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the distillate conductivity steadily decreased to 18 µS/cm. The stable water flux, decreasing 

distillate conductivity, and the SEM analysis of the membrane surface confirmed the absence 

of membrane scaling at concentration factor of 10. Indeed, very few small crystals were 

observed on the membrane surface at the end of the DCMD experiment at the concentration 

factor of 10 (Figure 8.7). 
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Figure 8.6. Water flux, feed and distillate conductivities as functions of operating time during 
the DCMD of the synthetic CSG RO brine at different operation modes: (A) concentrating 
with concentration factor increased from 8 to 10, (B) constant concentration factor of 10, and 
(C) concentrating with concentration factor increased from 10 to 11. Operating conditions: 
Tfeed = 45 C, Tdistillate = 25 C, Ffeed = Fdistillate = 1 L/min (i.e. Re = 244). 

�� ��

Figure 8.7. SEM images of (A) a virgin membrane and (B) the membrane after 6 h DCMD 
treatment with the synthetic CSG RO brine at concentration factor of 10. 

Operating the DCMD process with CSG RO brine at concentration factor exceeding 10 

could result in scale formation on the membrane and, hence, the deterioration in the 

(B) (A) 
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performance of the DCMD process. Membrane scaling occurred before the process reached 

the concentration factor of 11 (i.e. determined by monitoring the feed conductivity). Given 

the occurrence of membrane scaling, the system water flux decreased to almost zero while 

the distillate conductivity sharply increased (Figure 8.6). 

It is noteworthy that membrane scaling in DCMD of the synthetic CSG RO brine started 

at the concentration factor lower than the calculated value for the saturation point of NaHCO3 

(i.e. 11.3 at feed temperature of 45 C [192]). This might be attributed to the temperature-

proportional solubility of NaHCO3 [192] and both concentration and temperature polarisation 

effects of DCMD. Concentration polarisation increases the concentration of NaHCO3, 

whereas temperature polarisation reduces the temperature of the feed (i.e. hence reducing 

NaHCO3 solubility) at the membrane surface compared to the bulk feed solution, thus 

facilitating membrane scaling. The drop in the temperature (i.e. 4 C) and the increase in the 

concentration of the brine along the feed channel (i.e. 35 cm long) could also facilitate the 

onset of membrane scaling. This effect is signified for pilot or large-scale MD processes, 

where membrane modules having much longer feed channels are employed [108, 110, 145]. 

Results reported in Figure 8.6 demonstrate the feasibility of MD for producing fresh water 

and simultaneously concentrating CSG RO brine prior to the ME process for NaOH 

production. A stable DCMD operation of the synthetic CSG RO brine at 90% water recovery 

(i.e. concentration factor of 10) without any observable membrane scaling was achieved. 

Given 75% water recovery of the RO process [112], the combined treatment chain 

UF/RO/MD (i.e. including brine purification prior to MD) can extract 97.5% fresh water 

from the CSG produced water. The concentrated brine following the MD process, which is 

only 2.5% of the initial volume of CSG produced water, can be fed to ME for the production 

of NaOH. 

 ME treatment of MD brine for NaOH production 

8.3.2.1. Influence of current density on the performance of the ME system 

Current density exerted a strong influence on the performance of the ME process with the 

MD brine. Elevating current density accelerated the movement of ions to the electrodes and 

boosted the electrolysis, hence increasing both the process NaOH production and desalination 

efficiency (i.e. represented by the reduction in brine concentration) (Figure 8.8). At current 

density of 900 A/m2, the single-pass ME process could produce a NaOH solution of 1.15 M 

(4.6% w/w), and desalinate 75 g/L of salts from the MD brine feed. These obtained values are 
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higher than those reported by Simon et al. [158] under the same operating conditions (i.e. 

current density and circulation flow rates). It is noted that the current study used the feed 

brine at a higher temperature and concentration compared to those in Simon et al. [158], thus 

achieving a higher process efficiency than previously reported values [158, 186]. 
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Figure 8.8. Produced NaOH concentration, diluted brine temperature, and brine concentration 
reduction as functions of current density in the ME process of the MD brine. Operating 
conditions: cathode temperature Tcathode = 25 C, anode temperature Tanode = 45 C, anode and 
cathode circulation flow rates = 0.4 L/h (cross-flow velocities of 5×10-4 m/s). Error bars 
represent the standard deviation of duplicate experiments. 

Elevating current density also increased the temperature of the diluted brine (Figure 8.8). 

As reported by Simon et al. [158], the current efficiency of the ME test unit was about 50% in 

the investigated current density range, meaning that half of the supplied energy was 

converted into heat. At a low current density, the generated heat was smaller than the heat 

loss to the cathode; thus, the temperature of diluted brine was lower than the brine feed 

temperature (i.e. 45 C). At current densities above 600 A/m2, the generated heat outweighed 

the heat loss, thus heating the diluted brine. The diluted brine temperature nearly reached the 

maximum allowable operating temperature of the ME process (i.e. 80 C) at current density 

of 900 A/m2. 

8.3.2.2. Influence of circulation flow rates on the performance of the ME system 

Unlike current density, increasing anode and cathode circulation flow rates reduced the 

process NaOH production and desalination efficiency (Figure 8.9). When circulation flow 
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rates increased from 0.30 to 0.85 L/h (i.e. cross-flow velocity increased from 3.75×10-4 to 

6.25×10-4 m/s), the concentration of produced NaOH and the reduction in brine concentration 

decreased from 1.40 to 0.65 M and 75 to 15 g/L, respectively. Shortened brine retention time 

inside the electrolyser resulted from increasing circulation flow rates can be attributed for 

these reductions. Shortening the brine retention time also reduced the heat loss from the 

anode to the cathode. As a result, the diluted brine temperature rose with increased circulation 

flow rates. However, the influence of circulation flow rates on diluted brine temperature was 

not as strong as that of current density. At the highest investigated circulation flow rate, the 

diluted brine temperature was well below the maximum limit (i.e. 55 compared to 80 C). 
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Figure 8.9. Produced NaOH concentration, diluted brine temperature, and brine concentration 
reduction as functions of circulation flow rates in the ME process of the MD brine. Operating 
conditions: cathode temperature Tcathode = 25 C, anode temperature Tanode = 45 C; current 
density 600 A/m2. Error bars represent standard deviation of duplicate experiments. 

8.3.2.3. Auxiliary thermal energy requirement and co-generation by ME 

The influences of current density and circulation flow rates on the specific auxiliary 

thermal energy requirement () and specific thermal energy co-generation () of the ME 

process with the MD brine are shown in Figure 8.10. Increasing current density increased the 

NaOH production, whereas the auxiliary thermal energy required by the process remained 

unchanged, thus leading to a decrease in  (Figure 8.10A). On the other hand, increasing 

current density raised the diluted brine temperature at a higher rate compared to the NaOH 

production. As a result,  of the process increased with current density. At current density 
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above 500 A/m2,  outweighed . In other words, the ME process generated heat as a by-

product. It is noteworthy that this generated heat (i.e. at temperature below 75 C) can be 

utilised only by MD but not a conventional thermal distillation process. 

Elevating circulation flow rates also resulted in an increase in  (Figure 8.10B). However, 

unlike current density, elevating circulation flow rates reduced the NaOH production but 

increased the auxiliary thermal energy demand of the process; hence, it increased  of the 

process. 
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Figure 8.10. Specific auxiliary thermal energy requirement () and specific thermal energy 
co-generation () as functions of (A) current density (other operating conditions: cathode 
temperature Tcathode = 25 C, anode temperature Tanode = 45 C, anode and cathode circulation 
flow rates = 0.4 L/h), and (B) circulation flow rates (other operating conditions: cathode 
temperature Tcathode = 25 C, anode temperature Tanode = 45 C, current density 600 A/m2) in 
the ME treatment the MD brine. 

The results reported here show that current density and circulation flow rates are key 

parameters for process optimisation when integrating MD and ME for NaOH production 

from CSG RO brine. Complementary operating conditions between MD and ME can be 

achieved to avoid unnecessary heating of the feed and excessive heat production from ME. 

At the operating conditions used in this study, using the MD brine directly to the ME process 

results in 3 MJ in thermal energy saving per 1 kg of NaOH produced. Moreover, our 
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calculation also reveals that returning the heated diluted ME brine to the MD process can 

reduce the MD thermal energy consumption by 22 MJ per 1 m3 of fresh water extracted. 

Further economic optimisation is required in order to ascertain the optimum ME operating 

conditions for a combined MDME process. 

 Conclusions 

The treatment of CSG RO brine for beneficial reuses using MD and ME was investigated. 

The results demonstrate significant benefits of combining MD and ME for simultaneous 

clean water extraction and NaOH production from CSG RO brine. Increased feed salinity and 

the reduction of bicarbonate to CO2 during MD concentration of CSG RO brine only resulted 

in a slight decline in water flux. MD operation of the 10-fold concentrated CSG RO brine 

(i.e. 90% water recovery) was achieved for over an extended period with distillate of superior 

quality and without any membrane scaling. At the concentration factor of above 10 folds, the 

precipitation of NaCl, NaHCO3, and Na2CO3 on the membrane was observed together with a 

severe decline in water flux and distillate quality. With respect to the ME process, current 

density and circulation flow rates could exert strong influences on the NaOH production 

efficiency. By combining ME with MD for NaOH production from CSG RO brine, thermal 

energy savings could be achieved for both processes (i.e. 3 MJ per 1 kg of NaOH produced 

by ME and 22 MJ per 1 m3 of fresh water extracted by MD).  
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 Liquid Desiccant Lithium Chloride 

Regeneration by Membrane Distillation for Air 

Conditioning 

 Introduction 

Ongoing economic and environmental concerns together with the demand for thermal 

comfort have resulted in significant innovation in the air conditioning industry. Amongst the 

current technologies for improving indoor thermal comfort and air quality, liquid desiccant 

air conditioning (LDAC) has emerged as an attractive option in terms of humidity control and 

energy consumption [97, 98, 193]. LDAC can offer improved humidity control with 

significant energy savings particularly in applications where latent loads (moisture) are very 

high relative to sensible loads [98, 193]. Examples include hot and humid climates as well as 

applications in commercial buildings that require low indoor humidity to avoid condensation 

on glass doors and building envelopes. 

LDAC can simultaneously regulate the humidity and temperature of air by removing 

moisture using a liquid desiccant solution. The latent load of the process air is controlled by 

the absorption rate of moisture to the liquid desiccant. The liquid desiccant solution can then 

be reconcentrated (i.e. regenerated) by removing excess water using a desalination process, 

most commonly thermal evaporation. When thermal evaporation is used, heat is the primary 

energy input to the LDAC process. Thus, electricity consumption by LDAC is only one-

fourth of that of a vapour-compression air conditioning system for the same cooling output 

[98]. As a result, where waste heat (i.e. recovered from engines or industrial processes) or 

solar thermal energy are readily available, LDAC can be much more energy efficient 

compared to conventional air conditioning methods which are based on vapour-compression 

technology [92, 97]. 

Liquid desiccant regeneration is a critical step in LDAC. Given their very high solubility 

in water, LiCl and LiBr have been widely used as desiccating agents for LDAC [92, 194]. 

The solubilities of LiCl and LiBr in water at 25 C are 45.4 and 60.7 wt.%, respectively. The 

                                                 

This chapter has been published as: H. C. Duong, F. I. Hai, A. Al-Jubainawi, Z. Ma, T. He, 
and L. D. Nghiem, Liquid desiccant lithium chloride regeneration by membrane distillation 
for air conditioning, Separation and Purification Technology 177 (2017), 121-128. 
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surfaces, respectively. Cm is a function of membrane properties and process operating 

conditions, and can be theoretically calculated [6, 7]. However, the theoretical calculation of 

Cm can be trivial [6] because water flux calculation using Cm involves the water vapour 

pressure at the membrane surfaces. Indeed, it is more practical to use water vapour pressure 

of the feed and distillate streams for water flux calculation. Taking this approach, water flux 

of DCMD can be calculated as: 

)PP(KJ distillatefeedm         (9.2) 

where Km is the process mass transfer coefficient (L/m2.h.Pa), and Pfeed and Pdistillate are the 

water vapour pressure (Pa) of the feed and distillate streams, respectively. Water vapour 

pressure of the feed and distillate streams can be calculated as [6]: 

0waterwater PaxP         (9.3) 

where xwater and awater are the water molar fraction and water activity, and P0 is the vapour 

pressure (Pa) of pure water in the feed and distillate streams. P0 can be calculated using the 

Antoine Equation [124]: 

exp0

3816.44
P 23.1964

T 46.13

 
  

 
      (9.4) 

where T is the temperature (K) of the feed and distillate streams, which can be readily 

measured using temperature sensors. For the DCMD process with LiCl solution feed, xwater 

can be calculated based on the weight concentration of the LiCl solution, whereas awater can 

be estimated using the Pitzer model by the “PHREEQC” software. Additionally, the salt 

rejection (R) of the DCMD process with LiCl solution feed is calculated as: 

feed distillate

feed

C C
R 100%

C

 
   
 

      (9.5) 

where Cfeed and Cdistillate are the LiCl concentration of the feed and distillate, respectively. 

Due to polarisation effects, the water vapour pressure at membrane surfaces differs from 

that in the bulk feed and distillate streams. For the DCMD process with Milli-Q water, only 

temperature polarisation effect exists given the negligible concentration of salts. It is 

noteworthy that temperature polarisation effect has been incorporated in the value of Km 

while concentration polarisation effect was excluded. 
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 Regeneration capacity and energy consumption 

The regeneration capacity of the MD process is evaluated based on the increase in LiCl 

concentration achieved by the process [102], and can be calculated as: 

feed distillate

feed distillate

C F
ΔC

F F





       (9.6) 

where C is in wt.%, Ffeed and Fdistillate are the mass flow rate (kg/h) of the feed and distillate, 

respectively. Actually, C is the difference in LiCl concentration between the outlet and the 

inlet of the feed channel. 

The process specific thermal energy consumption (), which is the amount of heating 

required to increase LiCl weight concentration by 1%, can be calculated as: 

( )feed p feed

3

F C T 25

3.6 10 ΔC


  


 
      (9.7) 

where  is in kW/wt.%, and Cp is the specific heat capacity (kJ/kg.C) of the feed solution. 

Cp is dependent on the concentration and temperature of the LiCl solution, and its calculation 

is given elsewhere [203]. 

 Results and discussions 

 MD process characterisation 

The process water flux and mass transfer coefficient (Km) were first experimentally 

determined using Eqs. (9.2) – (9.4) and Milli-Q water as the feed solution (Figure 9.2). As 

can be seen in Eqs. (9.2) – (9.4) (section 9.2.4), the temperature polarisation effect was 

embedded in the experimentally determined Km value. Because Milli-Q water was used as the 

feed solution, the concentration polarisation effect could be excluded. The temperature 

polarisation effect can be assessed by comparing Km values at different feed solution 

temperatures and hydraulic conditions at the membrane surface (presented by the circulation 

cross flow velocity). As expected, the temperature polarisation effect was more severe at high 

feed temperature, reflected by a decrease in Km as feed temperature increased from 55 to 65 

°C (Figure 9.2B). These results are consistent with the literature [140, 204]. In contrast, 

increasing the circulation cross flow velocity improved the hydraulic condition at the 

membrane surface, hence mitigating the effect of temperature polarisation [140, 205]. Indeed, 

both water flux and Km increased as the circulation cross flow velocity was elevated (Figure 



 

158 

9.2A&B). It is noteworthy that the influence of circulation cross flow velocity on water flux 

and Km was more significant at high feed temperature (i.e. 65 °C) where the temperature 

polarisation effect was severe (Figure 9.2A&B). 
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Figure 9.2. (A) Water flux and (B) process mass transfer coefficient (Km) of the MD process 
with Milli-Q water at various feed temperature and circulation cross flow velocities, and a 
constant distillate temperature (Tdistillate) of 25 C. 

 Concentration polarisation during MD regeneration of LiCl solution 

Based on the Km value obtained from Milli-Q water as the feed solution, the water flux of 

the MD process with the LiCl solution feed was calculated using Eqs. (9.2) – (9.4) and then 

experimentally compared. The results demonstrated in Figure 9.3 indicate a profound 

influence of LiCl concentration and particularly the concentration polarisation effect on water 

flux during the MD process with the LiCl solution feed. 

LiCl at high concentration in the feed solution significantly reduced MD water flux. The 

initial water flux of the MD process with the LiCl 20 wt.% solution feed was noticeably 

lower than that obtained during the process with Milli-Q water feed under the same operating 

conditions (Figure 9.3). In addition, as the LiCl solution was concentrated, both the 

calculated and measured water flux decreased linearly (Figure 9.3). For example, the 

calculated water flux at a feed temperature of 55 C gradually decreased from 12.0 to 2.5 

L/m2.h as the LiCl solution concentration increased from 20 to 30 wt.%. The reduction in the 

calculated water flux was largely attributed to the decrease in the water activity and hence the 
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water vapour pressure of the LiCl solution. Indeed, the estimated water activity of the LiCl 

solution at 55 C (i.e. using the PHREEQC software) decreased from 0.68 to 0.21 as its 

concentration increased from 20 to 30 wt.%. 
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Figure 9.3. Influence of LiCl concentration on the calculated and experimentally measured 
water flux during the MD process with the LiCl solution at various feed temperature. 
Operating conditions: Tdistillate = 25 C, circulation cross flow velocity Vfeed = Vdistillate = 0.06 
m/s (i.e. Re = 205). Water flux obtained during the process characterisation with Milli-Q 
water feed at the same operating conditions was incorporated for comparison. 

Compared to the calculated values, the experimentally measured MD water flux with the 

LiCl solution feed was much lower (Figure 9.3). This reduction reveals the significance of the 

concentration polarisation effect during MD regeneration of the LiCl liquid desiccant. The Km 

values used for the water flux calculation with the LiCl solution feed were obtained during 

the system characterisation with Milli-Q water, in which the concentration polarisation effect 

was excluded. For the process with the LiCl solution feed, the impact of feed concentration 

on water flux was discernible as discussed above. The concentration polarisation effect 

rendered the LiCl concentration at the membrane surface higher than that in the bulk feed 

solution [25, 140, 167], thus aggravating the negative impact of feed concentration on the 

process water flux. As a result, all experimentally measured water flux was less than half of 

the calculated values under the same operating conditions (Figure 9.3). Significant deviation 

of experimentally measured water flux values from simulated data has also been reported 

during the MD desalination process of seawater and CSG RO brine at high water recoveries 

[206, 207] and the concentration of cranberry juice by osmotic distillation [201] due to severe 

concentration polarisation effect. 
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The impact of concentration polarisation on water flux is considered negligible compared 

to that of temperature polarisation for MD processes with seawater (i.e. with average salinity 

of 3.5 wt.%) or aqueous salt solutions with similar concentrations [48, 60, 140]. However, for 

the MD regeneration of LiCl liquid desiccant, the feed concentration is significantly higher 

(i.e. > 20 wt.% for this study), and thus the concentration polarisation effect exerts a much 

stronger influence on water flux compared to that encountered in seawater desalination 

applications. Methods to increase flow turbulence, including gas bubbling [208, 209], 

ultrasonic irradiation [210, 211], microwave irradiation [30], and use of  spacers [28, 212], 

help mitigate polarisation effects in MD regeneration of LiCl solution, but at the cost of 

increased process complexity and energy consumption. It is worth reiterating that unlike 

seawater desalination for fresh water production, MD regeneration of liquid desiccant 

requires the removal of only a small volume of water from the feed. Thus, low water flux can 

be more tolerated for MD regeneration of liquid desiccant compared to seawater desalination 

applications. 

Of a particular note, the MD process demonstrated an excellent separation efficiency and 

a negligible LiCl leakage (i.e. LiCl loss into the distillate) (Figure 9.4). Indeed, during the 

first 240 mins of the experiment at feed temperature of 60 C, LiCl remained undetectable in 

the distillate and a complete LiCl rejection was achieved despite the increased feed LiCl 

concentration (Figure 9.4). LiCl at a trace level of 46 ppm (compared to the feed 

concentration of over 29 wt.%) was only detectable at the end of the experiment. Throughout 

the experiment, LiCl rejection was over 99.98%. 

Similar to what observed during the experiments with Milli-Q water, feed temperature 

also exerted a great influence on the MD process with the LiCl solution feed. Increasing feed 

temperature raised the water vapour pressure of the LiCl feed stream, thus favouring a higher 

water flux. Indeed, the measured water flux of the process with LiCl solution was almost 

doubled when the feed temperature increased from 55 to 65 C (Figure 9.3). Elevating feed 

temperature also increased the ‘workability’ of the MD process with LiCl solution. As 

demonstrated in Figure 9.3, the process at feed temperature of 55 C could only concentrate 

the LiCl solution up to 25 wt.%, whereas a LiCl concentration of 29% could be achieved in 

the process at feed temperature of 65 C. Feed temperature also strongly affected the 

regeneration capacity and thermal energy consumption of the process. This will be further 

discussed in the next section. 
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Figure 9.4. Feed and distillate LiCl concentration as functions of operating time during the 
MD process with the LiCl solution feed. Operating conditions: Tfeed = 65 C, Tdistillate = 25 C, 
Vfeed = Vdistillate = 0.06 m/s (i.e. Re = 205). 

 Regeneration capacity and energy consumption 

Both regeneration capacity and thermal efficiency are crucial process performance 

parameters for MD regeneration of liquid desiccants. The regeneration capacity of the MD 

process with LiCl solution was evaluated using the increase in LiCl concentration between 

the inlet and the outlet of the feed channel (C). On the other hand, thermal efficiency of the 

MD process was assessed using the specific thermal energy consumption (). 

Feed temperature strongly affected the regeneration capacity and thermal efficiency 

during the MD regeneration of LiCl solution. Increasing feed temperature exponentially 

raised the driving force for water vapour transfer from the LiCl solution to the distillate, thus 

boosting both water flux and C. Indeed, similar to water flux, C was almost doubled when 

feed temperature increased from 55 to 65 C (Figure 9.5). Increasing feed temperature was 

also beneficial to the process with respect to . Elevating feed temperature resulted in 

increase in both C and the thermal energy input of system (Eq. (9.7)). However, C 

increased at a higher rate compared to the thermal energy input with increased feed 

temperature, thus leading to decrease in  (Figure 9.6). 
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Figure 9.5. Regeneration capacity (C) as a function of feed concentration during the MD 
process of LiCl solution at different feed temperatures. Other operating conditions: Tdistillate = 
25 C, Vfeed = Vdistillate = 0.06 m/s (i.e. Re = 205). 

Unlike feed temperature, increasing feed concentration resulted in a linear reduction in 

C (Figure 9.5). The increase in LiCl concentration in the feed also led to an increase in  

following a hyperbolical function (Figure 9.6). As expressed in Eq. (9.6), C was dependent 

on both feed concentration (Cfeed) and the distillate flow rate (Fdistillate) at a constant feed flow 

rate. An increase in Cfeed resulted in a decrease in Fdistillate at a higher rate (Figure 9.3). As a 

result, C linearly decreased with increased Cfeed. In contrast, increasing Cfeed slightly 

reduced the specific heat capacity (Cp) of the feed solution, thus resulting in a small reduction 

in the thermal energy input. The rate of thermal energy input reduction was much smaller 

than that of C. As a result,  increased as a hyperbolical function of Cfeed. The increase in  

at below the defection point of the hyperbola was small (Figure 9.6). On the other hand, 

beyond the deflection point,  increased sharply as LiCl concentration continued increasing 

(Figure 9.6). Results in Figure 9.6 suggest that LDAC should be operated at LiCl 

concentration below the defection point of the hyperbola. In other words, the maximum LiCl 

concentrations at feed temperatures of 55, 60, and 65 °C are approximately 23, 25, and 27 

wt.%, respectively. The maximum LiCl concentration could be increased by operating the 

process at a higher feed temperature and thus alleviating the negative influence of increased 

feed concentration on  (Figure 9.6). 
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Figure 9.6. Specific thermal energy consumption () as a function of feed concentration 
during the MD process of LiCl solution at different feed temperatures. Other operating 
conditions: Tdistillate = 25 C, Vfeed = Vdistillate = 0.06 m/s (i.e. Re = 205). 

Circulation cross flow velocity also exerted discernible effects on both C and  of the 

process. As demonstrated in the MD experiments with Milli-Q water feed, circulation cross 

flow velocity had a profound effect on water flux. This influence was even stronger for the 

MD process with the LiCl solution feed that encountered significant polarisation effects. 

Increasing circulation cross flow velocity helped promote water flux by mitigating both 

temperature and concentration polarisation effects, thus resulting in higher C (Figure 9.7). 

Increasing circulation cross flow velocity also raised the thermal energy input of the system 

similarly to increasing feed temperature (Eq. (9.7)); however, the increase rate of thermal 

energy input was smaller than that of C. As a result,  was reduced for the process at a 

higher circulation cross flow velocity (Figure 9.7). 
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Figure 9.7. Regeneration capacity (C) and specific thermal energy consumption () as 
functions of feed concentration during the MD process of LiCl solution at two different water 
circulation cross flow velocities. Other operating conditions: Tfeed = 65 C, Tdistillate = 25 C. 

It is noteworthy that C and  values obtained in this study were from a single-pass lab-

scale MD system. The thermal efficiency and C of the MD regeneration of LiCl solution 

can be significantly improved for pilot or large-scale systems with a larger membrane area 

and more effective heat insulation [102]. In addition, MD can be operated in brine recycling 

mode to improve the process thermal efficiency and to increase LiCl concentration [115]. 

Heat exchangers can also be employed to utilise the sensible heat of the regenerated LiCl 

solution and distillate stream for pre-heating the feed stream [70]. The recovery of the 

sensible heat from the regenerated LiCl stream not only is beneficial to the MD process but 

also helps reduce the cooling load required for the regenerated stream before entering the 

dehumidifier. It is also noted that  reported in this study was calculated for 1% increase in 

LiCl concentration (Eq. (9.7)). Indeed, during the dehumidification process, the LiCl 

concentration difference between the inlet and the outlet the dehumidifier can be as low as 

0.1% [213]. Therefore, the actual thermal energy consumption of MD regeneration of LiCl 

desiccant solution can be much lower than the reported  values. 

The results reported here reveal the importance of process optimisation when integrating 

MD with the dehumidifier in LDAC. A more concentrated LiCl solution at lower temperature 

is preferred for the dehumidifier to obtain higher air dehumidification efficiency [92, 193]. In 

contrast, the MD process is more efficient (i.e. with respects to water flux, C, and ) with 
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LiCl solution at lower concentration and higher temperature. On the other hand, increasing 

the circulation cross flow velocity is beneficial for both dehumidification and the subsequent 

MD regeneration of the LiCl solution. Operating the integrated dehumidifierMD at higher 

circulation cross flow velocity leads to increases in dehumidifier effectiveness [214] and in 

MD water flux and C, and a decrease in . It is noteworthy that increasing LiCl solution 

circulation cross flow velocity also increases the electricity consumption of LDAC and the 

risk of MD membrane wetting [6, 7]. As a result, further studies on process optimisation, 

particularly at a pilot level, are necessary to realise the practical integration of MD with 

LDAC operation. 

 Conclusions 

The suitability of membrane distillation (MD) for regenerating LiCl liquid desiccant for 

air conditioning application was demonstrated in this chapter. At feed temperature of 65 C, 

the process could increase LiCl concentration up to 29 wt.% without any significant LiCl 

loss. However, unlike traditional desalination application, the effect of concentration 

polarisation during the MD operation with the LiCl solution was significant. Operating 

parameters to optimise MD regeneration of LiCl solution include LiCl concentration, feed 

temperature, and circulation cross flow velocity. Increasing LiCl concentration led to a linear 

decrease in both water flux and regeneration capacity (C). On the other hand, the increase in 

LiCl concentration in the feed resulted in an increase in the specific thermal energy 

consumption () following a hyperbolic function. By increasing feed temperature and 

circulation cross flow velocity of the MD process, an increase in water flux as well as C and 

a reduction in  could be achieved.  
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 Conclusions and Recommendations for 

Future Work 

 Conclusions 

The results reported in this thesis demonstrate the great feasibility of MD for strategic 

desalination applications including small-scale seawater desalination for fresh water 

provision in remote coastal areas, brine volume reduction for the treatment and management 

of CSG produced water, and regeneration of liquid desiccant solutions used in air 

conditioning systems. During the MD process of saline solution feeds, increased feed salinity 

led to a slight decrease in water flux; however, the influence of increased feed salinity on the 

MD water flux was negligible compared to that of increased feed osmotic pressure on the RO 

water flux. Thus, the MD process could achieve a much higher water recovery ratio (i.e. 70% 

without any observable membrane scaling) than the RO process when seawater was used as 

the feed. Moreover, the MD process could concentrate the brine from a RO treatment of CSG 

produced water by 5-fold, and extract 80% of fresh water from CSG RO brine. A zero-liquid 

discharge treatment of CSG RO brine could be achieved in a combined MD - membrane 

electrolysis (ME) process, in which fresh water and sodium hydroxide (NaOH) were 

simultaneously extracted from the brine for beneficial uses. Finally, the MD process was 

compatible with more concentrated liquid desiccant solutions as compared with the RO 

process. The MD process at a feed temperature of 65 C could concentrate a LiCl liquid 

desiccant solution up to 29 wt.%, while the RO process is only workable for LiCl solution 

with concentration below 15 wt.%. 

Membrane scaling caused by the precipitation of sparingly soluble salts (e.g. salts of 

calcium, magnesium, and silicate) was a considerable challenge to the MD process of 

seawater and CSG RO brine at high water recoveries. Ultimate increase in water recovery 

inevitably led to the formation of scale layers on the membrane due to complex compositions 

of seawater and CSG RO brine, thus resulting in significant water flux decline and distillate 

quality deterioration. However, membrane scaling during the MD process could be 

effectively mitigated by anti-scalant addition, lowering feed operating temperature and hence 

water flux, and chemical membrane cleaning. An anti-scalant dosage (i.e. 0.5 mg/L) during 

the AGMD process with an actual seawater feed successfully prevented membrane scaling in 

a long operation at 70% water recovery. Lowering water flux together with anti-scalant 

addition helped the DCMD process with CSG RO brine achieve a water recovery of 80% 
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without and observable membrane scaling. When membrane scaling occurred, cleaning the 

scaled membrane with chemicals (e.g. commercial cleaning agents and domestic vinegar) 

could remove most of scale deposits from the membrane surface to restore the performance 

of the MD process. Nevertheless, little amounts of scale particles remaining on the membrane 

surface after chemical cleaning could act as nuclei for salt crystallisation, and hence 

facilitating the scale formation in the next MD process. Thus, chemical cleaning was 

recommended only as the last resort for membrane scaling mitigation during the MD process 

of seawater and CSG RO brine. 

High energy consumption is still a major hurdle for the full realisation of MD for 

desalination applications. Optimisation of a pilot-scale MD process for improved thermal 

efficiency and hence reduced energy consumption was conducted for the first time in this 

thesis. The influences of operating conditions (e.g. feed inlet temperature and water 

circulation rate) on water flux and energy consumption of a single-pass pilot AGMD process 

were examined. The single-pass AGMD process allowed for the recovery of the latent heat of 

water vapour condensation to preheat the seawater feed inside the membrane module, thus 

reducing the thermal energy demand of the process. Elevating feed inlet temperature 

improved thermal efficiency of the AGMD process, and therefore led to a reduction in the 

process specific thermal and electrical energy consumption. On the other hand, elevating 

water circulation rate reduced the efficacy of the internal heat recovery, hence increasing both 

specific thermal and electrical energy consumption of the process. Finally, the AGMD 

process of actual seawater feed with the lowest specific thermal and electrical energy 

consumption of 90 and 0.13 kWh/m3 respectively was demonstrated. 

Thermal efficiency and energy consumption during a DCMD process of seawater with 

brine recycling was optimised for the first time. Brine recycling in the DCMD process helped 

utilise the sensible heat of the brine, thus reducing the process thermal energy consumption. 

Brine recycling also facilitated the utilisation of membrane surface area to increase the 

process water recovery. The results obtained in this thesis reveal an optimal water recovery 

range of 20 to 60% with respects to the process thermal efficiency. In the optimal water 

recovery range, the DCMD process with brine recycling exhibited the highest thermal 

efficiency with a specific thermal energy consumption halved of that obtained in a single-

pass DCMD process under the same operating conditions. Moreover, the DCMD process 

with actual seawater in the optimal water recovery range did not experience any issues 

associated with membrane scaling. Operating the DCMD process with actual seawater feed at 
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water recoveries above the optimal range resulted in lower thermal efficiency and increased 

membrane scaling risk. Finally, operating conditions including feed temperature and water 

circulation rates exerted strong impacts on thermal efficiency of the DCMD process with 

brine recycling. 

This thesis also proved the technical feasibility of MD for regeneration of the LiCl 

solutions used in liquid desiccant air conditioners (LDAC). The DCMD process at feed and 

distillate temperature of 65 and 25 C could concentrate the LiCl solution up to 29 wt.% 

without any discernible LiCl loss. However, like the MD process with seawater and CSG RO 

brine at high water recoveries, the MD process with the LiCl liquid desiccant solution 

confronted severe polarisation effects, particularly concentration polarisation due to its 

extreme salinity. The experimentally measured water fluxes of the process were less than half 

of the simulated values that were solely based on the process mass transfer coefficient and 

water activity of the LiCl solution. Moreover, the performance of the DCMD process with the 

LiCl solution feed was strongly affected by operating feed temperature, circulation cross flow 

velocity, and especially the LiCl concentration. The process at a higher feed temperature and 

circulation cross flow velocity achieved increased water flux and regeneration capacity with a 

lower specific thermal energy consumption. On the other hand, increasing LiCl concentration 

resulted in decrease in both water flux and regeneration capacity, thus increasing the specific 

thermal energy consumption following a hyperbolic function. 

 Recommendations for future work 

The MD process with internal heat recovery and brine recycling investigated in chapter 4 

and 5 exhibits significantly improved thermal efficiency. However, the energy consumption 

of the MD process is still much higher than that of RO or MSF and MED for seawater 

applications. The full application of MD for seawater desalination can only be realised when 

it is coupled with solar thermal energy or waste heat for energy demand. The process 

optimisation work done in chapter 4 and 5 was for the MD process alone, and solar thermal 

collectors or heat exchangers were excluded from the MD process optimisation. Thus, 

additional effort should be devoted to optimising seawater solar thermal or waste heat driven 

MD desalination as a whole process for improved energy efficiency. 

Membrane scaling caused by the complexation of silicate and salts of calcium during the 

MD process of CSG RO brine at high water recoveries deserves thoroughly investigating. 

Calcium salts in CSG RO brine facilitates the complexation of silicate, thus aggravates 
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membrane scaling during the MD process. As demonstrated in chapter 6, the remnants of the 

silicate scales on the membrane promotes scale formation and reduces the efficiency of 

subsequent membrane cleaning. Thus, membrane scaling associated with silicate 

complexation can be a technical hurdle for zero-liquid discharge treatment of CSG RO brine 

using the MD process. 

Extensive research effort should be invested in optimising the MD process for 

regeneration of liquid desiccant solutions. Chapter 9 demonstrates the viability of MD for 

regeneration of LiCl liquid desiccant solution. However, the MD process achieved limited 

water flux and regeneration capacity due to low water activity of the LiCl solution feed and 

severe polarisation effects, particularly concentration polarisation. The MD process at feed 

temperature of 65 C could concentrate the LiCl solution up to 29 wt.%, while the LiCl 

solution at concentration as high as 43 wt.% can be used in LDAC. Thus, techniques to 

improve water flux and regeneration capacity of the MD regeneration of liquid desiccant 

solutions are worth investigating. Coupling the MD process with liquid desiccant solutions 

with solar thermal energy also deserves studying. Thermal energy is the primary energy input 

to the LDAC systems, and the demand for thermal comfort and indoor air quality coincides 

with the abundance of solar radiations. Therefore, coupling solar thermal energy with MD 

regeneration of liquid desiccant will render LDAC highly preferable to conventional 

compression air conditioners for indoor thermal comfort and air quality in humid and hot 

areas. 
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