Effects of urbanisation on floods

Monica Corina Bufill

University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
NOTE

This online version of the thesis may have different page formatting and pagination from the paper copy held in the University of Wollongong Library.

UNIVERSITY OF WOLLONGONG

COPYRIGHT WARNING

You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following:

Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.
THE UNIVERSITY OF WOLLONGONG

DECLARATION RELATING TO DISPOSITION OF THESIS

This is to certify that I, MONICA C. BURULL, being a candidate for the degree of PhD, am fully aware of the policy of the University relating to the retention and use of higher degree theses, namely that the University retains the copies of any thesis submitted for examination and that the University holds that no thesis submitted for a higher degree should be retained in the Library for record purposes only, but within copyright privileges of the author, should be public property and accessible for consultation at the discretion of the Librarian.

In the light of these provisions I grant the University Librarian permission to publish or to authorize publication of my thesis in whole or in part, or grant access to it, as he deems fit.

I also authorise publication by University Microfilms of:

(a) a 350 word abstract in Dissertation Abstracts International (D.A.I.) (Doctoral theses)

(b) a 150 word abstract in Masters Abstracts (Masters theses).

Signature: MONICA C. BURULL
Witness: J. SMITH
Date: 22/11/90
EFFECTS OF URBANISATION ON FLOODS

A thesis submitted in fulfilment of the requirements for
the award of the degree

DOCTOR OF PHILOSOPHY

from

THE UNIVERSITY OF WOLLONGONG

by

MONICA CORINA BUFILL
M.E (Universidad de Buenos Aires, Argentina)
M.Sc. (Imperial College of Science and Technology, London)

Department of Civil and Mining Engineering, 1989.
ACKNOWLEDGEMENTS

I am deeply indebted to the University of Wollongong that enabled me to undertake doctoral studies by awarding a University Scholarship.

Dr. Michael J. Boyd, who supervised the research work in this thesis, not only offered his knowledge and expertise, but also gave encouragement and invaluable advice. I am grateful to him for his continuing interest and dedication.

The following institutions provided the data for this study:

University of New South Wales
University of Technology, Sydney
Campbelltown City Council
NSW Department of Water Resources
ACT Electricity and Water
Melbourne and Metropolitan Board of Works
University of Belgrade, Yugoslavia
INDEX
VOLUME 1

INTRODUCTION

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER ONE. Urban Flood Studies

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>8</td>
</tr>
<tr>
<td>1.2</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>11</td>
</tr>
<tr>
<td>1.4</td>
<td>20</td>
</tr>
<tr>
<td>1.4.1</td>
<td>20</td>
</tr>
<tr>
<td>1.4.2</td>
<td>25</td>
</tr>
<tr>
<td>1.4.2.1</td>
<td>26</td>
</tr>
<tr>
<td>1.4.2.2</td>
<td>33</td>
</tr>
<tr>
<td>1.4.2.3</td>
<td>39</td>
</tr>
<tr>
<td>1.5</td>
<td>43</td>
</tr>
<tr>
<td>1.6</td>
<td>55</td>
</tr>
</tbody>
</table>

CHAPTER TWO. Urban Catchment Data

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>58</td>
</tr>
<tr>
<td>2.2</td>
<td>59</td>
</tr>
<tr>
<td>2.3</td>
<td>63</td>
</tr>
<tr>
<td>2.4</td>
<td>67</td>
</tr>
<tr>
<td>2.5</td>
<td>70</td>
</tr>
<tr>
<td>2.5.1</td>
<td>71</td>
</tr>
<tr>
<td>2.5.1.1</td>
<td>76</td>
</tr>
<tr>
<td>2.5.1.2</td>
<td>78</td>
</tr>
<tr>
<td>2.5.2</td>
<td>81</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>84</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>86</td>
</tr>
<tr>
<td>2.5.3</td>
<td>89</td>
</tr>
<tr>
<td>2.5.3.1</td>
<td>89</td>
</tr>
<tr>
<td>2.5.3.2</td>
<td>94</td>
</tr>
<tr>
<td>2.5.4</td>
<td>97</td>
</tr>
<tr>
<td>2.5.4.1</td>
<td>102</td>
</tr>
<tr>
<td>2.5.4.2</td>
<td>103</td>
</tr>
<tr>
<td>2.5.5</td>
<td>105</td>
</tr>
<tr>
<td>2.5.5.1</td>
<td>107</td>
</tr>
<tr>
<td>2.5.5.2</td>
<td>109</td>
</tr>
<tr>
<td>2.5.6</td>
<td>109</td>
</tr>
<tr>
<td>2.5.6.1</td>
<td>113</td>
</tr>
<tr>
<td>2.5.6.2</td>
<td>117</td>
</tr>
<tr>
<td>2.5.7</td>
<td>119</td>
</tr>
<tr>
<td>2.5.7.1</td>
<td>121</td>
</tr>
<tr>
<td>2.5.7.2</td>
<td>122</td>
</tr>
<tr>
<td>2.5.8</td>
<td>123</td>
</tr>
<tr>
<td>2.5.8.1</td>
<td>123</td>
</tr>
<tr>
<td>2.5.8.2</td>
<td>126</td>
</tr>
<tr>
<td>2.5.9</td>
<td>127</td>
</tr>
<tr>
<td>2.5.9.1</td>
<td>128</td>
</tr>
<tr>
<td>2.5.9.2</td>
<td>129</td>
</tr>
<tr>
<td>2.5.10</td>
<td>129</td>
</tr>
</tbody>
</table>
2.5.10.1 Gauging Instruments 131
2.5.10.2 Storms Analysed 132
2.5.11 Clifton Grove 133
2.5.11.1 Gauging Instruments 133
2.5.11.2 Storms Analysed 135
2.5.12 Munkerisparken 135
2.5.12.1 Gauging Instruments 137
2.5.12.2 Storms Analysed 137
2.5.13 East York 138
2.5.13.1 Gauging Instruments 140
2.5.13.2 Storms Analysed 140
2.5.14 Malvern 141
2.5.14.1 Gauging Instruments 143
2.5.14.2 Storms Analysed 144
2.6 Comparative Analysis of Catchment Data 145

CHAPTER THREE. Rainfall and Runoff Depths 156
3.1 Introduction 156
3.2 Urbanisation and Impervious Areas 158
3.3 Relationship Between the Runoff Ratio and the Impervious Area Fraction 162
3.4 Analysis of Rainfall and Runoff Depths 165
3.4.1 Maroubra 167
3.4.2 Strathfield 171
3.4.3 Jamison Park 178
3.4.4 Fisher’s Ghost Creek 183
3.4.5 Giralang 186
3.4.6 Woden Valley Catchments 188
3.4.6.1 Long Gully Creek 189
3.4.6.2 Mawson 192
3.4.6.3 Curtin 196
3.4.7 Vine Street 197
3.4.8 Elster Creek 201
3.4.9 Overseas Catchments 202
3.4.9.1 King’s Creek 203
3.4.9.2 St. Mark’s Road 206
3.4.9.3 Clifton Grove 208
3.4.9.4 Munkerisparken 210
3.4.9.5 East York 211
3.4.9.6 Malvern 213
3.5 Joint Analysis of Catchments 215
3.5.1 Assessment of the Connected Impervious Area Fraction 216
3.5.2 Extent of Pervious Area Contribution to Runoff 221

CHAPTER FOUR. Loss Model 227
4.1 Introduction 227
4.2 Rainfall Losses in Urban Catchments 227
4.2.1 Initial Losses 227
4.2.2 Continuing Losses 230
4.3 Generation of Runoff 235
4.4 Loss Model 245
5.7.4.3.2 Area of the Individual Cluster 351
5.7.4.3.3 Relation Between the Number of Clusters and the Impervious Connected Area. 358
5.8 Summary 364

CHAPTER SIX. Storage Characteristics of the Pervious Areas 366

6.1 Introduction 366
6.2 Analysis of Recessions from Combined Events 368
6.2.1 Plot of -dQ/dt against Q for Combined Recessions. 368
6.2.2 Influence of the Pervious and Impervious Lag Parameters. 377
6.3 Determination of Parameters for Pervious Area Storages. 380
6.3.1 Pervious Area Lag Parameter for Small Catchments (A_{IC} < 0.1 km²). 383
6.3.2 Pervious Area Lag Parameter for Large Catchments (A_{IC} > 0.1 km²). 386

CHAPTER SEVEN. Rainfall-Runoff Model 389

7.1 Introduction 389
7.2 Runoff Routing Model 390
7.3 Simulation 392
7.3.1 Data and Parameter Values 392
7.3.2 Event Files 394
7.4 Simulation Results 396
7.4.1 Evaluation of the Model’s Performance 396
7.4.1.1 Goodness of Fit Indices 397
7.4.1.2 Goodness of Fit Estimation 401
7.4.2 Discussion of Simulation Results 415
7.5 Sensitivity 417
7.5.1 Variations in the Impervious Area Fraction 417
7.5.2 Variations in the Lag Parameters 421

CHAPTER EIGHT. Summary and Conclusions 424

8.1 Introduction 424
8.2 Separate Analysis of Pervious and Impervious Areas and its Relation to Linearity. 424
8.3 Rainfall losses 425
8.4 Assessment of the Impervious Connected Area 427
8.5 Prediction of Runoff Volumes 429
8.6 Estimation of Impervious Area Lag Parameters from Hydrograph Recessions. 429
8.7 Relation Between Impervious Area Lag Parameters and Catchment Characteristics. 430
8.8 Clusters of Pervious and Impervious Areas 432
8.9 Estimation of Lag Parameters for the Pervious Surfaces. 434
8.10 Rainfall-Runoff Model 435
8.11 Discussion 436
INTRODUCTION

The transition of a catchment from an initially natural or rural condition to an urban environment involves dramatic changes to water and soil resources on a time scale which is an order of magnitude different to most natural processes. As MacPherson (1975) pointed out, natural changes generally occur in a timescale of eons while man can modify the environment in a number of ways in a matter of years.

Changes to the hydrological regime due to urbanisation processes have been comprehensively described by Savini and Kammerer (1961). They analyse the hydrological effects of changes in land and water use associated with the different stages of urban development. Most of the described modifications to the natural or rural environment have some degree of impact on the flood hydrograph, but the alteration of catchment surfaces and the modification of the natural drainage system have by far the most important consequences.

Catchment surfaces are modified initially by the removal of vegetation and the disturbance of the topsoil. This modifies the patterns of interception, evaporation and transpiration and the infiltration capacity is generally reduced because the compacting of the top layers of soil
blocks or destroys interflow paths. Further changes are introduced when originally pervious surfaces are built up and made impervious. Infiltration is reduced, and rainfall that would originally have replenished the groundwater storage, becomes surface runoff. The texture of surfaces is also modified. Smoother and more uniform surfaces replace rougher natural surfaces. As a consequence of this, the velocity of surface runoff is increased.

The stream network in a natural catchment is the result of the dynamic equilibrium between climatic conditions and the characteristics of the surfaces drained by the network. This network varies seasonally in its extension. The modification of catchment surfaces implies that a different drainage network must be created in order to accommodate the new conditions in which runoff is generated. Modifications to the drainage network can take different forms, according to the stage of urban development. In the initial stages, when the extent of the modified surfaces is still small, the natural streams can be cleared of vegetation, their layout can be rectified and their cross sections made regular and enlarged, to achieve a higher conveyance. In later stages the streams will be lined and finally the drainage system will be partially or totally replaced by a network of underground pipes. This can be clearly seen if suburban areas in different stages of development are compared, and if they are in turn compared with central city areas. In the outer suburbs the main
streams can be left in a nearly natural condition and the adjacent floodplains are free of buildings. In the areas closer to the city the cost of the land will dictate a more intensive utilisation, and so the surface area assigned to the drainage system will be reduced. In these areas the floodplain will be built up and the drainage system will consist of a pipe network. Urban dwellers will tend to forget the former existence of streams except when a rare rainfall event produces flooding.

As mentioned above, the factors that generate increased flooding in urban areas are mainly the sealing of formerly pervious surfaces and the modifications introduced to the drainage system. The proportion with which each factor contributes to the increase in flooding is not easy to measure, as the construction of buildings and the changes in the drainage system are generally introduced simultaneously. Packman (1979) suggests that the sealing of surfaces and therefore the reduction in the time of travel of flow on these surfaces will have a larger impact in the case of small catchments, because surface flow is the process that has longer times as compared to channel flow. The reverse would be true for larger catchments, where channel improvements will account for substantial reductions in the times of travel.

In this study, the hydrological processes that are relevant to the generation of floods in urban areas have been
identified and analysed. The underlying criterion has been to extract as much information as possible on these processes from the analysis of recorded rainfall and streamflow records. Working hypotheses were introduced only on the basis of observation from these data when this first source of information was exhausted. This approach was preferred to the alternative one of proposing a theoretical model and testing it against available data. The volume of good quality rainfall and streamflow data currently available for Australian catchments seemed to warrant that an approach without preconceptions to the analysis of these data could lead to the understanding of the relevant processes involved in the formation of floods.

Cordery and Pilgrim (1979), after reviewing design methods for small hydraulic structures, commonly used in Australian agencies, pointed out the need to develop predictive tools for Australian conditions. They noted that these design procedures have been developed for different environments and have not been validated in Australia. Because the conclusions in this study rely heavily on the analysis of data, it is hoped that they will contribute towards the assessment of flooding in Australian urban catchments.

Data from ten Australian and six overseas urban catchments were collected from stream gauging agencies, and the rainfall-runoff process in each of them was studied and characterised. The joint analysis of the catchments showed
that although they have different geographical and climatological features, there are similarities in their behaviour. Those aspects of the rainfall-runoff process that were found to be common to all catchments were formulated mathematically in a model, and methods to estimate the model’s parameters from catchment characteristics were proposed.

The layout of this thesis is explained in the following paragraphs.

In Chapter 1, studies that have analysed flooding in urban catchments are reviewed. Particular attention is given to the way that pervious and impervious areas were treated in these studies, both in terms of rainfall losses and the routing of runoff. In the last Section of this Chapter some of the most relevant Australian urban studies are reviewed.

The data used in this study is presented in Chapter 2. The general characteristics of the urban catchments studied are discussed in the first Section and then each one of the catchments is described. This description includes their physical characteristics, details of the gauging instruments and a summary of the storm events analysed.

The analysis of rainfall and runoff depths for each catchment is presented in Chapter 3. From the study of event rainfall and runoff depths and by considering the
extent of the impervious areas in each catchment, all the events studied are separated into impervious area runoff events and combined events, where both the pervious and impervious areas of the catchment generate runoff. The joint analysis of the catchments is presented in the last Sections of this Chapter and the similarities found in the generation of runoff in all the catchments are described.

Results from the analysis of rainfall and runoff depths discussed in Chapter 3 are formulated mathematically in Chapter 4. In this Chapter, a loss model that simulates the generation of surface runoff on the pervious and impervious areas of urban catchments is presented.

In Chapter 5, the catchments are analysed as systems that store surface runoff temporarily, and the main characteristics of these systems are identified. The storage behaviour of the impervious areas of the catchment is analysed by studying storm events which only generated runoff from these areas. In this way, the flood response of the impervious areas could be studied in isolation from the pervious areas of the catchment. Particular attention is given to the recessions of observed flood hydrographs and, from their analysis the parameters for the routing of runoff on the impervious areas are derived. Catchment lag parameters derived in this Chapter are linked to catchment characteristics and relations between the impervious area lag parameter and catchment area and slope are presented.
In Chapter 6, the storage characteristics of the pervious areas of the catchment are discussed. Pervious area lag parameters are estimated by extending to these areas the relations derived for the impervious areas in Chapter 5.

The storage characteristics of the pervious and impervious areas of urban catchments analysed in Chapters 5 and 6 are formulated mathematically in a runoff routing model in Chapter 7. All the storm events analysed in this study are simulated with a rainfall-runoff model consisting of the loss model presented in Chapter 4 and the runoff routing model proposed in this Chapter. Results from the simulation are discussed in this Chapter and plots of the observed and simulated hydrographs are shown in a separate Volume. Sensitivity tests of the model’s parameters are also presented in this Chapter.

In Chapter 8 the main conclusions derived from the previous Chapters are presented and discussed.

Some of the data that are referenced in different parts of this thesis are presented in summarised form in the text. The complete data is shown in Appendices.