2''''-CH$_3$).

$^{13}$C NMR (DMSO, 75 MHz): $\delta$ 171.3, C$_4$; 170.9, C$_1$; 171.0, C$_{11}$; 169.1, C$_7$; 156.5, ArC$_6''''$; 155.6, ArC$_8'a''''$; 152.4, CN$_3$; 134.5, ArC$_7''''$; 133.9, ArC$_5'''''$; 133.3, C$_2''''''$; 132.5, C$_2''$; 132.2, ArC$_4''''$; 129.5, ArCH$_2''''$ and ArCH$_6''''$; 128.3, ArC$_8''$; 122.9, ArC$_1''''$; 117.6, ArC$_4'a''''$; 117.0, C$_3''''$; 116.8, C$_3'$; 113.9, ArCH$_3'''$ and ArCH$_5'''$; 72.9, C$_2''$; 68.0, C''''; 55.1, C$_2$; 51.9, C$_5$; 51.9, OCH$_3$; 51.5, C$_8$; 40.3, C$_3''$; 38.6, ArCH$_2$; 36.2, C$_4''$$''$; 35.2, C$_1'$; 32.2, C$_7$; 26.2, 2''''-CH$_3$; 25.1, C$_6$; 22.3, C$_{11}$; 20.8, C$_3'''$; 18.0, 5''''-CH$_3$; 16.9, 7''''-CH$_3$; 11.6, 8''''-CH$_3$. MS (ESI, +ve) m/z 797 (100%) [MH$^+$]. HRMS calcd for C$_{48}$H$_{57}$N$_6$O$_9$S 797.3908, found 797.3913.
5.7.4. Methyl (2S,5S,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]propyl)-4,7,10-trioxoundecanoate (34)

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 29 (236 mg, 0.43 mmol) and 14 (95 mg, 0.36 mmol) to afford 34 (207 mg, 0.25 mmol, 72%) as a light brown solid. \([\alpha]_D^{24} +27.8 (c 0.007, \text{MeOH}).\) IR (neat) \(\nu_{\text{max}} 1653, 1541, 1512, 1244, 1109.\) Mp 99-104 °C. 

\(^1\)H NMR (CDCl\(_3\), 500 MHz): \(\delta 7.77 (d, J = 7.8 \text{ Hz}, 1 \text{H}, \text{NH}); 7.69 (bs, 1 \text{H}, \text{NH}); 7.14 (d, J = 7.5 \text{ Hz}, 1 \text{H}, \text{NH}); 7.04 (d, J = 8.4 \text{ Hz}, 2 \text{H}, \text{ArH}''''\text{'''}\text{''}); 6.74 (d, J = 8.4 \text{ Hz}, 2 \text{H}, \text{ArH}''''\text{'''}\text{'''}); 6.41 (bs, 2 \text{H}, \text{NH}); 6.05 – 5.92 (m, 1 \text{H}, \text{H}''\text{''''}); 4.78 – 4.71 (m, 1 \text{H}, \text{H}''\text{''''}); 4.76 – 4.71 (m, 1 \text{H}, \text{H}''\text{''''}); 4.64 (bs, 1 \text{H}, \text{H}''\text{''''}); 4.64 (bs, 1 \text{H}, \text{H}''\text{''''}); 4.56 (dd, J = 1.5, 17.4 \text{ Hz}, 1 \text{H}, \text{H}''\text{''''}); 4.56 (dd, J = 1.5, 10.5 \text{ Hz}, 1 \text{H}, \text{H}''\text{''''}); 4.07 (d, J = 15.3 \text{ Hz}, 1 \text{H}, \text{H}''\text{''''}); 5.07 (d, J = 9.3 \text{ Hz}, 1 \text{H}, \text{H}''\text{''''}); 4.78 – 4.71 (m, 1 \text{H}, \text{H}''\text{''''}); 4.64 (bs, 1 \text{H}, \text{H}''\text{''''}); 3.68 (s, 3 \text{H}, \text{OCH}_3); 3.17 (d, J = 4.5 \text{ Hz}, 2 \text{H}, \text{H}''\text{''''}); 3.17 – 2.79 (m, 2 \text{H}, \text{ArCH}_2); 2.59 (t, J = 6.3 \text{ Hz}, 2 \text{H}, \text{H}''\text{''''}); 2.55 (s, 3 \text{H}, 5'''-\text{CH}_3); 2.62 – 2.43 (m, 2 \text{H}, \text{H}''\text{''''}); 2.08 (s, 3 \text{H}, 8''''-\text{CH}_3); 1.88 (s, 3 \text{H}, \text{H}11); 1.78 (t, J = 6.3 \text{ Hz}, 2 \text{H}, \text{H}''\text{''''}); 1.80 – 1.72 (m, 2 \text{H}, \text{H}7); 1.61 – 1.50 (m, 2 \text{H}, \text{H}6); 1.29 (s, 6 \text{H}, 2 \times 2''''-\text{CH}_3). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 172.0, C4; 171.8, C1; 171.5, C11; 171.0, C7; 157.2, ArC6''''; 156.2, ArC8a''''; 153.4, CN3; 153.2, ArC7''''; 134.6, ArC5''''; 133.1, C2'''''''; 133.1, C2'; 132.3, ArC4'''''; 130.1, ArCH2'''''' and ArCH6'''''''; 128.6, ArC8'''''; 123.9, ArC1'''''; 118.6, ArC4a'''''; 117.8, C3''''; 117.4, C3'; 114.5, ArCH3'''''' and ArCH5'''''''; 73.6, C2''''; 68.6, C1''''; 60.4, C2; 54.8, C5; 52.3, OCH3; 52.2, C8; 40.7, C3''; 37.2, ArCH2; 36.0, C4''''; 32.8, C1'; 29.7, C7; 26.8, 2''''-CH3; 25.3, C6; 22.9, C11; 21.5, C3''''; 18.6, 5''''-CH3; 17.6, 7''''-CH3; 12.2, 8''''-CH3. MS (ESI, +ve) \(m/z 797 (100\%)\) [MH\(^+\)]. HRMS calcd for \(\text{C}_{40}\text{H}_{57}\text{N}_6\text{O}_9\text{S}\) 797.3908, found 797.3890.
5.7.5. Methyl (2R,5R,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-([2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino)propyl)-4,7,10-trioxoundecanoate (35)

The title compound was synthesised using the general peptide coupling procedure (Procedure B) using 30 (387 mg, 0.700 mmol) and 14 (153 mg, 0.580 mmol) to afford 35 (297 mg, 0.37 mmol, 64%) as a light brown solid; [α]D 23 +0.96 (c 0.011, acetone). IR (neat) νmax 1645, 1540, 1514, 1245, 1110, 804. Mp 217-220 °C. 1H NMR (CDCl3, 500 MHz): δ 7.22 (bs, 1H, NH); 7.10 (d, J = 8.0 Hz, 2H, ArH2′′′′ and ArH6′′′′); 6.88 (bs, 1H, NH); 6.82 (d, J = 8.5 Hz, 2H, ArH3′′′′′′ and ArH5′′′′′′); 6.31 (d, J = 7.0 Hz, 1H, NH); 6.17 (bs, 1H, NH); 6.04 – 5.97 (m, 1H, H2′′′′); 5.73 – 5.65 (m, 1H, H2′); 5.38 (d, J = 7.0 Hz, 1H, H3′′′′′′); 5.26 (d, J = 10 Hz, 1H, H3′′′′); 5.11 (d, J = 17.0 Hz, 1H, H3′′); 5.08 (d, J = 10.5 Hz, 1H, H3′′′); 4.58 – 4.54 (m, 1H, H2); 4.53 – 4.47 (m, 3H, H5 and H1′′′′′′); 4.43 (d, J = 7.5 Hz, 1H, H8); 3.71 (s, 3H, OCH3); 3.68 (bs, 2H, H3′′); 3.04 – 2.97 (m, 1H, H2′′′′); 2.63 (t, J = 6.5 Hz, 2H, H4′′′); 2.59 (s, 3H, 7′′′-CH3); 2.57 (s, 3H, 5′′′-CH3); 2.55 – 2.50 (m, 2H, H1′′′); 2.11 (s, 3H, 8′′′-CH3); 1.97 (s, 3H, H11); 1.80 (t, J 6.5 Hz, 2H, H3′′′); 1.58 (s, 6H, 2 x 2′′′-CH3); 1.30 (s, 4H, H1′′ and H2′′). 13C NMR (DMSO, 75 MHz): δ 171.3, C4; 171.1, C1; 171.0, C11; 169.1, C7; 156.5, ArC6′′′; 155.7, ArC8a′′′; 152.1, CN3; 135.4, ArC7′′′; 133.9, ArC5′′′; 133.7, C2′′′′′′; 133.3, C2′; 130.0, ArC4′′′′; 129.5, ArCH2′′′′ and ArCH6′′′′; 129.4, ArC8′′′′; 122.5, ArC1′′′′′; 117.8, ArC4a′′′′; 117.6, C3′′′′; 117.1, C3′; 114.0, ArCH3′′′′ and ArCH5′′′′′′; 73.4, C2′′′′; 68.0, C′′′′′′; 54.4, C2; 51.9, C5; 51.7, OCH3; 51.6, C8; 36.9, C3′′′; 35.0, ArCH2; 32.1, C4′′′′′′; 29.3, C1′′′; 26.5, C7; 26.4, 2′′′-CH3; 25.1, C6; 22.4, C11; 20.8, C3′′′; 18.2, 5′′′-CH3; 17.1, 7′′′-CH3; 12.0, 8′′′-CH3. MS (ESI, +ve) m/z 797.4 (100%) [MH+]. HRMS calcd for C46H57N6O9S 797.3908, found 797.3915.
5.7.6. Methyl (2R,5S,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-([2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino)propyl)-4,7,10-trioxoundecanoate (36)

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from 31 (513 mg, 0.930 mmol) and 14 (204 mg, 0.78 mmol) to afford 36 (496 mg, 0.622 mmol, 80%) as a light brown solid; [α]D23 +21.6 (c 0.007, MeOH). IR (neat) νmax 1653, 1558, 1541, 1508, 1248, 1109. Mp 98-102 °C. 1H NMR (CDCl3, 500 MHz): δ 7.71 (d, J = 7.0 Hz, 1H, NH); 7.40 (d, J = 7.0 Hz, 1H, NH); 7.06 (d, J = 8.5 Hz, 2H, ArH2′′′′′ and ArH6′′′′′); 6.99 (bs, 1H, NH); 6.76 (d, J = 9.0 Hz, 2H, ArH3′′′′ and ArH5′′′′); 6.38 (bs, 2H, NH); 6.20 (bs, 1H, NH); 6.05 – 5.98 (m, 1H, H2′′′′′); 5.73 – 5.65 (m, 1H, H2′); 5.38 (dd, J = 1.5, 17.0 Hz, 1H, H3a′′′′′); 5.25 (dd, J = 1.0, 11.0 Hz, 1H, H3b′′′′′); 5.09 (d, J = 17.5 Hz, 1H, H3a′); 5.06 (d, J = 9.0 Hz, 1H, H3b′); 4.68 – 4.64 (m, 1H, H2); 4.57 – 4.52 (m, 2H, H5 and H8); 4.45 (d, J = 5.5 Hz, 2H, H1′′′′′); 3.67 (s, 3H, OCH3); 3.20 (d, J = 4.5 Hz, 2H, H3′′); 3.13 – 2.81 (m, 2H, ArCH2); 2.61 (t, J = 6.0 Hz, 2H, H4′′′′′); 2.57 (s, 3H, 7′′′′′-CH3); 2.55 (s, 3H, 5′′′′′-CH3); 2.50 – 2.45 (m, 2H, H1′); 2.09 (s, 3H, 8′′′′′-CH3); 1.88 (s, 3H, H11); 1.79 (t, J = 7.0 Hz, 2H, H3′′′′′); 1.75 – 1.73 (m, 2H, H7); 1.60 – 1.52 (m, 2H, H6); 1.30 (s, 6H, 2 x 2′′′-CH3). 13C NMR (CDCl3, 75 MHz): δ 172.2, C4; 171.9, C1; 171.3, C11; 170.9, C7; 157.3, ArC6′′′′′; 156.2, ArC8a′′′′′; 153.5, CN3; 135.3, ArC7′′′′′; 134.7, ArC5′′′′′; 133.2, C2′′′′′; 133.1, C2′; 132.4, ArC4′′′′′; 130.0, ArCH2′′′′′ and ArCH6′′′′′; 128.7, ArC8′′′′; 124.0, ArC1′′′′′; 118.8, ArC4a′′′′′; 117.9, C3′′′′′; 117.4, C3′; 114.1, ArCH3′′′′′ and ArCH5′′′′′; 73.6, C2′′; 68.7, C1′′′′′ 55.3, C2; 52.9, C5; 52.3, OCH3; 52.2, C8; 40.7, C3′′; 37.0, ArCH2; 36.1, C4′′′; 32.8, C1′; 29.3, C7; 26.8, 2′′′′′-CH3; 25.3, C6; 22.9, C11; 21.5, C3′′′; 18.6, 5′′′′′-CH3; 17.6, 7′′′′′-CH3; 12.2, 8′′′′′-CH3. MS (ESI, +ve) m/z 819 (100%) [MNa+]. HRMS calcd for C40H57N6O9S 797.3908, found 797.3873.
5.7.7. Methyl (2S,5S,8R)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-([2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino)propyl)-4,7,10-trioxaundecanoate (37)

The title compound was synthesised using the general peptide coupling procedure (Procedure B), from \textit{29} (654 mg, 1.19 mmol) and \textit{19} (260 mg, 0.99 mmol) to afford \textit{37} (683 mg, 0.86 mmol, 87%) as a light brown solid. Mp 200-204 °C. $^1$H NMR (CDCl$_3$, 300 MHz): $\delta$ 7.10 (d, $J$ = 8.4 Hz, 2H, ArH$^{3'''}$ and ArH$^{6'''}$); 6.90 (d, $J$ = 4.8 Hz, 1H, NH); 6.57 (d, $J$ = 8.4 Hz, 2H, ArH$^{3''''}$ and ArH$^{5''''}$); 6.34 (d, $J$ = 7.5 Hz, 1H, NH); 6.19 (bs, 2H, NH); 6.08 – 5.94 (m, 1H, H$_2^{3'''''}$); 5.79 – 5.60 (m, 1H, H$_2^{1'}$); 5.37 (dd, $J$ = 1.8, 17.1 Hz, 1H, H$_3^{a'''}$); 5.26 (dd, $J$ = 1.8, 10.5 Hz, 1H, H$_3^{b'''}$); 5.11 (d, $J$ = 12.0 Hz, 1H, H$_3^{a'}$); 5.03 (d, $J$ = 10.0 Hz, 1H, H$_3^{b'}$); 4.57 – 4.42 (m, 5H, H$_2$, H$_5$, H$_8$ and H$_1^{3'''}$); 3.70 (s, 3H, OCH$_3$); 3.20 – 3.10 (m, 2H, H$_3^{1'''}$); 3.01 – 2.98 (m, 2H, ArCH$_2$); 2.63 (t, $J$ = 6.3 Hz, 2H, H$_4^{'''}$); 2.59 (s, 3H, 7$''''$-CH$_3$); 2.57 (s, 3H, 5$''''$-CH$_3$); 2.65 – 2.53 (m, 2H, H$_1^{1'''}$); 2.11 (s, 3H, 8$''''$-CH$_3$); 1.96 (s, 3H, H11); 1.80 (t, $J$ = 6.3 Hz, 2H, H$_3^{2'''}$); 1.60 – 1.48 (m, 2H, H$_6$); 1.30 (s, 6H, 2 x 2$''''$-CH$_3$). $^{13}$C NMR (CDCl$_3$, 75 MHz): $\delta$ 171.6, C4; 171.5, C1; 171.3, C11; 169.4, C7; 156.7, ArC6$^{'''}$; 156.0, ArC8a$^{'''}$; 152.4, CN$_3$; 134.6, ArC7$^{'''}$; 134.1, ArC5$^{'''}$; 133.8, C2$^{'''''}$; 133.7, C2$'$; 133.6, ArC4$^{'''}$; 130.2, ArCH2$^{'''}$ and ArCH6$^{'''}$; 129.7, ArC8$'$; 122.7, ArC1$^{'''}$; 118.0, ArC4a$''$; 117.7, C3$^{''''}$; 117.2, C3$'$; 114.1, ArCH3$^{''''}$ and ArCH5$^{''''}$; 73.4, C2$''$; 68.0, C1$^{''''}$; 54.5, C2; 52.0, C5; 51.7, OCH$_3$; 51.6, C8; 40.1, C3$''$; 39.8, ArCH$_2$; 37.0, C4$''$; 32.1, C1$'$; 29.2, C7; 26.4, 2$''''$-CH$_3$; 25.1, C6; 22.4, C11; 20.8, C3$''$; 18.2, 5$''''$-CH$_3$; 17.1, 7$''''$-CH$_3$; 11.9, 8$''''$-CH$_3$. MS (ESI, +ve) m/z 797 (40%) [MH$^+$], 106 (100%). HRMS calcd for C$_{40}$H$_{57}$N$_6$O$_9$S 797.3908, found 797.3926.
5.8. Synthesis of Protected Cyclic Tripeptides (10, 38–43)

5.8.1. (7S,10R,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(4-[tert-butoxycarboxamido]butyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (10)

The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 9 (277 mg, 0.46 mmol) to yield 10 (199 mg, 0.35 mmol, 75%) as a brown solid. Mp 178-180 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 8.13 – 7.72 (m, 2H, NH); 7.13 – 7.03 (m, 2H, ArH); 6.90 – 6.65 (m, 2H, ArH); 5.87 – 5.39 (m, 2H, H4 and H5); 4.65 – 4.36 (m, 4H, H7, H13 and H3); 4.20 – 4.06 (m, 2H, NH and H10); 3.61 – 3.57 (m, 3H, OCH\(_3\)); 2.87 – 2.69 (bs, 4H, H4' and H14); 2.58 – 2.38 (m, 2H, H6); 1.82 – 1.75 (m, 3H, NCOCH\(_3\)); 1.31 – 0.79 (m, 6H, H1', H2' and H3'); 1.35 (s, 9H, C(CH\(_3\))\(_3\)). \(^{13}\)C NMR (CDCl\(_3\), 75 MHz): \(\delta\) 172.8, C9; 172.3, 7-CO; 171.7, 13-NCO; 171.6, C12; 157.2, NCO\(_2\); 156.5, 1-ArCl; 130.3, 1-ArCH2 and 1-ArCH6; 130.2, C4; 128.6, C5; 127.6, 1-ArCH4; 117.7, 1-ArCH3 and 1-ArCH5; 78.7, C(CH\(_3\))\(_3\); 66.9, C3; 55.7, C13; 54.4, C10; 54.1, C4'; 51.8, C4'; 40.1, C7; 36.0, C14; 29.4, C1'; 27.8, C6; 26.8, C3'; 26.2, C(CH\(_3\))\(_3\); 22.6, NCOCH\(_3\); 21.7, C2'. MS (ESI, +ve) m/z 575.3 (20%) [MH\(^+\)], 475.3 (100%) [MH\(^+\) - Boc]. HRMS calcd for C\(_{29}\)H\(_{43}\)N\(_4\)O\(_5\) 575.3081, found 575.3091.

5.8.2. (7S,10S,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(4-[tert-butoxycarboxamido]butyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (38)

The title compound was prepared using the general procedure for olefin metathesis (Procedure D) using 32 (311 mg, 0.52 mmol) to yield 38 as a mixture of epimers and E/Z isomers (228 mg, 0.40 mmol, 76%) as a brown solid. Mp 196-201 °C. \(^1\)H NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.62 – 7.46 (m, 2H, NH); 7.34 (bs, 1H, NH); 7.11 – 7.01 (m, 2H, ArH); 6.81/6.73 (d, J = 8.0 Hz, 2H, ArH); 5.66 (d, J =
The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 33 (104 mg, 0.13 mmol) to yield 39 (103 mg, 0.13 mmol, 100%) as a grey solid. Mp 172-175 °C. 

$^1$H NMR (CDCl$_3$, 300 MHz): $\delta$ 7.18 – 6.98 (m, 2H, ArH); 6.88 – 6.62 (m, 2H, ArH); 6.37 (bs, 1H, NH); 5.88 – 5.35 (m, H4 and H5); 4.95 – 4.62 (m, 2H, H3); 4.62 – 4.22 (m, 3H, H7, H10 and H13); 3.63 (s, 3H, OCH$_3$); 3.22 – 2.80 (m, 4H, H3’ and H6); 2.70 – 2.22 (m, 10H, H14, 7”-CH$_3$, 5”-CH$_3$ and H4’’); 2.06 (s, 3H, 8”-CH$_3$); 1.90 (s, 3H, NCOCH$_3$); 1.95 – 1.76 (m, 2H, H1’); 1.70 – 1.30 (m, 2H, H3’’); 1.27 (s, 6H, 2 x 2”-CH$_3$). $^{13}$C NMR (CDCl$_3$, 75 MHz): $\delta$ 172.0, COOCH$_3$; 171.2, C11; 170.5, C9; 170.3, NCOCH$_3$; 157.1, ArC6”; 156.2, CN$_3$; 155.4, 1-ArC4; 153.3, ArC8a”; 153.2, ArC5”; 134.6, ArC7”; 133.3, 1-ArCH2 and 1-ArCH6; 130.2, 1-ArC1; 128.4, C4; 128.3, C5; 123.9, ArC8”; 117.8, ArC4a”; 114.7, 1-ArCH3 and 1-ArCH5; 73.6, C2”; 67.7, C3; 65.9, C7; 56.2, C10; 52.5, C13; 52.2, C3’; 51.7, OCH$_3$; 40.1, C6; 34.9, C14; 32.8, NCOCH$_3$; 26.8, 2”-CH$_3$; 21.5, C3”; 18.6, C4”; 17.6,
5′-CH₃; 17.2, 7′′-CH₃; 15.2, C2′; 12.2, 8′′-CH₃. MS (ESI, -ve) m/z 767 (100%) [MH⁺]. HRMS calcd for C₃₈H₅₃N₆O₉S 769.3595, found 769.3558.

5.8.4. (7S,10S,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[[2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (40)

The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 34 (127 mg, 0.16 mmol) to yield 40 (117 mg, 0.15 mmol, 95%) as a grey solid. Mp 224-228 °C.

¹H NMR (CDCl₃, 300 MHz): δ 7.18 – 6.82 (m, 2H, ArH); 6.77 – 6.60 (m, 2H, ArH); 6.41 (bs, 1H, NH); 5.77 – 5.53 (m, H4 and H5); 4.68 – 4.46 (bs, 5H, H3, H7, H10 and H13); 3.67 (s, 3H, OCH₃); 3.30 – 3.05 (m, 2H, H3′); 2.70 – 2.40 (m, 10H, H14, 7′′-CH₃, 5′′-CH₃ and H4′′); 2.08 (s, 3H, OCH₃); 1.78 (s, 3H, NCOCH₃); 1.65 – 1.30 (m, 2H, H1′); 1.40 – 1.21 (m, 2H, H3′′); 1.30 (s, 6H, 2 x 2′′-CH₃).¹³C NMR (CDCl₃, 75 MHz): δ 172.0, COOCH₃; 171.2, C11; 170.6, C9; 170.2, NCOCH₃; 156.3, ArC6′′; 156.2, CN₃; 155.4, 1-ArC4; 153.3, ArC8a′′; 135.3, ArC5′′; 134.7, ArC7′′; 130.4, 1-ArCH2 and 1-ArCH6; 129.7, 1-ArCl; 128.4, C4; 127.7, C5; 123.9, ArC8′′; 117.8, ArC4a′′; 115.2, 1-ArCH3 and 1-ArCH5; 73.6, C2′′; 67.7, C3; 65.9, C7; 56.2, C10; 52.6, C13; 52.2, C3′; 51.7, OCH₃; 40.1, C6; 34.9, C14; 33.6, NCOCH₃; 26.8, 2′′-CH₃; 21.5, C3′′; 18.7, C4′′; 17.6, 5′′-CH₃; 17.2, 7′′-CH₃; 15.2, C2′; 12.2, 8′′-CH₃. MS (ESI, +ve) m/z 769 (100%) [MH⁺]. HRMS calcd for C₃₈H₅₃N₆O₉S 769.3595, found 769.3574.
5.8.5. (7R,10R,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-imino[2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino)propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (41)

The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 35 (170 mg, 0.210 mmol) to yield 41 (160 mg, 0.210 mmol, 99%) as a grey solid. Mp 205-207 °C.

$^1$H NMR (CD$_3$OD, 300 MHz): $\delta$ 8.10 – 8.00 (m, 2H, NH); 7.10 – 6.95 (m, 2H, ArH); 6.80 – 6.60 (m, 2H, ArH); 6.48 (bs, 1H, NH); 5.90 – 5.60 (m, 2H, NH); 5.60 – 5.30 (m, H4 and H5); 4.62 (bs, 2H, H3); 4.60 – 4.25 (m, 3H, H7, H10 and H13); 3.66 (s, 3H, OCH$_3$); 3.30 – 2.80 (m, 4H, H3′ and H14); 2.70 – 2.50 (m, 6H, 5′-CH$_3$ and 7′-CH$_3$); 2.50 – 2.30 (m, 2H, H4′); 2.00 (s, 3H, 8′-CH$_3$); 1.75 (s, 3H, NCOCH$_3$); 1.60 – 1.40 (m, 2H, H1′); 1.34 (bs, 2H, H3′′); 1.27 (s, 6H, 2 x 2′′-CH$_3$).

$^{13}$C NMR (CD$_3$OD, 125 MHz): $\delta$ 171.8, COOCH$_3$; 171.7, C11; 171.4, C9; 171.1, NCOC$_3$; 157.0, ArC6′; 155.9, CN$_3$; 155.5, 1-ArC4; 152.4, ArC8a′′; 134.2, ArC5′′; 134.0, ArC7′′; 130.4, 1-ArCH2 and 1-ArCH6; 129.6, 1-ArC1; 128.7, C4; 127.5, C5; 122.8, ArC8′′; 117.7, ArC4a; 114.2, 1-ArCH3 and 1-ArCH5; 73.5, C2′′; 66.4, C3; 55.0, C7; 53.3, C10; 52.9, C13; 52.3, C3′; 51.9, OCH$_3$; 40.6, C6; 37.4, C14; 32.2, NCOCH$_3$; 26.7, 2′-CH$_3$; 22.5, C3′′; 21.0, C4′′; 18.2, 5′-CH$_3$; 17.2, 7′-CH$_3$; 15.2, C2′; 12.0, 8′-CH$_3$. MS (ESI, -ve) $m/z$ 769.5 (85%) [MH$^+$]. HRMS calcd for C$_{38}$H$_{53}$N$_6$O$_9$S 769.3595, found 769.3631.
5.8.6. (7R,10S,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-imino[2,2,5,7,8-pentamethyl-3,4-
dihydro-2H-6-chromenylsulfonyl]guanidino)propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-
1(I,4)phenylenacyclotetradecaphane-4-ene (42)

The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 36 (262 mg, 0.330 mmol) to yield 42 (217 mg, 0.280 mmol, 86%) as a grey solid. Mp 174-176 °C. ¹H NMR (d₆DMSO, 500 MHz): δ 8.28 – 8.09 (m, 2H, NH); 7.11 – 7.01 (m, 2H, ArH); 6.77 – 6.72 (m, 2H, ArH); 6.54 - 6.44 (bs, 1H, NH); 5.72 – 5.68 (m, 2H, NH); 5.41 – 5.34 (m, H4 and H5); 4.62 (bs, 2H, H3); 4.52 – 4.04 (m, 3H, H7, H10 and H13); 3.55 (s, 3H, OCH₃); 3.06 – 2.96 (m, 2H, H3'); 2.92 – 2.67 (m, 2H, H14); 2.60 – 2.50 (m, 6H, 5''-CH₃ and 7'''-CH₃); 2.35 – 2.20 (m, 2H, H4''); 2.00 (s, 3H, 8''-CH₃); 1.73 (s, 3H, NCOCH₃); 1.67 – 1.44 (m, 2H, H1''); 1.35 (bs, 2H, H3''); 1.23 (s, 6H, 2 x 2''-CH₃). ¹³C NMR (d₆DMSO, 125 MHz): δ 171.7, COOCH₃; 171.5, C11; 171.3, C9; 171.1, NCOCH₃; 156.6, ArC6''; 155.8, CN₃; 155.4, 1-ArC4; 152.2, ArC8a''; 134.4, ArC5''; 133.9, ArC7''; 130.0, 1-ArCH2 and 1-ArCH6; 129.5, 1-ArC1; 128.8, C4; 127.5, C5; 122.6, ArC8''; 117.6, ArC4a''; 114.1, 1-ArCH3 and 1-ArCH5; 73.4, C2''; 66.4, C3; 54.9, C7; 53.3, C10; 52.6, C13; 52.2, C3'; 51.9, OCH₃; 40.6, C6; 37.2, C14; 32.2, NCOCH₃; 26.5, 2''-CH₃; 22.5, C3''; 20.8, C4''; 18.2, 5''-CH₃; 17.2, 7''-CH₃; 15.2, C2'; 12.0, 8''-CH₃. MS (ESI, +ve) m/z 767 (65%) [MH⁺]. HRMS calcd for C₅₈H₅₃N₆O₉S 769.3595, found 769.3630.
5.8.7. (7R,10S,13R,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[[2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl]guanidino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (43)

The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 37 (366 mg, 0.46 mmol) to yield 43 (307 mg, 0.40 mmol, 87%) as a grey solid. Mp 186-190 °C.

1H NMR (d6-DMSO, 500 MHz): δ 8.20 – 7.85 (m, 3H, NH); 7.15 – 6.98 (m, 2H, ArH); 6.85 – 6.60 (m, 2H, ArH); 6.41 (bs, 1H, NH); 6.00 – 5.60 (m, 1H H5); 5.60 – 5.38 (m, 1H, H4); 4.65 – 4.10 (m, 5H, H3, H7, H10 and H13); 3.69 (s, 3H, OCH3); 3.30 – 3.10 (m, 2H, H3); 2.90 – 2.62 (m, 2H, H4); 2.60 – 2.50 (m, 8H, H14, 7′′-CH3, and 5′′-CH3); 2.08 (s, 3H, 8′′-CH3); 1.85 (s, 3H, NCOCH3); 1.70 – 1.60 (m, 2H, H1′); 1.50 – 1.30 (m, 2H, H3′′); 1.26 (s, 6H, 2 x 2′′-CH3). 13C NMR (d6-DMSO, 125 MHz): δ 171.8, COOCH3; 171.6, C11; 170.8, C9; 169.5, NCOCH3; 156.8, ArC6′′; 156.4, CN3; 156.0, 1-ArC4; 152.4, ArC8a′′; 134.6, ArC5′′; 134.5, ArC7′′; 130.2, 1-ArCH2 and 1-ArCH6; 129.4, 1-ArC1; 128.3, C4; 127.9, C5; 122.7, ArC8′′; 117.8, ArC4a; 114.9, 1-ArCH3 and 1-ArCH5; 73.5, C2′′; 67.0, C3; 66.9, C7; 54.8, C10; 54.5, C13; 51.9, C3′; 51.8, OCH3; 40.1, C6; 36.8, C14; 32.1, NCOCH3; 26.5, 2′′-CH3; 22.4, C3′′; 20.8, C4′′; 18.2, 5′-CH3; 17.2, 7′′-CH3; 15.2, C2′; 12.0, 8′′-CH3. MS (ESI, +ve) m/z 769 (40%) [MH]+, 106 (100%). HRMS calcd for C38H53N6O9S 769.3595, found 769.3600.

5.9. Synthesis of Tripeptide hydrochloride salts (11, 44 – 49)

5.9.1. (7S,10R,13S,4E/Z)-13-Acetamido-10-(4-aminobutyl)-8,11-diaza-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene hydrochloride (11)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 10 (49 mg, 0.084 mmol) to yield 11 (17 mg, 0.033 mmol, 49%) as a highly hygroscopic yellow solid. 1H NMR (CD3OD, 300 MHz): δ 7.14 – 7.03 (m, 3H, ArH and
NH); 6.85 (bs, 1H, NH); 6.71 (d, J = 7.5 Hz, 2H, ArH); 6.03 – 5.68 (m, 2H, H4 and H5); 4.50 – 4.02 (m, 5H, H3, H7, H10 and H13); 3.68 (s, 3H, OCH3); 2.93 – 2.48 (m, 4H, H6 and H4'); 1.93 (s, 3H, NCOCH3); 1.80 – 0.83 (m, 6H, H1', H2' and H3'). $^{13}$C NMR (CD3OD, 75 MHz): δ 173.5, C9; 173.1, 7-CO; 173.0, 13-NCO; 172.6, C12; 157.7, 1-ArC1; 132.4, 1-ArCH2 and 1-ArCH6; 131.1, C4; 129.6, C5; 129.3, 1-ArC4; 116.8, 1-ArCH3 and 1-ArCH5; 70.0, C3; 57.9, C13; 54.9, C10; 53.5, C4'; 53.0, OCH3; 40.7, C7; 38.2, C14; 32.1, C1'; 31.7, C6; 28.0, C3'; 23.5, NCOCH3; 22.6, C2'. MS (ESI, +ve) m/z 475.3 (100%) [MH$^+$]. HRMS calced for C24H35N4O6 475.2557, found 475.2534.

5.9.2. (7S,10S,13S,4E/Z)-13-Acetamido-10-(4-aminobutyl)-8,11-diaza-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene hydrochloride (44)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A) using 38 (220 mg, 0.380 mmol) to yield 44 as a mixture of epimers and E/Z isomers (152 mg, 0.300 mmol, 79%) as a highly hygroscopic yellow solid. $^1$H NMR (CD3OD, 300 MHz): δ 8.19 (d, J = 8.4 Hz, 1H, NH); 6.98/6.92 (d, J = 8.0 Hz, 2H, ArH); 6.74/6.64 (d, J = 8.0 Hz, 2H, ArH); 5.57 (d, J = 16.0 Hz, 2H, H4-trans); 5.46 – 5.35 (m, 1H, H5); 4.56 – 4.37 (m, 4H, H7, H13 and H2); 4.26 – 4.19 (m, 1H, H10); 3.93 (bs, 1H, NH); 3.63/3.60 (s, 3H, OCH3); 2.89 – 2.57 (m, 6H, H6, H4' and H14); 1.99/1.89 (s, 3H, NCOCH3); 1.73 – 1.58 (m, 2H, H2'); 1.58 – 1.42 (bs, 2H, H3'); 1.35 – 1.16 (m, 2H, H1'). $^{13}$C NMR (CD3OD, 75 MHz): δ 174.5, C9; 173.3, 7-CO; 173.1, 13-NCO; 172.5, C12; 157.7, 1-ArC1; 131.4, 1-ArCH2 and 1-ArCH6; 131.1, C4; 129.5, C5; 129.1, 1-ArC4; 116.4, 1-ArCH3 and 1-ArCH5; 66.9, C3; 57.7, C13; 53.9, C10; 53.1, C4'; 53.0, OCH3; 40.5, C7; 38.1, C14; 32.0, C1'; 31.8, C6; 28.0, C3'; 23.5, NCOCH3; 22.5, C2'. MS (ESI, +ve) m/z 475.4 (100%) [MH$^+$]. HRMS calced for C24H35N4O6 475.2557, found 475.2581.
5.9.3. (7S,10R,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[guanidino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (45)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 39 (60 mg, 0.078 mmol) to yield 45 (38 mg, 0.071 mmol, 91%) as a white solid. Mp 218-224 °C. $^1$H NMR (CD$_3$OD, 300 MHz): $\delta$ 7.14 – 7.05 (m, 2H, ArH); 6.85 – 6.68 (m, 2H, ArH); 5.86 – 5.70 (m, 1H, H5); 5.11 – 4.95 (m, 1H, H4); 4.68 – 4.44 (m, 5H, H3, H7, H10 and H13); 3.73 – 3.69 (m, 3H, OCH$_3$); 3.30 – 3.10 (m, 2H, H3$'$); 3.04 – 2.94 (m, 2H, H14); 2.81 – 2.48 (m, 2H, H6); 1.94 (s, 3H, NCOCH$_3$); 1.71 – 1.91 (m, 2H, H1$'$); 1.41 - 1.33 (m, 2H, H2$'$). $^{13}$C NMR (CD$_3$OD, 75 MHz): $\delta$ 173.6, COOCH$_3$; 173.5, C11; 173.1, C9; 172.4, NCOCH$_3$; 158.4, CN$_3$; 157.4, 1-ArC4; 131.5, C4; 129.5, C5; 129.1, 1-ArCH2 and 1-ArCH6; 129.0, 1-ArCl; 116.5, 1-ArCH3 and 1-ArCH5; 66.9, C3; 57.5, C7; 56.2, C10; 54.3, C10; 53.6, C3$'$; 52.5, OCH$_3$; 42.1, C6; 38.7, C14; 35.3, NCOCH$_3$; 26.6, C1$'$; 22.7, C2$'$. MS (ESI, +ve) m/z 503 (100%) [MH$^+$]. HRMS calcd for C$_{24}$H$_{35}$N$_6$O$_6$ 503.2618, found 503.2626.

5.9.4. (7S,10S,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[guanidino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene hydrochloride (46)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 40 (91 mg, 0.12 mmol) to yield 46 as a white solid (38 mg, 0.076 mmol, 59%). Mp 218-220 °C. $^1$H NMR (CD$_3$OD, 300 MHz): $\delta$ 7.14 – 7.04 (m, 2H, ArH); 6.85 – 6.68 (m, 2H, ArH); 5.80 – 5.65 (m, 1H, H5); 5.55 – 5.35 (m, 1H, H4); 4.68 – 4.45 (m, 5H, H3, H7, H10 and H13); 3.73 – 3.69 (m, 3H, OCH$_3$); 3.04 – 2.94 (m, 2H, H14); 2.70 – 2.40 (m, 2H, H6); 1.99 (s, 3H, NCOCH$_3$); 1.80 – 1.65 (m, 2H, H1$'$); 1.65 – 1.40 (m, 2H, H2$'$). $^{13}$C NMR (CD$_3$OD, 75 MHz): $\delta$ 173.5, COOCH$_3$; 173.3, C11; 173.2, C9; 172.2, NCOCH$_3$; 158.9, CN$_3$; 157.8, 1-ArC4; 131.5, C4; 129.9, C5; 129.1, 1-ArCH2 and 1-ArCH6; 129.0,
1-ArCl; 116.2, 1-ArCH3 and 1-ArCH5; 66.8, C3; 57.6, C7; 56.0, C10; 54.1, C10; 53.6, C3'; 52.9, OCH3; 42.0, C6; 38.0, C14; 35.3, NCOCH3; 26.2, C1'; 22.6, C2'. MS (ESI, +ve) m/z 503 (100%) [MH+]. HRMS calcd for C24H35N6O6 503.2618, found 503.2603.

5.9.5. (7R,10R,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[guanidino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene hydrochloride (47)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 41 (108 mg, 0.140 mmol) to yield 47 (25 mg, 0.049 mmol, 35%) as a white solid. Mp 170-176 °C. 1H NMR (CD3OD, 300 MHz): δ 7.14 – 7.04 (m, 2H, ArH); 6.83 – 6.70 (m, 2H, ArH); 6.08 – 5.79 (m, 1H, H5); 5.54 – 5.45 (m, 1H, H4); 4.66 – 4.12 (m, 5H, H3, H7, H10 and H13); 3.70 – 3.68 (m, 3H, OCH3); 3.13 – 3.02 (m, 2H, H3'); 3.00 – 2.85 (m, 2H, H14); 2.57 – 2.37 (m, 2H, H6); 1.94 (s, 3H, NCOCH3); 1.80 – 1.45 (m, 2H, H1'); 1.42 – 1.28 (m, 2H, H2'). 13C NMR (CD3OD, 75 MHz): δ 173.8, COOCH3; 173.5, C11; 173.2, C9; 172.6, NCOCH3; 158.4, CN3; 157.2, 1-ArC4; 131.4, C4; 130.6, C5; 129.7, 1-ArCH2 and 1-ArCH6; 129.3, 1-ArC1; 115.9, 1-ArCH3 and 1-ArCH5; 67.3, C3; 57.2, C7; 54.0, C10; 53.7, C13; 53.2, C3'; 52.9, OCH3; 42.0, C6; 37.9, C14; 35.2, NCOCH3; 26.1, C1'; 22.6, C2'. MS (ESI, +ve) m/z 503 (35%) [MH+]. HRMS calcd for C24H35N6O6 503.2618, found 503.2644.

5.9.6. (7R,10S,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[guanidino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene hydrochloride (48)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 42 (129 mg, 0.16 mmol) to yield 48 as a white solid (71 mg, 0.14 mmol, 86%). Mp 134-138 °C. 1H NMR (CD3OD, 300 MHz): δ 7.18 – 7.04 (m, 2H, ArH); 6.88 – 6.67 (m, 2H, ArH); 6.00 – 5.70 (m, 1H, H5); 5.51 – 5.36(m, 1H, H4);
4.65 – 4.26 (m, 5H, H3, H7, H10 and H13); 3.72/3.69 (2 x s, 3H, OCH3, 2 rotomers 1:3); 3.31 – 3.29 (m, 2H, H3'); 2.25 – 2.82 (m, 2H, H14); 2.70 – 2.40 (m, 2H, H6); 1.94 (s, 3H, NCOCH3); 1.90 – 1.74 (m, 2H, H1'); 1.69 – 1.53 (m, 2H, H2'). 13C NMR (CD3OD, 75 MHz): δ 174.0, COOCH3; 173.6, C11; 173.3, C9; 173.0, C=OCH3; 158.4, CN3; 157.2, 1-ArC4; 131.3, C4; 130.6, C5; 129.7, 1-ArCH2 and 1-ArCH6; 129.5, 1-ArC1; 115.8, 1-ArCH3 and 1-ArCH5; 67.7, C3; 57.8, C7; 54.9, C10; 54.0, C10; 53.2, C3'; 52.9, OCH3; 42.0, C6; 37.7, C14; 33.2, NCOCH3; 26.5, C1'; 22.3, C2'. MS (ESI, +ve) m/z 503.4 (100%) [MH+]. HRMS calcd for C24H35N6O6 503.2618, found 503.2666.

5.9.7. (7S,10S,13R,4E/Z)-13-Acetamido-8,11-diaza-10-(3-[amino{imino}methylamino]propyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (49)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 43 (128 mg, 0.17 mmol) to yield 49 as a highly hygroscopic solid (29 mg, 0.058 mmol, 34%).

1H NMR (CD3OD, 300 MHz): δ 8.39 – 8.06 (m, 3H, NH); 7.63 (bs, 1H, NH); 7.16 – 7.00 (m, 2H, ArH); 6.83 – 6.64 (m, 2H, ArH); 5.88 – 5.78 (m, 1H, H5); 5.39 – 5.08 (m, 1H, H4); 4.67 – 4.19 (m, 5H, H3, H7, H10 and H13); 3.58 (bs, 3H, OCH3); 3.15 – 2.98 (m, 2H, H3'); 2.92 – 2.60 (m, 2H, H14); 2.59 – 2.30 (m, 2H, H6); 1.77 (s, 3H, NCOCH3); 1.84 – 1.66 (m, 2H, H1'); 1.39 – 1.26 (m, 2H, H2'). 13C NMR (CD3OD, 75 MHz): δ 171.3, C=OCH3; 171.6, C11; 171.3, C9; 169.4, C=OCH3; 156.8, CN3; 155.8, 1-ArC4; 130.2, C4; 128.8, C5; 128.2, 1-ArCH2 and 1-ArCH6; 127.9, 1-ArC1; 114.9, 1-ArCH3 and 1-ArCH5; 67.1, C3; 55.2, C7; 54.7, C10; 52.9, C10; 51.8, C3'; 51.6, OCH3; 42.0, C6; 36.9, C14; 33.9, NCOCH3; 29.0, C1'; 22.4, C2'. MS (ESI, +ve) m/z 503 (30%) [MH+], 102 (100%). HRMS calcd for C24H35N6O6 503.2618, found 503.2638.
5.10 Synthesis of Dipeptide Hydrochloride Salts (Scheme 5, 50 – 53)

5.10.1. Methyl (2S,5R)-2-allyl-3-aza-5-(9H-9-fluorenlymethyloxycarboxamido)-8-(guanidino)-4-oxooctanoate hydrochloride (50)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 23 (81 mg, 0.105 mmol) giving 50 (43 mg, 0.079 mmol, 75%) as a highly hygroscopic solid; [α]D 23 +17.7 (c 0.008, MeOH). IR (neat) v max 1662, 1540, 1210, 1178, 1098, 1030, 1004, 742. Mp 203-208 °C.

1H NMR (CD3OD, 300 MHz): δ 7.88 – 7.85 (m, 2H, ArH1″ and ArH8″); 7.66 – 7.77 (m, 2H, ArH4″ and ArH5″); 7.45 – 7.27 (m, 4H, ArH3″ and ArH6″ and ArH2″ and ArH7″); 5.81 – 5.71 (m, 1H, H2′); 5.16 – 5.03 (m, 2H, H3); 4.46 (dd, J = 5.4, 8.4 Hz, 1H, H2); 4.39 (d, J = 6.3 Hz, 2H, OCH2-H9″); 4.35 – 4.29 (m, 1H, H5); 4.2 – 4.15 (m, 1H, H9″); 3.68 (s, 3H, OCH3); 3.17 (bs, 2H, H8); 2.61 – 2.41 (m, Hz, 2H, H1′); 1.88 – 1.75 (m, 2H, H7); 1.75 – 1.55 (m, 2H, H6). 13C NMR (CD3OD, 75 MHz): δ 174.1, C4; 172.9, C1; 158.4, 5-NCO2; 146.3, ArC8a″ and ArC9a″; 142.4, ArC4a and ArC4b; 134.1, C2′; 129.1, ArCH3″’ and ArCH6″; 120.8, ArCH2″ and ArCH7″; 126.6, ArCH4″ and ArCH5″; 120.8, ArCH1″ and ArCH8″; 118.9, C3′; 67.9, CH2-C9″; 55.8, C9″; 53.4, C2; 52.8, OCH3; 51.1, C5; 42.0, C8; 36.8, C1′; 30.5, H7; 26.3, H6. MS (ESI, +ve) m/z 508 (100%) [MH]+. HRMS calcd for C27H34N5O5 508.2526, found 508.2570.

5.10.2. Methyl (2S,5S)-2-allyl-3-aza-5-(9H-9-fluorenlymethyloxycarboxamido)-8-(guanidino)-4-oxooctanoate hydrochloride (51)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A) using 24 (81 mg, 0.105 mmol) giving 51 (27 mg, 0.05 mmol, 47%) as a highly hygroscopic solid; [α]D 23 +6.4 (c 0.005, MeOH). IR (neat) v max 1663, 1528, 1210, 1179, 1098, 1030, 741. Mp 176-182 °C. 1H
NMR (CD$_3$OD, 500 MHz): $\delta$ 7.79 (d, $J = 7.5$ Hz, 2H, ArH$1''$ and ArH$8''$); 7.68 – 7.56 (m, 2H, ArH$4''$ and ArH$5''$); 7.44 – 7.27 (m, 4H, ArH$3''$ and ArH$6''$ and ArH$2''$ and ArH$7''$); 5.81 – 5.65 (m, 1H, H$_2$); 5.15 – 5.02 (m, 2H, H$_3$); 4.46 (dd, $J = 6.0$, 8.1 Hz, 1H, H$_2$); 4.34 (d, $J = 7.2$ Hz, 2H, OCH$_2$-H$_9''$); 4.34 – 4.28 (m, 1H, H$_5$); 4.22 – 4.12 (m, 1H, H$_9''$); 3.71/3.69 (2 x s, 3H, OCH$_3$, 2 rotomers 1:3); 3.28 – 3.08 (m, 2H, H$_8$); 2.59 – 2.40 (m, 2H, H$_1$); 1.95 – 1.72 (m, 2H, H$_7$); 1.75 – 1.52 (m, 2H, H$_6$). $^{13}$C NMR (CD$_3$OD, 75 MHz): $\delta$ 174.4, C$_4$; 173.2, C$_1$; 158.4, CN$_3$; 158.3, 5-NCO$_2$; 144.2, ArC$_8$ and ArC$_9$; 142.4, ArC$_4$ and ArC$_b$; 134.1, C$_2$; 129.1, ArCH$_3$ and ArCH$_6$; 128.7, ArCH$_2$ and ArCH$_7$; 126.7, ArCH$_4$ and ArCH$_5$; 120.9, ArCH$_1$ and ArCH$_8$; 119.0, C$_3'$; 67.9, CH$_2$-C$_9''$; 55.6, C$_9$; 53.5, C$_2$; 52.8, OCH$_3$; 48.1, C$_5$; 42.0, C$_8$; 36.6, C$_1$'; 30.3, H$_7$; 26.2, H$_6$. MS (ESI, +ve) $m/z$ 508 (100%) [MH$^+$]. HRMS calcd for C$_{37}$H$_{34}$N$_5$O$_5$ 508.2560, found 508.2574.

4.10.3. Methyl (2R,5R)-2-allyl-3-aza-5-(9H-9-fluorenylmethyloxycarboxamido)-8-(guanidino)-4-oxooctanoate hydrochloride (52)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 25 (80 mg, 0.10 mmol) to yield 52 (45 mg, 0.083 mmol, 80%) as a highly hygroscopic white solid; $[\alpha]_{D}^{23}$ -50.6 (c 0.002, MeOH). IR (neat) $\nu_{\text{max}}$ 1715, 1653, 1558, 1540, 1212, 1046, 738. $^1$H NMR (CD$_3$OD, 500 MHz): $\delta$ 7.61 (d, $J = 7.5$ Hz, 2H, ArH$_1''$ and ArH$_8''$); 7.47 (d, $J = 8.5$ Hz, 2H, ArH$_4''$ and ArH$_5''$); 7.20 (t, $J = 7.5$ Hz, 2H, ArH$_3''$ and ArH$_6''$); 7.12 (t, $J = 7.5$ Hz, 2H, ArH$_2''$ and ArH$_7''$); 5.62 – 5.54 (m, 1H, H$_2$); 4.93 (d, $J = 17.0$ Hz, 1H, H$_3$a$'$); 4.87 (d, $J = 10.0$ Hz, 1H, H$_3$b$'$); 4.28 (dd, $J = 6.0$, 8.0 Hz, 1H, H$_2$); 4.20 (d, $J = 7.0$ Hz, 2H, OCH$_2$-H$_9''$); 4.03 (t, $J = 7.0$ Hz, 1H, H$_5$); 3.99 (t, $J = 7.0$ Hz, 1H, H$_9''$); 3.51 (s, 3H, OCH$_3$); 3.01 (bs, 2H, H$_8$); 2.41 – 2.26 (m, 2H, H$_1$); 1.64 (bs, 2H, H$_7$); 1.47 (bs, 2H, H$_6$). $^{13}$C NMR (CD$_3$OD, 75 MHz): $\delta$ 174.1, C$_4$; 173.1, C$_1$; 158.4, C$_3$; 158.2, 5-NCO$_2$; 145.1, ArC$_8$ and ArC$_9$; 142.4, ArC$_4$ and ArC$_b$; 133.9, C$_2'$; 128.6,
ArCH3” and ArCH6”; 128.0, ArCH2” and ArCH7”; 126.0, ArCH4” and ArCH5”; 120.8, ArCH1” and ArCH8”; 118.8, C3; 67.9, CH2-C9”; 55.6, C9”; 53.6, C2; 52.7, OCH3; 49.3, C5; 42.1, C8; 36.7, C1”; 30.4, C7; 26.2, C6. MS (ESI, +ve) m/z 508 (45%) [MH]+. HRMS calcd for C27H34N5O5 508.2560, found 508.2592.

5.10.4. Methyl (2R,5S)-2-allyl-3-aza-5-(9H-9-fluorenylmethyloxycarboxamido)-8-(guanidino)-4-oxooctanoate hydrochloride (53)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A) using 26 (94 mg, 0.12 mmol) to yield 53 (33 mg, 0.061 mmol, 51%) as a highly hygroscopic white solid; [α]D22 -19.6 (c 0.005, MeOH). IR (neat) νmax 1662, 1537, 1213, 1107, 1050, 1031, 738. 1H NMR (CD3OD, 300 MHz): δ 7.79 (d, J = 7.5 Hz, 2H, ArH1” and ArH8”); 7.67 – 7.63 (m, 2H, ArH4” and ArH5”); 7.39 (t, J = 7.2 Hz, 2H, ArH3” and ArH6”); 7.30 (t, J = 7.2 Hz, 2H, ArH2” and ArH7”); 5.78 – 5.65 (m, 1H, H2’); 5.09 (d, J = 16.5 Hz, 1H, H3’a’); 5.04 (d, J = 9.6 Hz, 1H, H3b’); 4.46 (dd, J = 5.7, 8.4 Hz, 1H, H2); 4.40 (d, J = 6.3 Hz, 2H, OCH2-H9”); 4.22 (t, J = 6.6 Hz, 1H, H5); 4.24 – 4.13 (m, 1H, H9”); 3.69 (s, 3H, OCH3); 3.17 (t, J = 6.6 Hz, 2H, H8); 2.60 – 2.40 (m, 2H, H1’); 1.86 – 1.78 (m, 2H, H7); 1.67 – 1.50 (m, 2H, H6). 13C NMR (CD3OD, 75 MHz): δ 174.0, C4; 172.9, C1; 158.4, CN3; 158.2, 5-NCO2; 145.1, ArC8a” and ArC9a”; 142.4, ArC4a” and ArC4b”; 134.1, C2’; 128.7, ArCH3” and ArCH6”; 128.0, ArCH2” and ArCH7”; 126.0, ArCH4” and ArCH5”; 120.8, ArCH1” and ArCH8”; 118.9, C3’; 67.9, CH2-C9”; 55.8, C9”; 53.4, C2; 52.8, OCH3; 49.3, C5; 42.0, C8; 36.8, C1’; 30.5, C7; 26.3, C6. MS (ESI, +ve) m/z 508 (25%) [MH]+, 179 (100%) [Sodium allylglycinamide]. HRMS calcd for C27H34N5O5 508.2560, found 508.2555.
5.11. Synthesis of Acyclic Tripeptide hydrochloride salts (Scheme 6: 54 – 59)

5.11.1. Methyl (2S,5R,8S)-2-allyl-8-(4-allyloxyphenyl)-5-(4-aminobutyl)-3,6,9-triaza-4,7,10-trioxoundecanoate hydrochloride (54)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 9 (64 mg, 0.11 mmol) to yield 54 (22 mg, 0.041 mmol, 37%) as a cream coloured highly hygroscopic solid. $^1$H NMR (CD$_3$OD, 500 MHz): $\delta$ 7.15 (d, $J = 8.0$ Hz, 2H, ArH$_2'''$ and ArH$_6'''$); 6.87 (d, $J = 8.0$ Hz, 2H, ArH$_3'''$ and ArH$_5'''$); 6.09 – 6.01 (m, 1H, H$_2''''$); 5.77 – 5.69 (m, 1H, H$_2'''$); 5.39 (d, $J = 17.0$ Hz, 1H, H$_3''''''$); 5.24 (d, $J = 17.0$ Hz, 1H, H$_3''''$); 5.08 (d, $J = 10.5$ Hz, 1H, H$_3''''$); 5.04 (d, $J = 10.0$ Hz, 1H, H$_3''''$); 4.52 (d, $J = 5.5$ Hz, 2H, H$_1''''$); 4.43 – 4.37 (m, 2H, H$_2$ and H$_5$); 4.15 (d, $J = 6.5$ Hz, 1H, H$_8$); 3.69 (s, 3H, OCH$_3$); 2.96 – 2.90 (m, 2H, H$_1'''$); 2.83 (bs, 2H, H$_4''''$); 2.60 – 2.48 (m, 2H, ArCH$_2$); 1.93 (s, 3H, H$_{11}$); 1.74 (bs, 2H, H$_1''''$); 1.50 (bs, 2H, H$_2''''$); 1.00 (bs, 2H, H$_3''''$). $^{13}$C NMR (CD$_3$OD, 75 MHz): $\delta$ 174.3, C$_7$; 173.7, C$_1$; 173.2, C$_4$; 173.1, C$_{10}$; 158.8, ArC$_4'''$; 134.8, C$_2'$; 134.5, C$_2'''$; 131.3, ArCH$_2''''$ and ArCH$_6''''$; 129.9, ArC$_1''''$; 118.4, C$_3'$; 117.5, C$_3'''$; 115.8, ArCH$_3'''$ and ArCH$_5'''$; 69.8, C$_1'''$; 57.6, C$_5$; 54.2, OCH$_3$; 53.8, C$_8$; 52.7, C$_2$; 40.3, C$_4'$; 37.4, ArCH$_2$; 36.4, C$_1'$; 31.7, C$_1''$; 28.0, C$_3''$; 23.5, C$_{11}$; 22.4, C$_2''$. MS (ESI, +ve) $m/z$ 503.7 (100%) [MH$^+$]. HRMS calcd for C$_{26}$H$_{39}$N$_4$O$_6$ 503.2870, found 503.2881.

5.11.2. Methyl (2S,5S,8S)-8-acetamido-2-allyl-9-(4-allyloxyphenyl)-5-(4-aminobutyl)-3,6-diaza-4,7-dioxononanoate hydrochloride (55)

The title compound was synthesized using the general procedure (Procedure A), by deprotection of 32 (104 mg, 0.170 mmol) to yield 55 as a 1:1 mixture of epimers (55 mg, 0.10 mmol, 60%) as a highly hygroscopic yellow solid. Mp 150-154 °C. $^1$H NMR (CD$_3$OD, 300 MHz): $\delta$ 7.14 (d, $J = 8.0$ Hz, 2H, ArH$_2''''$ and
ArH6′′′′); 6.84 (t, J = 8.0 Hz, 2H, ArH3′′′′ and ArH5′′′′); 6.08 – 5.99 (m, 1H, H2′′′′); 5.81 – 5.73 (m, 1H, H2′'); 5.37 (d, J = 17.3 Hz, 1H, H3′′′′); 5.22 (d, J = 9.7 Hz, 1H, H3′′′); 5.15 – 5.04 (m, 2H, H3′); 4.52 – 4.36 (m, 5H, H2, H5, H8 and H1′′′′); 3.69/3.67 (s, 3H, OCH3); 3.08 – 2.76 (m, 4H, H1′′ and H4′′); 2.62 – 2.40 (m, 2H, ArCH2); 1.93/1.91 (s, 3H, H11); 1.50 (s, 6H, H1′′, H2′′ and H3′′). 13C NMR (CD3OD, 75 MHz): δ 173.7/173.6, C7; 173.4, C1; 173.1, C4; 173.0/172.9, C10; 158.7, ArCH4′′′′; 134.8, C2′; 134.3/134.0, C2′′′; 131.2/131.1, ArCH2′′′′ and ArCH6′′′′; 130.2/130.1, ArC1′′′′; 118.8/118.5, C3′; 117.4/117.3, C3′′′; 115.7/115.6, ArCH3′′′′ and ArCH5′′′′; 69.8/69.7, C1′′′′; 57.2, C5; 54.0, OCH3; 53.8/53.7, C8; 52.8/52.7, C2; 40.6/40.5, C4′; 37.8/37.7, ArCH2; 36.6/36.5, C1′; 31.9, C1′′; 28.0, C3′′; 23.4, C11; 22.5, C2′. MS (ESI, +ve) m/z 503.3 (100%) [MH+]. HRMS calcd for C26H39N4O6 503.2870, found 503.2894.

5.11.3. Methyl (2S,5R,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(3-[guanidino]propyl)-4,7,10-oxoundecanoate hydrochloride (56)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 33 (70 mg, 0.088 mmol) to yield 56 (37 mg, 0.065 mmol, 74%) as a highly hygroscopic solid; [α]D24 +17.4 (c 0.007, MeOH). IR (neat) νmax 1734, 1652, 1543, 1507, 1445, 1217, 1052, 1000, 767. 1H NMR (CD3OD, 300 MHz): δ 7.12 (d, J = 7.5 Hz, 2H, ArH2′′′′ and ArH6′′′′); 6.83 (d, J = 7.5 Hz, 2H, ArH3′′′′ and ArC5′′′′); 6.05 – 5.96 (m, 1H, H2′′′′); 5.76 – 6.64 (m, 1H, H2′'); 5.35 (d, J = 17.4 Hz, 1H, H3′′′′); 5.19 (d, J = 9.9 Hz, 1H, H3′′); 5.08 – 5.02 (m, 2H, H2′ and H5); 4.48 – 4.47 (m, 2H, H2′′′′); 4.42 – 4.342 (m, 2H, H2 and H5); 4.18 – 4.14 (m, 1H, H8); 3.65 (s, 3H, OCH3); 3.36 – 3.26 (m, 2H, H3′); 3.06 – 2.96 (m, 2H, ArCH2); 2.54 – 2.46 (m, 2H, H1′); 1.92 (s, 3H, H11); 1.85 – 1.64 (m, 2H, H1′′); 1.40 – 1.16 (m, 2H, H2′′). 13C NMR (CD3OD, 75 MHz): δ 174.0, C4; 173.4, C11; 172.9, C1; 169.0, C7; 158.8, ArC4′′′; 158.2, CN3; 134.7, C2′′′; 134.3, C2′; 131.2, ArC1’′′; 129.8, ArCH2′′′ and ArCH6′′′′; 118.4, C3′; 117.4, C3′′′; 115.7, ArCH3′′′ and ArCH5′′′′; 69.8, C1′′′′; 57.7, C2; 54.0, C5; 53.7, C8; 52.8, OCH3;
50.1, C3”; 37.5, ArCH2; 36.4, C1”; 29.5, C2”; 24.0, C11; 22.3, C1”. MS (ESI, +ve) m/z 531 (100%) [MH⁺]. HRMS calcd for C₂₆H₃₉N₆O₆ 531.2931, found 531.2939.

5.11.4. Methyl (2S,5S,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(3-[guanidino]propyl)-4,7,10-oxoundecanoate hydrochloride (57)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 34 (63 mg, 0.079 mmol) to yield 57 (38 mg, 0.036 mmol, 85%) as a highly hygroscopic solid; [α]D²¹ +46.1 (c 0.001, MeOH). IR (neat) νmax 1740, 1631, 1543, 1512, 1254, 1093. ¹H NMR (CD₃OD, 300 MHz): δ 7.13 (d, J = 8.7 Hz, 2H, ArH₂′′′ and ArH₆′′′); 6.82 (d, J = 8.7 Hz, 2H, ArH₃′’′ and ArH₅′′′); 6.09 – 5.97 (m, 1H, H₂′′′′); 5.36 (dd, J = 1.5, 17.4 Hz, 1H, H₃ₐ′′′′); 5.22 (dd, J = 1.5, 10.5 Hz, 1H, H₃ₐ′′′′); 5.13 (d, J = 18.3 Hz, 1H, H₃ₐ′′′′); 5.08 (d, J = 9.6 Hz, 1H, H₃ₐ′′′′); 4.50 – 4.48 (m, 3H, H₁′′′′ and H₅); 4.42 – 4.36 (m, 2H, H₂ and H₈); 3.69 (s, 3H, OCH₃); 3.21 – 3.15 (m, 2H, H₃); 3.02 (dd, J = 5.7, 13.8 Hz, 1H, ArCHH); 2.82 (dd, J = 9.0, 14.1 Hz, 1H, ArCHH); 2.60 – 2.41 (m, 2H, H₁’); 1.92 (s, 3H, H₁₁); 1.88 – 1.81 (m, 2H, H₁’’); 1.70 – 1.58 (m, 2H, H₂’). ¹³C NMR (CD₃OD, 75 MHz): δ 173.9, C₄; 173.5, C₁₁; 173.4, C₁; 173.2, C₇; 158.8, ArC₄’’’; 158.4, CN₃; 134.9, C₂’’’’; 134.2, C₂’; 131.2, ArC₁’’”; 130.3, ArCH₂’’’ and ArCH₆’’’; 117.4, C₃; 116.2, C₃’’’; 115.6, ArCH₃’’’ and ArCH₅’’’; 69.7, C₁’’”; 56.6, C₂; 53.8, C₅; 53.6, C₈; 52.8, OCH₃; 50.1, C₃’’; 36.6, ArCH₂; 36.5, C₁’; 30.3, C₂’’; 23.0, C₁₁; 22.5, C₁’”. MS (ESI, +ve) m/z 531.1 (100%) [MH⁺]. HRMS calcd for C₂₆H₃₉N₆O₆ 531.2931, found 531.2916.
5.11.5. Methyl (2R,5R,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(3-[guanidino]propyl)-4,7,10-oxoundecanoate hydrochloride (58)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 35 (48 mg, 0.60 mmol) to yield 58 (32 mg, 0.060 mmol, 100%) as a highly hygroscopic solid; [α]_D^{22} +16.0 (c 0.008, MeOH). IR (neat) ν max 1652, 1543, 1512, 1222, 1181, 1047, 1005, 834, 752. 1H NMR (CD_3OD, 300 MHz): δ 7.15 (d, J = 8.4 Hz, 2H, ArH_2′′′′ and ArH_6′′′′); 6.86 (d, J = 8.7 Hz, 2H, ArH_3′′′′ and ArC_5′′′′); 6.08 – 6.00 (m, 1H, H_2′′′′); 5.78 – 5.70 (m, 1H, H_2′); 5.38 (dd, J = 1.5, 17.4 Hz, 1H, H_3a′′′′′); 5.23 (dd, J = 1.2, 10.5 Hz, 1H, H_3b′′′′); 5.09 (dd, J = 1.2, 16.8 Hz, 1H, H_3a′); 5.06 (d, J = 10.6 Hz, 1H, H_3b′); 4.45 – 4.40 (m, 4H, H_2′′′′′ and H_2); 4.39 (dd, J = 5.7, 8.1 Hz, 1H, H_5); 4.26 (dd, J = 4.5, 8.7 Hz, 1H, H_8); 3.68 (s, 3H, OCH_3); 3.07 (t, J = 7.2 Hz, 2H, C_3′′); 2.89 – 2.82 (m, 2H, ArCH_2); 2.59 – 2.42 (m, 2H, H_1′); 1.95 (s, 3H, OCH_3); 3.07 (t, J = 7.2 Hz, 2H, H_3′′); 2.89 – 1.08 (m, 2H, H_2′). 13C NMR (CD_3OD, 75 MHz): δ 173.7, C_4; 173.6, C_11; 173.4, C_1; 172.9, C_7; 158.8, ArC_4′′; 158.4, CN_3; 134.8, C_2′′′′; 134.3, C_2′; 131.2, ArC_1′′; 130.0, ArCH_2′′ and ArCH_6′′; 118.6, C_3′; 117.4, C_3′′′; 115.7, ArCH_3′′′′ and ArCH_5′′′′; 69.8, C_1′′′′; 57.2, C_2; 53.8, C_5; 53.8, C_8; 52.8, OCH_3; 50.1, C_3′′; 37.7, ArCH_2; 36.5, C_1′; 29.7, C_2′′; 22.9, C_11; 22.3, C_1′′. MS (ESI, +ve) m/z 531.5 (80%) [MH]^+. HRMS calcd for C_{26}H_{39}N_6O_6 531.2931, found 531.2936.

5.11.6. Methyl (2R,5S,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(3-[guanidino]propyl)-4,7,10-oxoundecanoate hydrochloride (59)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 36 (87 mg, 0.11 mmol) to yield 59 (35 mg, 0.062 mmol, 56%) as a highly hygroscopic solid; [α]_D^{22} +16.0 (c 0.008, MeOH). IR (neat) ν max 1652, 1543, 1512, 1222, 1181, 1047, 1005, 834, 752. 1H NMR (CD_3OD, 300 MHz): δ 7.16 (d,
$J = 8.5$ Hz, 2H, ArH2′′′ and ArH6′′′); 6.83 (d, $J = 8.0$ Hz, 2H, ArH3′′′ and ArH5′′′); 6.10 – 5.98 (m, 1H, H2′′′); 5.84 – 5.70 (m, 1H, H2′); 5.38 (dd, $J = 1.5$, 17.5 Hz, 1H, H3a′′′′); 5.23 (dd, $J = 1.0$, 10.5 Hz, 1H, H3b′′′′); 5.12 (d, $J = 17.0$ Hz, 1H, H3a′); 5.08 (d, $J = 10.5$ Hz, 1H, H3b′); 4.50 (d, $J = 5.0$ Hz, 2H, H1′′′′); 4.42 – 4.37 (m, 3H, H2, H5 and H8); 3.71 (s, 3H, OCH3); 2.97 (t, $J = 7.5$ Hz, 2H, H3′′); 3.02 – 2.85 (m, 2H, ArCH2); 2.63 – 2.45 (m, 2H, H1′); 1.93 (s, 3H, CH3, H11); 1.84 – 1.73 (m, 2H, H1′′); 1.63 – 1.60 (m, 2H, H2′′). $^{13}$C NMR (CD3OD, 75 MHz): $\delta$ 173.9, C4; 173.4, C11; 173.1, C1; 172.9, C7; 158.8, ArC4′′′; 158.4, CN3; 134.8, C2′′′′; 134.1, C2′; 131.1, ArCl′′′′; 130.2, ArCH2′′′′ and ArCH6′′′′; 118.9, C3′; 117.2, C3′′′′; 115.6, ArCH3′′′′ and ArCH5′′′′; 69.7, C1′′′′; 56.9, C2; 53.8, C5; 53.6, C8; 52.8, OCH3; 50.1, C3′′′; 37.7, ArCH2; 36.9, C1′; 26.1, C2′; 22.5, C11; 20.7, C1′′. MS (ESI, +ve) m/z 531.1 (85%) [MH$^+$]. HRMS calcd for C26H39N6O6 531.2931, found 531.2952.

5.12. Synthesis of Acyclic GuanidineLysine Derivatives (Scheme 7)

5.12.1. Methyl (2S,5R,8S)-2-allyl-8-(4-allyloxybenzyl)-3,6,9-triaza-5-(4-[N,N-di-tert-butoxycarbonyl]guanidino)butyl)-4,7,10-trioxoundecanoate (60)

To a solution of 9 (56 mg, 0.093 mmol) in CH2Cl2 (2 mL) was added TFA (2 mL) and the resulting mixture was allowed to stir for 3 h. The solvent was concentrated and the intermediate trifluoroacetate salt was precipitated by addition of diethyl ether and collected as a solid by vacuum filtration. To this solid was added $N$-tert-butoxycarboxamido(trifluoromethylsulfonylimino)methyl propanamide (65 mg, 0.17 mmol), triethylamine (0.2 mL) and CH2Cl2 (2 mL). The resulting solution was allowed to stir for 16 h under N2. The solvent was evaporated and the crude product was purified by flash column chromatography (15:1, CH2Cl2/ MeOH) to yield the title compound as a 1:1 mixture of epimers (70 mg, 0.093 mmol, 100%) as an orange/yellow solid. Mp 112-114 °C. $^1$H NMR (CDCl3, 300 MHz): $\delta$ 8.31 (bs, 1H, NH); 7.20 (d, $J = 8.0$ Hz, 1H, NH); 7.11 – 7.04 (m, 2H, ArH2′′′′ and ArH6′′′′); 6.94 (d,
$J = 7.6$ Hz, 1H, NH); 7.11 – 6.79 (m, 2H, ArH3′′ and ArH5′′); 6.72 (d, $J = 7.2$ Hz, 1H, NH); 6.60 (d, $J = 7.6$ Hz, 1H, NH); 6.07 – 5.96 (m, 1H, H2′′′′); 5.71 – 5.61 (m, 1H, H2′); 5.38 (d, $J = 17.3$ Hz, 1H, H3a′′′′); 5.26 (d, $J = 10.5$ Hz, 1H, H3b′′′′); 5.14 – 5.06 (m, 2H, H3′′′); 4.70 – 4.34 (m, 5H, H2, H5, H8 and H2′′′′); 3.74/3.70 (s, 3H, OCH3); 3.32 (d, $J = 6.7$ Hz, 2H, H4′′); 3.00 – 2.86 (m, 2H, ArCH2); 2.56 – 2.43 (m, 2H, H1′); 1.97/1.96 (s, 3H, H11); 1.40 – 1.05 (m, 6H, H1′′, H2′′ and H3′′); 1.49 (s, 18H, 2x C(CH3)3). 13C NMR (CDCl3, 75 MHz): $\delta$ 172.1/171.7, C7; 171.4/171.3, C1; 170.9, C4; 170.7, C10; 163.1, CN3; 157.5/157.4, ArC4′′′′; 156.0/155.9, NCO2; 153.0, NCO2; 133.1/133.0, C2; 132.1/131.9, C2′′′′; 130.0, ArCH2′′ and ArCH6′′; 128.2/128.0, ArCl′′′; 119.1/118.9, C3′′′; 117.5/117.3, C3′′′′; 114.8/114.7, ArC3′′′′ and ArCH5′′′′; 83.2/83.1, C(CH3)3; 79.5/79.4, C(CH3)3; 68.7, C1′′′′; 55.4/54.6, C5; 52.9, OCH3; 52.5/52.8, C8; 51.9/51.8, C2; 40.7/40.5, C4′; 37.2, ArCH2; 36.3, C1′; 36.1, C1′′; 31.9/31.5, C3′′′; 28.6/28.3, C(CH3)3; 22.9/22.7, C11; 22.5, C2′′′. MS (ESI, +ve) m/z 745.4 (100%) [MH]+. HRMS calcd for C37H57N6O10 745.4136, found 745.4138.


![Chemical Structure](image)

To a solution of 32 (41 mg, 0.081 mmol) in CH2Cl2 (2 mL) was added $N$-tert-butoxycarboxamido(trifluoromethylsulfonylimino)methylpropanamide (35 mg, 0.089 mmol), triethylamine (0.1 mL). The resulting solution was allowed to stir for 16 h under N2. The solvent was evaporated and the crude product was purified by flash column chromatography (15:1, CH2Cl2/MeOH) to yield the title compound as a 1:1 mixture of epimers (45 mg, 0.060 mmol, 74%) as an orange/yellow solid. Mp 114-118 °C. $^1$H NMR (CDCl3, 300 MHz): $\delta$ 8.26 (bs, 1H, NH); 7.08 (t, $J = 8.4$ Hz, 2H, ArH2′′′′ and ArH6′′′′); 6.99 – 6.94 (m, 1H, NH); 6.83 (t, $J = 8.4$ Hz, 2H, ArH3′′′′ and ArH5′′′′); 6.73 (d, $J = 8.0$ Hz, 1H, NH); 6.57 (t, $J = 9.3$ Hz, 1H, NH); 6.09 – 5.96 (m, 1H, H2′′′′); 5.74 – 5.59 (m, 1H,
5.12.3. Methyl (2S,5R,8S)-2-allyl-9-(4-allyloxybenzyl)-5-(4-[guanidino]butyl)-3,6,9-triaza-4,7,10-trioxoundecanoate hydrochloride (62)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 60 (71 mg, 0.095 mmol) to yield 62 (43 mg, 0.074 mmol, 78%) as a yellow hygroscopic solid. $^1$H NMR (CD$_3$OD, 300 MHz): $\delta$ 8.25 – 8.15 (m, 2H, NH x 2); 7.15 (d, $J = 8.4$ Hz, 2H, ArH2″ and ArH6″); 6.87 (d, $J = 8.4$ Hz, 2H, ArH3″ and ArH5″); 6.10 – 5.96 (m, 1H, H2‴″); 5.80 – 5.66 (m, 1H, H2′); 5.39 (d, $J = 17.3$ Hz, 1H, H3‴″); 5.24 (d, $J = 10.5$ Hz, 1H, H3‴″); 5.12 (d, $J = 6.0$ Hz, 1H, H3‴); 5.05 (d, $J = 9.9$ Hz, 1H, H3𝑏‴); 4.52 – 4.37 (m, 4H, H2, H5 and H1‴″); 4.17 (dd, $J = 4.0$, 8.7 Hz, 1H, H8); 3.72 (s, 3H, OCH3); 3.18 – 2.80 (m, 4H, 4H, H1′ and H4″); 2.62 – 2.42 (m, 2H, ArCH2); 1.94 (s, 3H, H11); 1.83 – 1.39 (m, 4H, H2″ and H3″); 1.05 – 0.97 (m, 2H, H1″). $^{13}$C NMR (CD$_3$OD, 75 MHz): $\delta$ 174.3, C4; 174.0, C11; 173.3, C1; 173.2, C7; 159.0, ArC4‴; 158.5, CN3; 134.9, C2‴″; 134.5, C2″; 131.4, ArC1‴; 130.4, ArCH2‴ and ArCH6‴; 118.6, C3‴; 117.5, C3‴″; 115.9, ArCH3‴ and ArCH5‴; 69.8, C1‴″; 57.5, C2; 54.3, C5; 53.8, C8; 52.7,
OCH₃; 42.1, C₄''; 37.5, ArCH₂; 36.4, C₁'; 31.9, C₂''; 29.2, C₃''; 23.6, C₁₁; 22.4, C₁". MS (ESI, +ve) m/z 545.4 (100%) [MH⁺]. HRMS calcd for C₂₇H₄₁N₆O₆ 545.3088, found 545.3073.

5.12.4. Methyl (2S,5S,8S)-2-allyl-9-(4-allyloxyphenyl)-5-(4-[guanidino]butyl)-3,6,9-triaza-4,7,10-trioxoundecanoate hydrochloride (63)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 61 (40 mg, 0.054 mmol) to yield 63 (11 mg, 0.019 mmol, 35%) as a highly hygroscopic yellow solid. ¹H NMR (CD₃OD, 300 MHz): δ 7.10 (bs, 2H, ArH₂'' and ArH₆'''); 6.79 (bs, 2H, ArH₃'' and ArH₅'''); 6.10 – 5.90 (m, 1H, H₂'''); 5.84 – 5.62 (m, 1H, H₂'); 5.36 – 4.99 (m, 4H, H₃'''' and H₃'); 4.45 – 4.10 (m, 5H, H₂, H₅, H₈ and H₁''''); 3.65 (s, 3H, OCH₃); 3.11 – 2.70 (m, 4H, H₁' and H₄'''); 2.49 (bs, 2H, ArCH₂); 1.87 (s, 3H, H₁₁); 1.47 – 1.23 (m, 6H, H₁'', H₂'' and H₃'''). ¹³C NMR (CD₃OD, 75 MHz): δ 174.2, C₄; 174.1, C₁₁; 173.6, C₁; 173.2, C₇; 159.4, ArC₄'''; 158.4, CN₃; 134.6, C₂'''; 134.2, C₂'; 131.2, ArC₁''''; 130.3, ArCH₂'''' and ArCH₆''''; 119.6, C₃'; 118.2, C₃''''; 116.3, ArCH₃''' and ArCH₅''''; 70.0, C₁''''; 57.4, C₂; 54.4, C₅; 53.9, C₈; 52.4, OCH₃; 42.2, C₄''; 37.6, ArCH₂; 36.6, C₁'; 32.5, C₂''; 29.5, C₃''; 23.6, C₁₁; 22.8, C₁". MS (ESI, +ve) m/z 545.3 (100%) [MH⁺]. HRMS calcd for C₂₇H₄₁N₆O₆ 545.3088, found 545.3066.
5.13. Synthesis of Cyclic GuanidineLysine Derivatives (Scheme 8)

5.13.1. (7S,10S,13S,4E/Z)-13-Acetamido-8,11-diaza-10-(4-[[N,N-di-tert-butoxycarbonyl]guanidino]butyl)-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene (64)

To a solution of 10 (75 mg, 0.15 mmol) in CH$_2$Cl$_2$ (2 mL) was added $N$-tert-butoxycarboxamido(trifluoromethylsulfonylimino)methyl propanamide (115 mg, 0.29 mmol), triethylamine (0.1 mL) and CH$_2$Cl$_2$ (2 mL). The resulting solution was allowed to stir for 16 h under N$_2$. The solvent was evaporated and the crude product was purified by flash column chromatography (15:1, CH$_2$Cl$_2$/MeOH) to yield 64 as a 1:1 mixture of epimers (96 mg, 0.13 mmol, 87%) as an orange/yellow solid. Mp 104-102 °C. $^1$H NMR (CDCl$_3$, 300 MHz): $\delta$ 8.28 – 8.24 (m, 1H, NH); 7.14 – 6.71 (m, 4H, ArH); 6.00 – 5.50 (m, 2H, H4 and H5); 4.77 – 4.55 (m, 5H, H2, H7, H10 and H13); 3.79/3.78 (s, 3H, OCH$_3$); 3.34 – 3.23 (m, 2H, H4'); 2.99 – 2.87 (m, 2H, H6); 2.77 – 2.637 (m, 2H, H14); 2.09/2.07 (s, 3H, NCOCH$_3$); 1.60 – 1.50 (m, 6H, H1', H2' and H3'); 1.49/1.48 (s, 18H, C(CH$_3$)$_3$). $^{13}$C NMR (CDCl$_3$, 75 MHz): $\delta$ 172.1/171.8, C9; 170.8/170.7, 7-CO; 170.3, 13-NCO; 169.9, C12; 163.6, CN$_3$; 156.7, 1-ArCl; 156.3/156.2, NCO$_2$; 153.4/153.3, NCO$_2$; 130.4, 1-ArCH2 and 1-ArCH6; 129.9, C4; 128.4, C5; 127.6, 1-ArC4; 116.8, 1-ArCH3 and 1-ArCH5; 83.4/83.3, C(CH$_3$)$_3$; 79.5/79.4, C(CH$_3$)$_3$; 66.2, C3; 54.8, C13; 53.8, C10; 52.1, OCH$_3$; 41.1, C4'; 33.9, C7; 31.3, C14; 30.0, C6; 29.2, C(CH$_3$)$_3$; 27.5, C3'; 23.5, 13-NCOCH$_3$; 22.6, C2'. MS ( ESI, +ve) m/z 717.4 (100%) [MH$^+$]. HRMS calcd for C$_{35}$H$_{53}$N$_6$O$_{10}$ 717.3823, found 717.3806.
5.13.2. (7S,10S,13S,4E/Z)-13-Acetamido-10-(4-[guanidino]butyl)-8,11-diaza-7-methoxycarbonyl-2-oxa-9,12-dioxo-1(1,4)phenylenacyclotetradecaphane-4-ene hydrochloride (65)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 64 (86 mg, 0.12 mmol) to yield 65 (50 mg, 0.097 mmol, 81%) as a highly hygroscopic yellow solid. \(^1\)H NMR (CD\(_3\)OD, 500 MHz): \(\delta\) 10.34 (bs, 1H, NH); 7.55 – 7.36 (m, 2H, ArH); 7.18 – 7.07 (m, 2H, ArH); 5.97 – 5.80 (m, 2H, H4 and H5); 4.98 – 4.68 (m, 5H, H2, H7, H10 and H13); 3.65 (s, 3H, OCH\(_3\)); 3.32 – 3.31 (m, 2H, H4’); 3.10 – 3.00 (m, 2H, H6); 2.42 – 2.40 (m, 2H, H14); 2.10 (s, 3H, NCOCH\(_3\)); 2.10 – 2.00 (m, 2H, H3’); 1.90 – 1.80 (m, 2H, H1’); 1.54 – 1.42 (m, 2H, H2’). \(^{13}\)C NMR (CD\(_3\)OD, 125 MHz): \(\delta\) 173.3/173.2, C9; 172.7/173.6, 7-CO; 172.5, 13-NCO; 169.4, C12; 158.5/158.4, 1-ArC1; 131.4/131.3, 1-ArCH2 and 1-ArCH6; 131.0, C4; 129.3, C5; 129.0, 1-ArC4; 116.5, 1-ArCH3 and 1-ArCH5; 67.0, C3; 58.2, C7; 57.5, C13; 57.4, C10; 53.9, OCH\(_3\); 42.1, C4’; 33.9, C14; 29.0, C6; 23.5, C3’; 22.7, C1’; 22.5, NCOCH\(_3\); 22.5, C2’. MS (ESI, +ve) m/z 517.4 (100%) [MH\(^+\)]. HRMS calcd for C\(_{25}\)H\(_{37}\)N\(_6\)O\(_6\) 517.2775, found 517.2765.

5.14. Synthesis of Dityrosine Cyclic Peptides (Scheme 9)

5.14.1. Methyl (2S)-(4-hydroxyphenyl)-2-tert-butoxycarboxamido propanoate (67)

To a solution of (2S)-2-amino-3-(4-hydroxyphenyl)propanoic acid 66 (5.23 g, 28.9 mmol) in anhydrous MeOH (20 mL) at 0 °C was added dropwise thionyl chloride (2 mL). The resulting mixture was allowed to stir for 40 h before the solvent was removed by evaporation and the resulting hydrochloride salt was dissolved in DMF (15 mL). To this solution was added di-tert-butyl-dicarbonate (9.44 g, 43.3 mmol) and the reaction mixture was allowed to reach RT whilst stirring. After 16 h the reaction was quenched with water (30 mL) and extracted with EtOAc (3 x 30 mL). The combined extracts were washed with water (5 x 20 mL), dried and evaporated. The crude product was purified by flash
column chromatography (25 : 1, CH₂Cl₂/MeOH) to yield the title compound (1.32 g, 4.48 mmol, 16%) as a yellow oil, which was spectroscopically identical to that reported.\textsuperscript{20} \textsuperscript{1}H NMR (CDCl₃, 300 MHz): \(\delta 6.95\ (d, J = 8.4\ Hz, 2H, ArH₂'\ and\ ArH₆')\); 6.73 (d, \(J = 8.4\ Hz, 2H, ArH₃'\ and\ ArH₅'\)); 6.51 (bs, 1H, OH); 5.05 (d, \(J = 8.4\ Hz, 1H, NH\)); 4.57 – 4.50 (m, 1H, H₂); 3.71 (s, 3H, OCH₃); 3.06 – 2.91 (m, 2H, H₃); 1.42 (s, 9H, C(CH₃)₃). \textsuperscript{13}C NMR (CDCl₃, 75 MHz): \(\delta 172.5, C₁\); 155.2, NCO; 155.1, ArC₄'; 130.2, ArCH₂'\ and\ ArCH₆'; 127.2, ArCH₃'\ and\ ArCH₅'; 115.4, ArCl'; 80.2, C(CH₃)₃; 54.6, C₂; 52.3, OCH₃; 37.6, C₃; 28.3, C(CH₃)₃. MS (Cl, +ve) \textit{m/z} 196 (100%) [MH⁺ (less Boc)]. HRMS calcd for C₁₆H₂₂NO₅ 296.1498, found 296.1503.

5.14.2. Methyl (2S)-3-(4-allyloxyphenyl)-2-tert-butoxycarboxamidopropanoate (68)

![Structure of 68]

To a solution of 67 (1.30 g, 4.39 mmol) in DMF (15 mL) under an N₂ atmosphere was added K₂CO₃ (1.21 g, 8.79 mmol) and the resulting suspension was allowed to stir for 20 min before the addition of allyl bromide (0.76 mL, 8.79 mmol). The reaction mixture was allowed to stir for 16 h before quenching with water (40 mL) and extracting with EtOAc (3 x 40 mL). The combined extracts were washed with water (4 x 40 mL), dried and evaporated to yield the title compound (1.21 g, 3.35 mmol, 76%) as a colourless solid, which was identical to that reported.\textsuperscript{23} Mp 142-144 °C (lit. 145 °C).\textsuperscript{23}

5.14.3. Methyl (2S)-2-(4-allyloxyphenyl)-2-aminopropanoate hydrochloride (69)

![Structure of 69]

To a solution of 68 (1.10 g, 3.28 mmol) in CH₂Cl₂ (5 mL) was added TFA (5 mL) dropwise. After stirring for 16 h the solvent was removed by evaporation and the resulting trifluoroacetate salt was resuspended in methanol (2 mL) and treated with 1M HCl/diethyl ether (2 mL). The solution was stirred for 5 min before the solvent was evaporated to yield the crude hydrochloride salt. The crude product was purified by precipitation (CH₂Cl₂/diethyl ether) to give the title compound (889 mg, 3.28 mmol,
100%) as a white solid. Mp 216-220 °C. 1H NMR (CD3OD, 300 MHz): δ 7.16 (d, J = 8.4 Hz, 2H, ArH2’ and ArH6’); 6.93 (d, J = 8.8 Hz, 2H, ArH3’ and ArH5’); 6.11 – 5.98 (m, 1H, H2’’); 5.38 (dd, J = 17.3, 1.7 Hz, 1H, H3a’’); 5.24 (dd, J = 11.8, 1.3 Hz, 1H, H3b’’); 4.55 – 4.53 (m, 2H, H1’’); 4.26 (t, J = 7.2 Hz 1H, H2); 3.81 (s, 3H, OCH3); 3.23 – 3.06 (m, 2H, H3). 13C NMR (CD3OD, 75 MHz): δ 170.3, C1; 159.6, ArC4’; 139.6, C2’’; 131.4, ArCH2’ and ArCH6’; 127.0, ArCl; 117.4, C3’’; 116.2, ArCH3’ and ArCH5’; 69.7, C1’’; 55.3, C2; 53.6, OCH3; 36.6, C3. MS (CI, +ve) m/z 236 (90%) [MH+]. HRMS calcd for C13H18NO3 236.1287, found 236.1276.

5.14.4. Methyl (2S,5R)-2-(4-allyloxybenzyl)-3-aza-9-(tert-butoxycarboxamido)-5-(9H-9-fluorenymethylcarboxamido)-4-oxononoate (70)

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 69 (200 mg, 0.74 mmol) and (2R)-6-tert-butoxycarboxamido-2-[(9H-9-fluorenymethoxy)carboxamido]hexanoic acid (291 mg, 0.62 mmol) to afford 70 (317 mg, 0.47 mmol, 75%) as a pale yellow solid. IR (neat) νmax 11734, 1684, 1653, 1539, 1510, 1250, 1174, 738. Mp 114-116 °C. 1H NMR (CDCl3, 300 MHz): δ 7.74 (d, J = 7.6 Hz, 2H, ArH1’’’ and ArH8’’’); 7.57 (d, J = 6.3 Hz, 2H, ArH4’’’ and ArH5’’’); 7.38 (t, J = 7.2 Hz, 2H, ArH3’’’ and ArH6’’’); 7.28 (t, J = 7.6 Hz, 2H, ArH2’’ and ArH7’’’); 6.99 (d, J = 7.6 Hz, 2H, ArH2’ and ArH6’); 6.82 (d, J = 7.2 Hz, 1H, NH); 6.76 (d, J = 8.0 Hz, 2H, ArH3’ and ArH5’); 5.99 – 5.95 (m, 1H, H2’’); 5.67 (d, J = 7.2 Hz, 1H, NH); 5.34 (d, J = 16.8 Hz, 1H, H3a’’); 5.23 (d, J = 10.5 Hz, 1H, H3b’’); 4.81 (d, J = 5.8 Hz, 1H, H2); 4.70 (t, J = 5.9 Hz, 1H, H5); 4.38 – 4.34 (m, 3H, OCH2 and OCH3-H9’’’); 4.20 – 4.18 (m, 2H, H1’’); 3.68 (s, 3H, OCH3); 3.05 – 3.04 (m, 4H, OCH2 and OCH3-H9’’’); 1.76 – 1.70 (m, 2H, H6); 1.60 – 1.50 (m, 2H, H7); 1.42 (s, 9H C(CH3)3); 1.23 – 1.21 (m, 2H, H8). 13C NMR (CDCl3, 75 MHz): δ 171.7, C4; 171.2, C1; 157.4, NCO; 155.9, NCO’’’; 143.6, ArC4’; 143.3, ArC8a’’’ and ArC9a’’’; 141.0, ArC4a’’’ and ArC4b’’’;
133.0, C2′′; 130.0, ArCH2′ and ArCH6′; 127.7, ArCH3′′ and ArCH6′′; 127.5, ArCH2′′′ and ArCH7′′′; 126.9, ArCH1′′′ and ArCH8′′′; 124.9, ArCH4′′′ and ArCH5′′′; 119.8, ArC1′; 117.4, C3′′; 114.6, ArCH2′ and ArCH5′; 79.0, C(CH3)3; 68.6, CH2-C9′′′; 67.1, C1′′; 54.6, C5; 53.2, C2; 52.3, OCH3; 47.0, C9′′′; 39.9, C9; 37.0, ArCH2; 32.2, C6; 29.6, C8; 28.4, C(CH3)3; 22.3, C7. MS (ESI, +ve) m/z 708.4 (100%) [MNa+]. HRMS calcd for C39H48N3O8 686.3439, found 686.3441.

5.14.5. Methyl (2S,5R)-2-(4-allyloxybenzyl)-5-amino-3-aza-9-(tert-butoxycarboxamido)-4-oxononanoate (71)

The title compound was synthesized using the general N-Fmoc deprotection procedure (Procedure C), from 70 (198 mg, 0.290 mmol) to yield 71 (131 mg, 0.280 mmol, 97%) as a cream oil. 1H NMR (CDCl3, 300 MHz): δ 7.63 (d, J = 8.4 Hz, 1H, NH); 7.04 (d, J = 8.4 Hz, 2H, ArH2′ and ArH6′); 6.83 (d, J = 8.4 Hz, 2H, ArH3′ and ArH5′); 6.11 – 5.98 (m, 1H, H2′′); 5.40 (dd, J = 1.7, 17.3 Hz, 1H, H3a′′); 5.28 (dd, J = 1.7, 11.8 Hz, 1H, H3b′′); 4.81 – 4.75 (m, 1H, H2); 4.66 (bs, 1H, NH); 4.51 – 4.49 (m, 2H, H1′′); 3.71 (s, 3H, OCH3); 3.32 (dd, J = 4.2, 7.6 Hz, 1H, H5); 2.60 – 2.54 (m, 4H, ArCH2 and H8); 1.81 – 1.25 (m, 6H, H6, H7 and H8); 1.43 (s, 9H, C(CH3)3). 13C NMR (CDCl3, 75 MHz): δ 175.0, C4; 172.3, C1; 157.9, NCO2; 156.3, ArC4′; 133.5, C2′′; 130.4, ArCH2′ and ArCH6′; 128.5, ArC1′; 118.0, C3′′; 115.0, ArCH3′ and ArCH5′; 79.4, C(CH3)3; 69.1, C1′′; 55.3, C2′; 54.4, C5; 52.7, OCH3; 40.6, C9; 37.5, ArCH2; 34.8, C6; 30.3, C8; 28.9, C(CH3)3; 23.1, C7. MS (ESI, +ve) m/z 464.3 (100%) [MH+]. HRMS calcd for C24H38N3O6 464.2761, found 464.2749.
5.14.6. Methyl (2S,5R,8S)-2,8-di(4-allyloxybenzyl)-3,6,9-triaza-5-(4-[tert-butoxycarboxamido]butyl)-4,7,10-trioxoundecanoate (72)

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 71 (220 mg, 0.600 mmol) and 14 (132 mg, 0.500 mmol) to yield 72 (130 mg, 0.180 mmol, 37%) as a white solid. Mp 185-186 °C. $^1$H NMR (CDCl$_3$, 300 MHz): δ 7.36 (d, $J = 7.6$ Hz, 2H, NH); 7.08 (d, $J = 8.4$ Hz, 2H, ArH$^2$ and ArH$^6$′); 7.02 (d, $J = 8.4$ Hz, 2H, ArH$^2$′′ and ArH$^6$′′′); 6.82 (d, $J = 8.4$ Hz, 4H, ArH$^3$′, ArH$^5$′, ArH$^3$′′ and ArH$^5$′′′); 6.63 (d, $J = 7.2$ Hz, 1H, NH); 6.10 – 5.94 (m, 2H, H$^2$′′ and H$^2$′′′′); 5.43 – 5.24 (m, 4H, H$^3$′ and H$^3$′′′′); 4.82 – 4.75 (m, 2H, H2 and H8); 4.62 – 4.58 (m, 1H, H5); 4.91 – 4.44 (m, 4H, H1′ and H1′′′′); 3.67 (s, 3H, OCH$_3$); 3.04 – 2.89 (m, 6H, Ar′-CH$_2$, Ar′′′-CH$_2$ and H4″); 1.93 (s, 3H, H11); 1.43 (s, 9H, C(CH$_3$)$_3$); 1.37 – 1.26 (m, 6H, H1′′′, H2′′ and H3′′). $^{13}$C NMR (CDCl$_3$, 75 MHz): δ 172.2, C7; 170.8, C4; 170.6, C1; 170.1, C10; 157.4, NCO$_2$; 157.3, ArC4′; 155.8, ArC4′′; 133.0, C2′′ and C2′′′′; 130.1, ArCH2′ and ArCH6′; 130.1, ArCH2′′′ and ArCH6′′′; 128.4, ArC1′′′′; 128.0, ArC1′; 117.5, C3′′ and C3′′′; 114.7, ArCH3′ and ArCH5′; 114.6, ArCH3′′′ and ArCH5′′′; 78.9, C(CH$_3$)$_3$; 68.7, C1′; 68.7, C1′′′; 55.1, C2; 53.3, C5; 52.6, OCH$_3$; 52.3, C8; 40.1, C4′′; 37.5, Ar′CH$_2$; 37.2, Ar′′′CH$_2$; 31.9, C1′′′; 29.7, C3′′′; 28.5, C(CH$_3$)$_3$; 23.0, C11; 22.1, C2′. MS (ESI, +ve) m/z 709.3 (100%) [MH$^+$]. HRMS calcd for C$_{38}$H$_{52}$N$_4$O$_7$ 709.3813, found 709.3793.
5.14.7. Methyl (2S,5R,8S)-2,8-di(4-allyloxybenzyl)-5-(4-aminobutyl)-3,6,9-triaza-4,7,10-trioxoundecanoate hydrochloride (73)

The title compound was synthesized using the general \(N\)-Boc deprotection procedure (Procedure A), from 72 (33 mg, 0.051 mmol) to yield 73 (18 mg, 0.028 mmol, 55%) as a yellow solid. Mp 186-190 °C. \(^1H\) NMR (CD\(_3\)OD, 500 MHz): \(\delta\) 7.50 (bs, 1H, NH); 7.41 (bs, 4H, ArH); 7.26 – 7.10 (m, 4H, ArH); 6.46 – 6.30 (m, 2H, H2” and H2”’); 5.80 – 5.64 (m, 4H, H3” and H3”’); 4.99 – 4.70 (m, 6H, H2, H8, H1” and H1”’); 4.55 – 4.42 (m, 1H, H5); 3.70 (s, 3H, OCH\(_3\)); 3.42 – 3.18 (bs, 6H, H4””, Ar’-CH\(_2\) and Ar’’-CH\(_2\)); 2.27 (s, 3H, OCH\(_3\)); 1.33 (m, 2H, H2”). \(^{13}\)C NMR (CD\(_3\)OD, 125 MHz): \(\delta\) 173.9, C7; 173.7, C4; 173.1, C1; 172.0, C10; 158.5, ArC4” and ArC4”’; 134.7, C2” and C2”’; 131.3, ArCH2’ and ArCH6’; 131.1, ArCH2”’ and ArCH6””; 130.0, ArC1””; 129.8, ArC1’; 117.8, C3”; 117.5, C3”’; 115.8, ArCH3’ and ArCH5’; 115.6, ArCH3”’ and ArCH5””; 70.0, C1”; 69.8, C1””; 57.2, C2; 55.2, C5; 53.8, OCH\(_3\); 52.4, C8; 40.7, C4””; 37.4, Ar’-CH\(_2\); 37.1, Ar’’-CH\(_2\); 31.7, C1””; 27.9, C3”’; 23.2, C11; 22.2, C2”’. MS (ESI, +ve) \(m/z\) 609.7 (100%) [MH\(^+\)]. HRMS calcd for C\(_{33}\)H\(_{45}\)N\(_4\)O\(_7\) 609.3288, found 609.3301.


The title compound was prepared using the general procedure for olefin metathesis (Procedure D), from 72 (56 mg, 0.079 mmol) to yield 74 (22 mg, 0.032 mmol, 41%) as a brown solid. Mp 190-194 °C. \(^1H\) NMR (CDCl\(_3\), 300 MHz): \(\delta\) 7.13 – 6.73 (m, 8H, ArH); 6.02 – 5.83 (m, 2H, H4 and H5); 5.02 – 4.94 (m, 1H, H10); 4.86 – 4.76 (m, 1H, H16); 4.61 – 4.50 (m, 4H, H3 and H6); 4.18 – 4.10 (m, 1H, H13); 3.74 (s, 3H, OCH\(_3\)); 3.30 – 3.25 (m, 2H, H4’); 3.01 – 2.52 (m, 4H, H9 and H17); 2.27 (s, 3H, OCH\(_3\)); 2.05 – 1.65 (m, 4H, H1’ and H3’).
5.14.9. (10S,13R,16S,4E/Z)-16-Acetamido-13-(4-aminobutyl)-11,14-diaza-10-methoxycarbonyl-2,7-dioxo-12,15-dioxa-1(1,4),8(4,1)-diphenylecycloheptadecaphane-4-ene (75)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 74 (22 mg, 0.038 mmol) to yield 75 (20 mg, 0.034 mg, 89%) as a yellow solid. Mp >260 °C. \(^1\)H NMR (CD\(_3\)OD, 300 MHz): \(\delta\) 8.16 – 8.03 (m, 3H, NH); 7.13 – 7.02 (m, 4H, ArH); 6.83 – 6.70 (m, 4H, ArH); 6.04 – 5.93 (m, 2H, H4 and H5); 4.66 (bs, 4H, H3 and H6); 4.60 – 4.50 (m, 1H, H10); 4.42 – 4.36 (m, 1H, H16); 4.16 – 4.06 (m, 1H, H13); 3.75 – 3.67 (m, 3H, OCH\(_3\)); 3.09 – 2.73 (m, 6H, H9, H17 and H4'); 1.92 (s, 3H, NCOCH\(_3\)); 1.52 – 1.28 (m, 4H, H1' and H2'); 0.98 – 0.75 (m, 2H, H3'). \(^{13}\)C NMR (CD\(_3\)OD, 75 MHz): \(\delta\) 171.1, C12; 170.3, NCOCH\(_3\); 169.9, 10-CO; 169.4, C15; 157.3, 1-ArC1; 157.13, 8-ArC1; 130.9, 8-ArC4; 130.5, 8-ArCH2 and 8-ArCH6; 130.1, 1-ArCH2 and 1-ArCH6; 128.8, C4; 128.4, C5; 126.3, 1-ArCH4; 115.5, 8-ArCH3 and 8-ArCH5; 114.4, 1-ArCH3 and 1-ArCH5; 68.6, C3; 67.9, C6; 54.8, C16; 52.6, C13; 52.4, OCH\(_3\); 52.2, C10; 39.5, C4'; 38.0, C9'; 35.8, C17; 34.9, C1'; 32.0, C3'; 26.5, 16-NCOCH\(_3\); 23.3, C2'. MS (ESI, -ve) \(m/z\) 581.6 (100%) [MH\(^+\)]. HRMS calcd for C\(_{31}\)H\(_{41}\)N\(_3\)O\(_7\) 581.2975, found 581.2980.
5.15. Synthesis of L-Tyrosine Acyclic Dipeptides Hydrochloride Salts (Scheme 10)

5.15.1. Methyl (2S,5S)-2-(4-allyloxybenzyl)-3-aza-9-(tert-butoxycarboxamido)-5-(9H-9-fluorenylmethylcarboxamido)-4-oxononanoate (76)

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 69 (200 mg, 0.74 mmol) and (2S)-6-tert-butoxycarboxamido-2-[(9H-9-fluorenylmethyloxy)carboxamido]hexanoic acid (291 mg, 0.62 mmol) to afford 76 (328 mg, 0.48 mmol, 77%) as a pale yellow solid. Mp 52-54 °C. 

1H NMR (CDCl₃, 300 MHz): δ 7.75 (d, J = 7.5 Hz, 2H, ArH₁′ and ArH₈′); 7.59 (d, J = 6.9 Hz, 2H, ArH₄′ and ArH₅′); 7.39 (t, J = 7.5 Hz, 2H, ArH₃′ and ArH₆′); 7.30 (dd, J = 1.2, 7.5 Hz, 2H, ArH₃ and ArH₅); 6.98 (d, J = 7.2 Hz, 1H, NH); 6.02 – 5.92 (m, 1H, H₂′); 5.56 (d, J = 6.9 Hz, 1H, NH); 5.35 (dd, J = 1.5, 17.1 Hz, 1H, H₃′); 5.24 (dd, J = 1.5, 10.8 Hz, 1H, H₃b′); 4.81 (dd, J = 6.0, 13.8 Hz, 1H, H2); 4.70 (t, J = 5.1 Hz, 1H, H5); 4.43 – 4.35 (m, 4H, H₁′ and OCH₂-H₉′); 4.20 (d, J = 7.2 Hz, 2H, H1′); 3.70 (s, 3H, OCH₃); 3.10 – 3.02 (m, 4H, H₉ and ArCH₂); 1.83 – 1.78 (m, 2H, H6); 1.66 – 1.64 (m, 2H, H7); 1.43 (s, 9H C(CH₃)₃); 1.36 – 1.33 (m, 2H, H8). 13C NMR (CDCl₃, 75 MHz): δ 171.7, C₄; 171.3, C₁; 157.7, NCO₂; 156.1, NCO₂′; 143.7, ArC₄; 141.2, ArC₈a′′ and ArC₉a′′; 141.0, ArC₄a′′ and ArC₄b′′; 133.1, C₂′; 130.1, ArCH₂ and ArCH₆; 127.7, ArCH₃′′ and ArCH₆′′; 127.5, ArCH₂′′ and ArCH₇′′; 127.0, ArCH₁′′ and ArCH₈′′; 125.0, ArCH₄′′ and ArCH₅′′; 119.9, ArC₁; 117.6, C₃′; 114.7, ArCH₃′ and ArCH₅; 79.0, C(CH₃)₃; 68.6, CH₂-C₉′′; 67.1, C₁′′; 54.6, C₅; 53.3, C₂; 52.3, OCH₃; 47.0, C₉′; 39.8, C₉; 36.8, ArCH₂; 32.0, C₆; 29.5, C₈; 28.4, C(CH₃)₃; 22.2, C₇. MS (ESI, +ve) m/z 686.4 (10%), 708.4 (100%) [MNa⁺]. HRMS calcd for C₃₉H₄₈N₅O₆ 686.3441, found 686.3454.
5.15.2. Methyl (2S,5R)-2-(4-allyloxybenzyl)-3-aza-5-(9H-9-fluorenylmethylcarboxamido)-4-oxo-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]nonanoate (77)

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 69 (200 mg, 0.74 mmol) and (2R)-2-(9H-9-fluorenylcarboxamido)-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]pentanoic acid (411 mg, 0.62 mmol) to afford 77 (386 mg, 0.44 mmol, 71%) as a pale yellow solid. Mp 86 °C. 1H NMR (CDCl₃, 300 MHz): δ 7.70 (d, J = 7.5 Hz, 2H, ArH₁″″ and ArH₈″″); 7.52 (d, J = 8.7 Hz, 2H, ArH₄″″ and ArH₅″″); 7.33 (dd, J = 7.8, 7.8 Hz, 2H, ArH₃″″ and ArH₆″″); 7.23 – 7.16 (m, 2H, ArH₂″″ and ArH₇″″); 7.23 – 7.16 (m, 2H, ArH₂″″ and ArH₇″″); 7.16 (d, J = 8.1 Hz, 2H, ArH₂′ and ArH₆′); 6.68 (d, J = 8.1 Hz, 2H, ArH₃′′ and ArH₅′′); 6.32 (bs, 2H, NH); 6.15 (d, J = 8.1 Hz, 1H , NH); 5.97 – 5.84 (m, 1H, H₂′″); 5.29 (d, J = 17.4, 1H, H₃₆″″); 5.18 (d, J = 10.5 Hz, 1H, H₃₆″″); 4.71 (dd, J = 7.8, 13.5 Hz, 1H, H₂); 4.31 – 4.24 (m, 5H, H₁″″, OCH₂-H₉″″ and H₅); 4.15 – 4.04 (m, 1H, H₉″″); 3.62 (s, 3H, OCH₃); 3.23 - 3.13 (m, 2H, ArCH₂); 2.58 (s, 3H, 7‴‴″-CH₃); 2.58 – 2.52 (m, 2H, H₄‴‴″); 2.55 (s, 3H, 5‴‴″-CH₃); 2.06 (s, 3H, 8‴‴″-CH₃); 1.71 (t, J = 6.6 Hz, 2H, H₃‴‴″); 1.62 – 1.57 (m, 2H, H₆); 1.50 – 1.42 (m, 2H, H₇); 1.24 (s, 6H, 2 x 2‴‴″-CH₃). 13C NMR (CDCl₃, 75 MHz): δ 172.1, C₁; 172.0, C₄; 157.4, ArC₆‴‴″; 156.8, NCO₂; 156.2, ArC₈a‴‴″; 153.6, CN₃; 143.7, ArC⁴; 141.2, ArC₈a‴‴″ and ArC₉a‴‴″; 141.0, ArC₄a‴‴″ and ArC₄b‴‴″; 135.4, ArC₇‴‴″; 134.8, ArC⁵‴‴″; 133.1, C₂‴‴″; 130.1, ArCH₂′ and ArCH₆′; 128.7, ArC₈‴‴″; 128.3, ArCH₃‴‴″ and ArCH₆‴‴″; 127.6, ArCH²‴‴″ and ArCH⁷‴‴″; 127.0, ArCH₁‴‴″ and ArCH₈‴‴″; 125.1, ArCH₄‴‴″ and ArCH₅‴‴″; 119.8, ArC₁‴‴″; 117.9, ArC₄a‴‴″; 117.5, C₃‴‴″; 114.6, ArCH₃′ and ArCH₅′; 73.6, C₂‴‴″; 68.6, C₁‴‴″; 67.2, CH₂-C₉‴‴″; 60.4, C₉‴‴″; 53.7, C₅; 52.3, OCH₃; 46.9, C₂; 40.3, C₈; 36.6, ArCH₂; 32.6, C₄‴‴″; 26.7, 2‴‴″-CH₃; 21.3, C₆; 21.0, C₃‴‴″; 18.5, C₇; 17.5, 7‴‴″-CH₃; 14.2, 5‴‴″-CH₃; 12.0, 8‴‴″-CH₃. MS (ESI, +ve) m/z 880 (100%), [MH⁺]. HRMS calcd for C₄₈H₅₈N₉O₉S 880.3955, found 880.3944.
5.15.3. Methyl (2S, 5S)-2-(4-allyloxybenzyl)-3-aza-5-(9H-9-fluorenlymethyldi-oxo-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]nonanoate (78)

The title compound was synthesized using the general peptide coupling procedure (Procedure B), from 69 (200 mg, 0.74 mmol) and (2S)-2-(9H-9-fluorenlymethyloxycarboxamido)-8-[(2,2,5,7,8-pentamethyl-3,4-dihydro-2H-6-chromenylsulfonyl)guanidino]pentanoic acid (411 mg, 0.62 mmol) to afford 78 (460 mg, 0.52 mmol, 84%) as a pale yellow solid. Mp 88-90 °C.

$^1$H NMR (CDCl$_3$, 300 MHz): δ 7.70 (d, $J = 7.8$ Hz, 2H, ArH$1'''$ and ArH$8'''$); 7.53 (d, $J = 6.6$ Hz, 2H, ArH$4'''$ and ArH$5'''$); 7.40 – 7.25 (m, 2H, ArH$3'''$ and ArH$6'''$); 7.21 – 7.18 (m, 2H, ArH$2'''$ and ArH$7'''$); 6.98 (d, $J = 8.1$ Hz, 2H, ArH$2'$ and ArH$6'$); 6.34 (bs, 2H, NH); 6.13 (bs, 1H , NH); 5.99 – 5.87 (m, 1H, H$2''$); 5.30 (dd, $J = 1.5$, 17.1, 1H, H$_3_a''$); 5.19 (d, $J = 1.5$, 10.5 Hz, 1H, H$_3_b''$); 4.72 – 4.65 (m, 1H, H$_2$); 4.35 – 4.26 (m, 5H, H$_1'''$, OCH$_3$-H$9'''$ and H$_5$); 4.15 – 4.06 (m, 1H, H$9'''$); 3.60 (s, 3H, OCH$_3$); 3.26 – 3.16 (m, 2H, H$_8$); 3.04 – 2.88 (m, 2H, ArCH$_2$); 2.58 (s, 3H, 7'''-CH$_3$); 2.56 – 2.54 (m, 2H, H$4'''$); 2.54 (s, 3H, 5'''-CH$_3$); 2.07 (s, 3H, 8'''-CH$_3$); 1.85 – 1.78 (m, 2H, H$6$); 1.72 (t, $J = 6.9$ Hz, 2H, H$3'''$); 1.58 – 1.52 (m, 2H, H$7$); 1.25 (s, 6H, 2 x 2'''-CH$_3$). $^{13}$C NMR (CDCl$_3$, 75 MHz): δ 172.2; C1; 172.0, C4; 157.4, ArC6'''$'''; 156.8, NCO$_2$; 156.3, ArC8a'''$'''; 153.6, CN$_3$; 143.8, ArC5$'$; 141.1, ArC8a''' and ArC9a'''$'''; 141.0, ArC4a''' and ArC4b'''$'''; 135.4, ArC7'''$'''; 134.8, ArC5'''$'''; 133.2, C2$'''; 130.1, ArCH2' and ArCH6'; 128.7, ArC8'''$'''; 128.2, ArCH3''' and ArCH6'''$'''; 127.6, ArCH2''' and ArCH7'''$'''; 127.0, ArCH1''' and ArCH8'''$'''; 125.2, ArCH4''' and ArCH5'''$'''; 119.8, ArC1$'$; 117.9, ArC4a'''$'''; 117.5, C3$'''$; 114.6, ArCH3' and ArCH5'; 73.6, C2'''$'''; 68.5, C1$'''; 67.1, CH$_2$-C9'''$'''; 60.4, C9'''$'''; 54.0, C5; 52.2, OCH$_3$; 46.9, C2; 40.4, C8; 36.5, ArCH$_2$; 32.6, C4'''$'''; 26.7, 2'''-CH$_3$; 25.1, C6;
21.3, C3‴ˮ; 18.5, C7; 17.5, 7‴ˮ-CH; 14.2, 5‴ˮ-CH3; 12.0, 8‴ˮ-CH3. MS (ESI, +ve) m/z 880 (30%), 902 (100%) [MNa]+. HRMS calcd for C_{38}H_{58}N_{9}O_{8}S 880.3955, found 880.3943.

5.15.4. Methyl (2S,5R)-2-(4-allyloxybenzyl)-9-amino-3-aza-5-(9H-9-fluorenymethyloxycarboxamido)-4-oxononanoate hydrochloride (79)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 70 (132 mg, 0.19 mmol) to yield 79 (92 mg, 0.15 mmol, 79%) as a white solid. Mp 162-170 °C. 1H NMR (CD_{3}OD, 300 MHz): δ 8.02 (d, J = 8.0 Hz, 1H, NH); 7.79 (d, J = 7.6 Hz, 2H, ArH1‴ˮ and ArH8‴ˮ); 7.70 (d, J = 7.6 Hz, 2H, ArH1‴ˮ and ArH8‴ˮ); 7.64 (t, J = 8.4 Hz, 2H, ArH4‴ˮ and ArH5‴ˮ); 7.38 (t, J = 7.2 Hz, 2H, ArH3‴ˮ and ArH6‴ˮ); 7.41 – 7.26 (m, 2H, ArH2‴ˮ and ArH7‴ˮ); 7.04 (d, J = 8.4 Hz, 2H, ArH2′ and ArH6′); 6.73 (d, J = 8.4 Hz, 2H, ArH3′ and ArH5′); 6.00 – 5.87 (m, 1H, H2′); 5.28 (d, J = 17.3 Hz, 1H, H3′); 5.16 (d, J = 10.5 Hz, 1H, H3‴ˮ); 4.62 (dt, J = 5.0, 8.8 Hz, 1H, H5); 4.35 – 4.32 (m, 4H, H1′ and OCH_{2}-H9‴ˮ); 4.19 (t, J = 6.7 Hz, 1H, H9‴ˮ); 4.07 (dd, J = 5.1, 8.0 Hz, 1H, H2); 3.70 (s, 3H, OCH_{3}); 3.14 – 3.07 (m, 2H, H9); 2.93 – 2.82 (m, 2H, ArCH_{2}); 1.63 – 1.53 (m, 4H, H6 and H7); 1.33 – 1.28 (m, 2H, H8). 13C NMR (CD_{3}OD, 75 MHz): δ 174.2, C4; 173.2, C1; 158.1, NCO_{2}; 145.1, ArC4′; 145.0, ArC8a‴ˮ and ArC9a‴ˮ; 142.4, ArC4a‴ˮ and ArC4b‴ˮ; 134.7, C2‴ˮ; 131.1, ArCH2′ and ArCH6′; 129.8, ArCH3‴ˮ and ArCH6‴ˮ; 128.7, ArCH2′′ and ArCH7′′; 128.7, ArCH1‴ˮ and ArCH8‴ˮ; 128.1, ArCH4′′ and ArCH5′′; 120.8, ArC1′; 117.3, C3′; 115.6, ArCH3′ and ArCH5′; 69.6, CH_{2}-C9‴ˮ; 68.0, C1″; 56.1, C5; 55.2, C2; 55.1, OCH_{3}; 52.8, C9‴ˮ; 40.5, C9; 37.3, ArCH_{2}; 32.6, C6; 28.1, C8; 23.6, C7. MS (ESI, +ve) m/z 586.3 (100%) [MH⁺]. HRMS calcd for C_{34}H_{40}N_{3}O_{6} 586.2917, found 586.2935.
5.15.5. Methyl (2S,5S)-2-(4-allyloxybenzyl)-9-amino-3-aza-5-(9H-9-fluorenylmethoxy)carboxamido)-4-oxononanoate hydrochloride (80)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 76 (73 mg, 0.106 mmol) to yield 80 (48 mg, 0.07 mmol, 68%) as a white solid. Mp 160-168 °C. 1H NMR (CD3OD, 300 MHz): δ 7.79 (d, J = 7.2 Hz, 2H, ArH1′′′ and ArH8′′′); 7.65 (d, J = 7.2 Hz, 2H, ArH4′′′ and ArH5′′′); 7.39 (t, J = 7.2 Hz, 2H, ArH3′′′ and ArH6′′′); 7.29 (t, J = 7.2 Hz, 2H, ArH2′′′ and ArH7′′′); 7.07 (d, J = 8.4 Hz, 2H, ArH2′ and ArH6′); 6.77 (d, J = 8.4 Hz, 2H, ArH3′ and ArH5′); 6.01 – 5.88 (m, 1H, OCH2-H9′′′); 4.67 – 4.59 (m, 1H, H5); 4.40 – 4.30 (m, 4H, H1′′ and OCH3-H9′′′); 4.22 – 4.18 (m, 1H, H9′′′); 4.12 – 4.07 (m, 1H, H2); 3.67 (s, 3H, OCH3); 3.11 – 3.04 (m, 2H, H9); 2.97 – 2.87 (m, 2H, ArCH2); 1.73 – 1.60 (m, 4H, H6 and H7); 1.45 – 1.30 (m, 2H, H8). 13C NMR (CD3OD, 125 MHz): δ 174.4, C4; 173.3, C1; 158.1, NCO2; 145.2, ArC4′′′; 145.0, ArC8a′′′ and ArC9a′′′; 142.4, ArC4a′′′ and ArC4b′′′; 134.7, C2′′; 131.2, ArCH2′ and ArCH6; 128.8, ArCH3′′′ and ArCH6′′′; 128.6, ArCH2′′′ and ArCH7′′′; 128.1, ArCH1′′′ and ArCH8′′′; 126.2, ArCH4′′′ and ArCH5′′′; 120.9, ArC1′; 117.4, C3′; 115.6, ArCH′ and ArCH5′; 69.6, _CH2-C9′′′; 68.0, C1′′; 55.9, C5; 55.2, C2; 55.1, OCH3; 52.8, C9′′′; 40.4, C9; 37.3, ArCH2; 32.4, C6; 27.9, C8; 23.6, C7. MS (ESI, +ve) m/z 586.7 (100%) [MH+]. HRMS calcd for C32H40N3O5 586.2917, found 586.2925.

5.15.6. Methyl (2S,5R)-2-(4-allyloxybenzyl)-3-aza-5-(9H-9-fluorenylmethoxy)carboxamido)-8-guanidino-4-oxononanoate hydrochloride (81)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 77 (62 mg, 0.068 mmol) to yield 81 (35 mg, 0.054 mmol, 79%) as a white solid. Mp 158-162 °C. 1H NMR (CD3OD, 300 MHz): δ 7.78 (d, J =
7.5 Hz, 2H, ArH1” and ArH8”); 7.64 (d, J = 8.1 Hz, 2H, ArH4” and ArH5”); 7.38 (t, J = 6.9 Hz, 2H, ArH3” and ArH6”); 7.40 – 7.26 (m, 2H, ArH2” and ArH7”); 7.04 (d, J = 8.4 Hz, 2H, ArH2’ and ArH6’); 6.72 (d, J = 8.4 Hz, 2H, ArH3’ and ArH5’); 6.00 – 5.86 (m, 1H, H2”); 5.28 (d, J = 17.1, 1H, H3’a’); 5.16 (d, J = 10.8 Hz, 1H, H2’); 4.61 – 4.32 (m, 4H, H1’” and OCH2-H9’’”); 4.21 – 4.16 (m, 1H, H5); 4.08 – 4.06 (m, 1H, H9’’’); 3.69 (s, 3H, OCH3); 3.12 – 3.07 (m, 2H, H8); 2.94 – 2.86 (m, 2H, ArCH2); 1.69 – 1.59 (m, 2H, H6’); 1.57 – 1.43 (m, 2H, H7’).

13C NMR (CD3OD, 75 MHz): δ 172.0, C4; 171.8, C1 156.8, CN3; 156.6, ArC4’a’; 143.8, ArC8’a’” and ArC9’a’”); 140.8, ArC4’a” and ArC4b’”; 135.5, C2’”; 130.1, ArC1’; 129.6, ArCH4’” and ArCH5’”; 127.7, ArCH2’” and ArCH7’”; 127.2, ArCH1’” and ArCH8’”; 125.4, ArCH3’” and ArCH6’”; 120.2, ArCH2’ and ArCH6’; 117.3, C3’”; 114.3, ArCH3’ and ArCH5’; 68.0, C1’”; 65.8, CH2-C9’’”; 59.3, C9’’”; 54.0, C5; 52.0, OCH3; 46.7, C2; 40.3, C8; 36.1, ArCH2; 29.1, C6; 24.9, C7. MS (ESI, +ve) m/z 614.6 (100%) [MH+]. HRMS calcd for C34H40N5O6 614.2979, found 614.3007.

5.15.7. Methyl (2S,5S)-2-(4-allyloxybenzyl)-3-aza-5-(9H-9-fluorenylmethylcarboxamido)-8-guanidino-4-oxononoate hydrochloride (82)

The title compound was synthesized using the general N-Boc deprotection procedure (Procedure A), from 78 (93 mg, 0.10 mmol) to yield 82 (54 mg, 0.083 mmol, 83%) as a white solid. Mp 170-175 °C. 1H NMR (CD3OD, 300 MHz): δ 7.90 (d, J = 7.2 Hz, 2H, ArH1’” and ArH8’’’); 7.75 – 7.70 (m, 2H, ArH4’” and ArH5’’’); 7.45 – 7.31 (m, 4H, ArH3’ and ArH6’); 7.14 (d, J = 8.1 Hz, 2H, ArH2’ and ArH6’); 6.82 (d, J = 8.1 Hz, 2H, ArH3’ and ArH5’); 6.05 – 5.92 (m, 1H, H2’); 5.34 (d, J = 17.1, 1H, H3’a’); 5.21 (d, J = 10.8 Hz, 1H, H3’’’); 4.47 – 4.42 (m, 2H, H2 and H5); 4.29 – 4.24 (m, 4H, H1’” and OCH2-H9’’’); 4.09 – 4.07 (m, 1H, H9’’’); 3.59 (s, 3H, OCH3); 3.19 – 3.12 (m, 2H, H8); 3.03 – 2.92 (m, 2H, ArCH2); 1.70 – 1.60 (m,
$2H, H6$; 1.54 – 1.52 (m, 2H, $H7$). $^{13}$C NMR (CD$_3$OD, 75 MHz): δ 171.9, C4; 171.8, C1 157.0, CN$_3$; 156.6, ArC4′; 155.9, NCO$_2$; 143.9, ArC8a′′ and ArC9a′′′; 140.7, ArC4a′′ and ArC4b′′′; 133.8, C2′; 130.1, ArC1′; 129.0, ArCH4′′ and ArCH5′′; 127.7, ArCH2′′ and ArCH7′′; 127.1, ArCH1′′ and ArCH8′′; 125.4, ArCH3′′ and ArCH6′′; 120.1, ArCH2′ and ArCH6′; 117.3, C3′′; 114.4, ArCH3′ and ArCH5′; 68.1, C1′′; 65.7, CH$_2$-C9′′; 59.3, C9′′; 53.9, C5; 51.8, OCH$_3$; 46.7, C2; 40.3, C8; 35.7, ArCH$_2$; 29.0, C6; 25.1, C7. MS ( ESI, +ve) m/z 614.8 (100%) [M$^+$]. HRMS calcd for C$_{34}$H$_{40}$N$_5$O$_6$ 614.2979, found 614.2972.

5.16. Antibacterial Testing

Anti-bacterial testing against Staphylococcus aureus ATCC6538P was performed at Avexa Ltd, Melbourne, Australia.

Assay procedure: A standardised inoculate for assays was prepared in 1/10 dilution of seed culture. To a 96 well microtitre plate was added 50 µL of liquid medium [Mueller-Hinton broth medium (MHB) and Mueller-Hinton agar medium (MHA)]. The peptoid compounds were dissolved in a 50% MeOH/H$_2$O solution for the final concentration of 1 mg/mL. Test solution (50 µL) was added into the top row of the plate. A dilution series was continued until it reached the last row of the plate the excess was discarded. The plates (2 peptoid samples were tested per plate) were incubated at 37 °C and shaken at 100 rpm for 18 h.

Acknowledgements

TPB would like to thank the Australian Research Council (ARC) for a PhD scholarship. The authors would like to thank Sarah Murphy for technical assistance.

References and Notes


16. The ECDI peptide coupling reaction conditions were initially performed in the absence of HOBT and led to epimerization. This only became evident when the peptide chain was three residues long, and was observed as a doubling up of some signals in the 1H NMR spectrum of compounds featuring L-Lys as the cationic residue. The inclusion of HOBT resulted in no epimerization being observed. This occurred in the synthesis of cyclic peptides 11, 44 and 62-63 and their associated cyclic and acyclic precursors. The majority of our cyclic peptides (45-49) and their associated cyclic and acyclic precursors had only 1 epimer present. Given the final outcome of the anti-bacterial activity, we concluded that the presence of the epimer in our initial examples was unlikely to affect the activity and these were not resynthesised.


