2006

Synthesis of biaryl substituted isoquinolines based on the reticuline scaffold

Stephen R. Taylor
University of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/theses

University of Wollongong
Copyright Warning
You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site.

You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form.

Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong.

Recommended Citation

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Synthesis of Biaryl Substituted
Isoquinolines Based on the
Reticuline Scaffold

A thesis submitted in fulfilment of the requirements
for the award of the degree of

Doctor of Philosophy
From
University of Wollongong

Stephen Roy Taylor
B. Med Chem (Hons)

Department of Chemistry
January, 2006
Acknowledgements

It is my great pleasure to thank the following people for their contributions to the work contained in this thesis. It is my privilege to acknowledge that without their efforts and assistance on my behalf, this work would never have been completed. To my supervisor Prof Steve Pyne go my profoundest thanks. Steve without your knowledge, desire, drive, encouragement and enthusiasm this degree would never have been completed. My thanks for the papers, discussions, ideas, and all the little things; things I could not have done without. To my supervisor Dr Alison Ung, thank you for all your help with the lab work, especially with the HPLC, chemistry discussions, papers, and your hard and dedicated work on the J and J project. Your efforts are exemplary and much to be admired.

To my wife Amy, perhaps only you know the amount you have contributed and sacrificed to see this project to completion. Your love and support, belief, encouragement, and steadfast attitude stagger me beyond words and have kept me going, through the good and bad times, until the end. This is yours as much as mine. I look forward to starting the next Chapter of our lives together, as this one closes. I would like to thank my Family, Mum, Dad, Gill and Simon, Sue and Steve, Mark and Larissa, Grandma (RIP), Joyce, Matt and Hannah, Phil and Becky, Caleb, Ella and Charlotte, Joey for all their love, support, conversations, alcohol, cards, etc. You have shown me that to live is Christ and to die is gain and for that I will appreciate your efforts always.

To the following people go my thanks for their teaching, editorial efforts, motivation and example in the Christian life as well as chemistry; their dedication and example have been and remain a source of inspiration to me. Rev. Trevor and Gill Middleton, Dr. Laurent and Isabelle Bornaghi, Vincent and Ludovic, Dr. Peter and Beth Riley.
My great thanks to the Technical staff in the Department, Dr. Wilford Lie, Dr. John Korth, Roger Kanitz, Larry Hick, Sandra Chapman and Karin Maxwell. Nothing has been too much trouble for you to stop what you are doing and help with NMR, MS and technical problems and for that I give you my thanks.

To the members of the Pyne group, both past and present, it has been a great joy to me to work together over the past 3 years. The people I have worked with comprise the fondest memories of my studies, and you have helped make the research and learning enjoyable.

And last, but not least, thank you to Johnson and Johnson Research, Sydney, and in particular Dr Wayne Gerlach, for the provision of the Scholarship and resources to conduct this project.
TABLE OF CONTENTS

Acknowledgements...ii

Table of Contents...iv

List of Figures..x

List of Schemes...xii

List of Tables...xxi

List of Abbreviations...xxii

Declaration..xxvi

ABSTRACT..xxvii

CHAPTER 1: INTRODUCTION..1

1.1 The History of Natural Products..1

1.2 Introduction to Alkaloids...2

1.3 Benzylisoquinoline Alkaloids..5

1.4 Bisbenzylisoquinoline Alkaloids...9

1.4.1 Bisbenzylisoquinolines linked tail-to-tail..10

1.4.2 Bisbenzylisoquinolines linked by tail-to-tail biaryl bond and head-to-head
biphenyl ether bond(s)..11

1.4.3 Bisbenzylisoquinolines possessing only biphenyl ether linkages......................13

1.4.4 Thalicarpine...14

1.5 Cancer and Multidrug Resistance...17

1.6 Genetically Engineered Bioaccumulation and Drug Development.......................19

1.7 Project Aims...20

CHAPTER 2: THE SYNTHESIS OF 2,2’-[DI-{(6,7-DIMETHOXY-2-METHYL-
1,2,3,4-TETRAHYDROISOQUINOLIN-1-YL)METHYL}-4,4’,5,5’-
TETRAMETHOXYBIPHENYL]...23
2.1 General Introduction ... 23
2.2 Introduction to Biaryls .. 23
2.2.1 Reductive Formation of Biaryls .. 24
2.3 The Ullmann Reaction .. 25
2.3.1 The Mechanism of the Ullmann Reaction 26
2.3.2 Some Recent Advances of the Ullmann Reaction 27
2.4 Rationale and Retrosynthesis of 2,2’-di-[(6,7-dimethoxy-2-methyl-1,2,3,4-
tetrahydroisoquinolin-1-yl)methyl]-4,4’,5,5’-tetramethoxybiphenyl 32
2.4.1 Constructing the Biaryl Bond by the Ullmann Reaction 35
2.4.2 Constructing the Biaryl Bond by Non-Phenolic Oxidative Coupling ... 38
2.5 Completing the Synthesis of 2,2’-di-[(6,7-dimethoxy-2-methyl-1,2,3,4-
tetrahydroisoquinolin-1-yl)methyl]-4,4’,5,5’-tetramethoxybiphenyl 49 42
2.6 Redesigning the Targets ... 47

CHAPTER 3: THE SYNTHESIS OF BIARYL SUBSTITUTED
ISOQUINOLINES USING OXIDATIVE COUPLING REACTIONS 49

3.1 General Introduction ... 49
3.2 Oxidative Formation of Biaryls .. 49
3.2.1 Mechanisms of Oxidative Biaryl Coupling 50
3.3 Hypervalent Iodine in Synthesis .. 53
3.4 Synthesis of Benzylisoquinoline Derivatives 56
3.4.1 Rationale ... 56
3.4.2 Comparison of Oxidative Conditions 57
3.4.3 Completing the synthesis of Benzylisoquinoline 149 61
3.5 Oxidative Coupling Study .. 64
3.5.1 Oxidation of Phenyl Acetate Esters ... 65
3.5.1.1 Cyclic Voltammetry (CV) Measurements to Determine the Ease of Oxidation...80
3.5.2 Oxidation of Benzoate Esters...84
3.5.3 Oxidation of Benzyl Esters...91
3.5.4 Oxidation of Selected Amides...97
3.6 Conclusions and Future Directions..104

CHAPTER 4: THE ATTEMPTED SYNTHESIS OF BIARYL SUBSTITUTED ISOQUINOLINES USING PALLADIUM-MEDIATED ARYLATION....105
4.1 General Introduction..105
4.2 Introduction to Pd-Mediated Arylation...105
4.3 Speculation on the Mechanism of Pd-Mediated Arylation.................................107
4.4 Pd-Mediated Arylation In the Synthesis of Natural Products.........................110
4.4.1 Synthesis of Natural Products Possessing a 5- or 6-Membered Ring..............110
4.4.1.1 Bringmann’s ‘Lactone concept’...114
4.3.2 Synthesis of Natural Products Possessing a 7-Membered Ring....................116
4.5 Pd-Mediated α-Arylation of Carbonyl Compounds..118
4.6 General Aims for Pd-Mediated Arylation Study..122
4.6.1 Ester Synthesis / Aryl iodination / Arylation Results......................................123
4.6.1.1 Synthesis and Lactonisation of Benzoate Esters by Pd-Mediated Arylation.123
4.6.2 Synthesis and Attempted Cyclisation of Phenyl Acetate and Propanoate Esters...132
4.6.3 Attempted Formation of 8-Membered Lactones by Pd-Mediated Arylation...137
4.7 Conclusions and Future Directions..145

CHAPTER 5: THE SYNTHESIS OF BIARYL SUBSTITUTED ISOQUINOLINES USING THE SUZUKI CROSS COUPLING REACTION.148
5.1 General Introduction ... 148
5.2 Introduction to the Suzuki Cross Coupling Reaction 148
5.2.1 Oxidative Addition ... 151
5.2.2 Transmetallation ... 154
5.2.3 Reductive elimination ... 155
5.2.4 Formation of Organoboranes ... 156
5.3 The Suzuki Reaction in Natural Product Synthesis 159
5.4 The B-Alkyl Suzuki-Miyaura Reaction ... 165
5.5 Synthesis of Isoquinolines possessing a Biaryl Motif by the Suzuki Coupling Reaction ... 166
5.5.1 The Synthesis of (RS,PM)-[4,4’,5,5’-tetramethoxy-2’-(1,2,3,4-tetrahydroisoquinolin-1-yl)-6,7-dimethoxy-2-methyl]biphenyl-2-carboxylate 308..... 188
5.5.2 The Synthesis of (RS,PM)-[4,4’,5,5’-tetramethoxy-2’-(1,2,3,4-tetrahydroisoquinolin-1-yl)-6,7-dimethoxy-2-ethyl]biphenyl-2-carboxylate 309..... 183
5.5.3 The Synthesis of (RS,PM)-[4,4’,5,5’-tetramethoxy-2’-(1,2,3,4-tetrahydroisoquinolin-1-yl)-6,7-dimethoxy-2-methyl]biphenyl-2-carboxylate 323 169
5.5.1.1 Nucleophilic Ring-Opening of Lactone 317.............................. 175
5.5.1.2 Completing the Synthesis of Phenylisoquinoline 323................. 179
5.6 Conclusions and Future Directions ... 199

CHAPTER 6: BIOLOGICAL TESTING ... 200
6.1 Introduction .. 200
6.2 Cytotoxicity Assays ... 200
6.2.1 Testing Procedures ... 200
6.2.2 Results of Pre-screen Cytotoxicity Assay 200
6.3 Anti-HIV Testing .. 205
6.4 Anti-Bacterial Testing..208
6.5 In-vitro CNS Receptor Binding..209
6.6 Conclusions and Future Directions...213

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS........214
7.1 Conclusions from Synthetic Studies..214
7.2 Conclusions from Biological Assays..217
7.3 Future Directions for Synthetic Studies.....................................218
7.4 Future Directions for Biological Assay Studies........................218

CHAPTER 8: EXPERIMENTAL..219
8.1 General Experimental...219
8.2 General Experimental Methods...223
8.2.1 General Methods for Iodination..223
8.2.1.1 Method A – NIS / TFA...223
8.2.1.2 Method B – I₂ / AgOTFA...226
8.2.2 General Methods for Ester Formation....................................228
8.2.2.1 Method A – DCC Coupling..228
8.2.2.2 Method B – Acid Catalysed Esterification............................252
8.2.2.3 Method C – Methyl iodide / K₂CO₃......................................254
8.2.3 General Methods for Ester Hydrolysis....................................255
8.2.3.1 Method A – K₂CO₃ / MeOH..255
8.2.3.2 Method B – Na / dry MeOH..258
8.2.4 General Method for O-, and N-Acylation.................................259
8.2.5 General Methods for Amide Formation..................................266
8.2.5.1 Method A – EDCI / HOBT...266
8.2.5.2 Method B – Nucleophilic Aminolysis.................................271
8.2.5.3 Method C – Me₃Al Assisted Nucleophilic Ring Opening..............272
8.2.6 General Methods for Oxidative Couplings...............................274
8.2.6.1 Method A – Hypervalent iodine (PIFA).................................274
8.2.6.2 Method B – Thallium trifluoroacetate (TTFA)..........................274
8.2.6.3 Method C – MoCl₅...274
8.2.6.4 Method D – Ce(OH)₄...275
8.2.6.5 Method E – VOF₃...275
8.2.7 Methods For Oxidation...290
8.2.7.1 Method A – KMnO₄...290
8.2.7.2 Method B – Dess-Martin Periodinane / NaClO₂..........................291
8.2.7.3 Method C – Jones Oxidation...292
8.2.8 General Method for Palladium-Mediated Arylation...............293
8.2.9 General Method for the Preparation of Aryl Boronates.............302
8.2.10 General Method for Suzuki Coupling Reactions.........................306
8.2.11 General Methods for Consecutive Bischler-Napieralski Cyclisation / Imine Reduction...311
8.2.11.1 Method A – Imine Reduction with NaBH₄.................................311
8.2.11.2 Method B – Imine Reduction Followed by Reductive Methylation...315
8.3 Miscellaneous Experimental Methods..321

REFERENCES...330
List of Figures

Figure 1.1 Examples of alkaloids from the four biogenetic classifications 3

Figure 1.2 Examples of alkaloids with varying chemistry about the nitrogen atom …… 4

Figure 1.3 Examples of tail-to-tail linked bisbenzylisoquinolines 11

Figure 1.4 Examples of bisbenzylisoquinolines linked tail-to-tail and head-to-head … 12

Figure 1.5 Examples of bisbenzylisoquinoline alkaloids possessing only ether bonds ………………………………………………………………………………… 13

Figure 1.6 Examples of alkaloids capable of reversing multidrug resistance ………….. 18

Figure 3.1 1H NMR spectra (CDCl$_3$, 300 MHz) of 145 and 146. The aromatic region of 42 simplified into 4 singlet resonances, and the CH$_2$ signal is now an ABq at δ 3.51… 60

Figure 3.2 The distinguishing 1H and 13C NMR resonances of biphenyl dimers (169A-C, 94) and quinones (170D, 170G) formed by the oxidation of esters 97, 166G, 167A-E, Table 3.2 …………………………………………………………………………………....68

Figure 3.3 a) The 1H NMR spectrum (CDCl$_3$, 300 MHz) and X-ray crystal structure of 169C. * = Residual CDCl$_3$ signal …………………………………………………………………………………....69

Figure 3.3 b) The 1H NMR spectra (CDCl$_3$, 300 MHz) and X-ray crystal structure of 170G. * = Residual CDCl$_3$ signal …………………………………………………………………………………....70

Figure 3.4 The Cyclic Voltamagrams obtained following the electrochemical oxidation of compounds a) 97, b) 166G, c) 175, and d) 176 as 0.01 M solutions in MeCN …… 82

Figure 3.5 Important spectral features and gHMBC correlations for dimer 187E …….93

Figure 3.6 The 1H NMR spectrum (CDCl$_3$, 300 MHz) and X-ray crystal structure of 187E. * = Residual CDCl$_3$ signal …………………………………………………………………………………....95

Figure 4.1 Spectroscopic similarities found in the 1H and 13C NMR spectra (CDCl$_3$) of compounds 241-244 …………………………………………………………………………………128
Figure 4.2 Spectroscopic similarities found in the 1H and 13C NMR spectra (CDCl$_3$) about the isochromen-3-one skeleton…………………………………………………………………………140

Figure 6.1 The structures and testing codes of compounds listed in Tables 6.1 and 6.2………………………………………………………………………………………………..202

Figure 6.2 The structures and testing codes of compounds subjected to anti-HIV assay exclusively………………………………………………………………………………207
List of Schemes

Scheme 1.1 Key reactions in alkaloid formation a) Schiff base formation, b) Mannich condensation ..5

Scheme 1.2 Formation of (S)-norcoclaurine, the precursor of benzylisoquinoline alkaloids ..6

Scheme 1.3 Examples of benzylisoquinoline alkaloids derived from 12 ..7

Scheme 1.4 The biosynthetic pathway of 20 from 12 ..8

Scheme 1.5 The conversion of reticuline to morphinian, benzophenanthridine, and protoberberine alkaloids ..9

Scheme 1.6 The first total synthesis of thalicarpine ...15

Scheme 1.7 Biosynthesis of thalicarpine ..16

Scheme 1.8 Proposed target compounds ..21

Scheme 1.9 Proposed synthesis of bisbenzylisoquinoline 49 ..21

Scheme 1.10 Proposed preparation of biphenyl isoquinolines using oxidative coupling or Pd-mediated arylation to create the biaryl bond ...22

Scheme 1.11 Proposed preparation of biphenyl isoquinolines using the Suzuki reaction to create the biaryl bond ..22

Scheme 2.1 A schematic representation of the Ullmann reaction and the Ullmann condensation ..25

Scheme 2.2 Mechanism of the Ullmann reaction ...26

Scheme 2.3 The mechanism for the Ni mediated Ullmann coupling of 61 under NaH / Zn reductive conditions ..28

Scheme 2.4 Ullmann coupling reactions facilitated by copper(I)thiophene-2-carboxylate ..29

Scheme 2.5 The palladium catalysed Ullmann cross coupling reaction31
Scheme 2.6 Mechanism of the Pd catalysed Ullmann cross coupling reaction........31

Scheme 2.7 The palladium catalysed Ullmann cross coupling of o-iodonitrobenzene with α-iodo-cyclohexenone, 81, and β-bromo-cyclopentenone, 84, and conversion of the coupled products into indole 83 and [c]annulated quinoline 86.........................32

Scheme 2.8 The structures of reticuline, laudanosine, thalicarpine and our initial synthetic target molecule, 49...33

Scheme 2.9 Two possible pathways comprising the retrosynthesis of compound 49...34

Scheme 2.10 Preparation of Ullmann coupling substrates 89 and 93. Exposure to activated copper-bronze and high temperature afforded dimer 94 and unidentifiable decomposition products..37

Scheme 2.11 Proposed mechanistic transformation of an electron rich arene with MoCl₅...39

Scheme 2.12 Results obtained from treating compound 97 with MoCl₅...........40

Scheme 2.13 Synthesis of target dimer 49 from Ullmann coupling product 94........44

Scheme 2.14 Sequential imine formation and diastereoselective reduction prevents decomposition of symmetrical bis-imine, 107...45

Scheme 2.15 Retrosynthetic plan for the preparation of compounds comprising the isoquinoline framework of laudanosine and a biaryl moiety.........................47

Scheme 3.1 The stoichiometry of biaryl formation by oxidative coupling........50

Scheme 3.2 Possible products from phenoxy radical coupling........................51

Scheme 3.3 The single electron oxidation mechanism.................................51

Scheme 3.4 Phenoxonium ion generation [metal (MXₙ) and hypervalent iodine (PhI(OCOR)₂) oxidants] and coupling..52
Scheme 3.5 a) Hypervalent iodine reagent, PIFA 123; and b)-e) selected phenol ether oxidative couplings promoted by PIFA…………………………………………………………..54

Scheme 3.6 The mechanism of phenol ether oxidation by PIFA in the presence of external or internal nucleophiles……………………………………………………….56

Scheme 3.7 Formation of 6-, 7-, and 8-membered fused ring systems by PIFA………57

Scheme 3.8 Proposed retrosynthesis of 148, using an oxidative coupling reaction to form the biaryl bond………………………………………………………………….58

Scheme 3.9 Oxidation of 145 with a various chemical oxidants…………………………58

Scheme 3.10 Conversion of compound 146 to benzyloisoquinoline 149………………61

Scheme 3.11 Preparation of racemic compound 152…………………………………….62

Scheme 3.12 Proposed synthesis of 155 utilising alternate functionalisation of alkene 147c……………………………………………………………………………….63

Scheme 3.13 The proposed oxidation and conversion to isoquinolines of compounds 158, 161 and 164. R = OMe (minimum 1 per aromatic ring), R’ = any alkyl chain, n = 0, 1………………………………………………………………………………………65

Scheme 3.14 The formation and the desired cyclisation of ester 167……………….66

Scheme 3.15 Proposed mechanism for the formation of lactone 146 with PIFA………71

Scheme 3.16 Proposed mechanism for the formation of biphenyl dimer 169A with PIFA………………………………………………………………………………….72

Scheme 3.17 Removing an electron-donating group from one of the aryl rings, relative to 145, varied the outcome of oxidation [O] from cyclisation (ester 145) to dimerisation (esters 167B and 167C) and formation of a quinone (ester 167D). Removing an electron-donating group from both rings prevented oxidation from occurring (ester 167E)………………………………………………………………………………….74
Scheme 3.18 a) The mechanism of quinone formation by PIFA, b) The mechanism of quinone monoacetal formation by PIFA, and c) the formation of spiroannulated compounds by PIFA..76
Scheme 3.19 Mechanistic formation of biphenyl dimer and quinone products by electrochemical oxidation, proposed by Sainsbury et al..............................77
Scheme 3.20 Proposed mechanism for formation of quinones 170D and 170G.........79
Scheme 3.21 The E° values obtained by anodic oxidation of compounds 97, 166G, 175 and 176..81
Scheme 3.22 A schematic representation depicting the results of oxidising acyl-tethered arenes, modified from Dominguez et al.................................84
Scheme 3.23 Oxidant selective conversion of esters 76A-C to dimers and quinones...87
Scheme 3.24 Sainsbury achieved selectivity between products using electrochemical oxidation with different anode voltages.................................88
Scheme 3.25 Parker et al. isolated spirocyclic 183 and cyclised 125 selectively by application of high and low potential to a solution of 124..........................89
Scheme 3.26 Proposed mechanism for formation of dimers and quinones using PIFA or TTFA. R = 3,4-OMe or 3,4,5-OMe. For R = 2,3,4-OMe both PIFA and TTFA formed quinone product...90
Scheme 3.27 Mechanism for the oxidative cleavage of PMB groups by DDQ........93
Scheme 3.28 A comparison of the outcome of oxidising esters 145 and 186F. Formation of a 7-membered ring, 146, is favoured over an 8-membered ring due to the increase in entropy and enthalpy resulting from unfavourable trans-annular interactions...96
Scheme 3.29 Electrochemical oxidation of 186A by Sainsbury et al..................97
Scheme 3.30 Utilisation of amide oxidation in the preparation of polycyclic intermediates of several natural products and the total synthesis of (+)-norgalanthamine ... 98

Scheme 3.31 The oxidations of amides 175, 189 and 194 with [PIFA] where [PIFA] = PIFA, BF$_3$Et$_2$O, MeCN, 10 min ... 99

Scheme 3.32 Oxidative coupling used to generate the fused ring system possessed by phenanthridine and phenanthridone type isoquinolines. Adapted from Dominguez et al ... 101

Scheme 3.33 Transformation of tetrahydrobenzylisoquinoline into aporphine, spirodienone and morphinandienone moieties .. 102

Scheme 4.1 Comparison of the Heck reaction and the analogous Pd-mediated arylation reaction (Path C); Section a) demonstrates the Heck reaction; section b) demonstrates three possible routes to tricyclic biaryl compounds. Paths A and B comprise the coupling of an organometallic fragment with an aryl halide; Path C demonstrates the direct arylation of an aromatic ring ... 106

Scheme 4.2 A simplified mechanistic hypothesis for the arylation reaction. For simplicity ligands, L, have been removed from Pd .. 108

Scheme 4.3 Mechanism proposed by Echavarren et al. for C-H bond activation…… 108

Scheme 4.4 Postulated mechanisms for the Pd-mediated arylation reaction arising from the total synthesis of the Amaryllidaceae alkaloids by Garden et al 109

Scheme 4.5 Formation of 5- and 6-membered rings by Ames et al using arylation…. 111

Scheme 4.6 Use of Pd-mediated arylation in the synthesis of 5-membered fused ring antibiotics ... 112

Scheme 4.7 Use of Pd-mediated arylation in the synthesis of various antibiotics…… 113

Scheme 4.8 Pd-mediated arylation in the synthesis of dibenzocyclooctadienes 114
Scheme 4.9 The ‘lactone concept’ ... 115

Scheme 4.10 Formation of 6- and 7-membered rings by Pd-mediated arylation …… 117

Scheme 4.11 The synthesis of allocolchicine by Pd-mediated arylation……………… 118

Scheme 4.12 Proposed catalytic cycle for the α-arylation of carbonyl compounds.… 119

Scheme 4.13 The synthesis of 4-aryl-1,2,3,4-tetrahydroisoquinoline and
isoindolobenzazepine alkaloids by Honda using the α-arylation of carbonyl
reaction .. 121

Scheme 4.14 Pd-mediated intramolecular coupling of an enolate and vinyl halide
afforded the skeleton of the sarpagine alkaloids in a stereocontrolled manner……… 121

Scheme 4.15 Proposed synthetic pathway utilising Pd-mediated arylation for
isoquinoline preparation .. 123

Scheme 4.16 Preparation of acids 233 and 235 .. 124

Scheme 4.17 Preparation of mono-functionalised esters 237–241 ….................. 125

Scheme 4.18 Synthesis of the benzo[c]chromen-6-one skeleton from esters 237, 239
and 240 using Pd-mediated intramolecular arylation 126

Scheme 4.19 Proposed mechanism for benzo[c]chromen-6-one formation…….. 127

Scheme 4.20 Decomposition of compounds 238 and 241 under Pd-mediated arylation
reaction conditions ... 129

Scheme 4.21 Proposed formation of 246 using conditions developed by Bringmann for
conversion of 250 into the tricyclic 251 .. 130

Scheme 4.22 a) Aminolysis of the dibenzo[b,d]oxepin-6(7H)-one (146) skeleton by 90,
see Chapter 3; and b) the proposed use of Weinreb amide technology to effect the
aminolysis of the benzo[c]chromen-6-one skeleton and conversion of the resultant
amide to a phenylisoquinoline, compound 253 ... 131

Scheme 4.23 Preparation of carboxylic acids 254 and 257 133
Scheme 4.24 Preparation of esters 71, 72, 75 and 77 and their decomposition under Pd-mediated arylation conditions……………………………………………………………………134
Scheme 4.25 The formation of propanoate 264 and the outcome of exposure to Pd-mediated arylation conditions……………………………………………………………………135
Scheme 4.26 Proposed mechanism for the conversion of 264 to compound 265. Ligands on the palladium have been removed for clarity……………………………………………………………………136
Scheme 4.27 The preparation and Pd-mediated arylation of esters 267, 269, 272 and 274…………………………………………………………………………………………139
Scheme 4.28 Proposed competing mechanisms for the formation of dimers and isochromen-3-one under Pd-mediated arylation reaction conditions………………...141
Scheme 4.29 Proposed competing mechanism for the formation of the dimers 270 and 271 from iodide 269. Ligands are not shown for simplicity……………………………….142
Scheme 4.30 Proposed mechanism for the formation of the isochromen-3-one 268 from iodide 267. Ligands are not shown for simplicity…………………………………….143
Scheme 4.31 Formation of the isochroman-3-one skeleton by reaction of an aldehyde with a benzocyclobutenone………………………………………………………………144
Scheme 4.32 Synthesis of the isochroman skeleton as part of a synthetic program towards novel antitumour 1,3-benzodioxole type compounds………………………….145
Scheme 4.33 Use of the Ullmann coupling to make an appropriate biaryl in Kelly’s synthesis of Taspine, and a proposed alternate strategy using Pd-mediated arylation…………………………………………………………………………………147
Scheme 5.1 The Suzuki Reaction………………………………………149
Scheme 5.2 The catalytic cycle for the Suzuki Cross Coupling Reaction…………..150
Scheme 5.3 The reactive intermediates proposed by Amatore and Jutand for the catalytic cycle when (Ph₃P)₂PdCl₂ is the catalyst and S is the solvent……………….152
Scheme 5.4 Proposed roles for base in the transmetallation step of the Suzuki reaction…………………………………………………………………………………………………154

Scheme 5.5 A schematic representation of reductive elimination…………………………………156

Scheme 5.6 The synthesis of boronic acid by lithium-halide exchange……………………..157

Scheme 5.7 The proposed mechanism for formation of arylboronic esters………………….158

Scheme 5.8 The proposed mechanism for base-dependant formation of biaryls………………159

Scheme 5.9 The “one-pot” arylboronate formation/Suzuki cross coupling reaction…………………………………………………………………………………………………159

Scheme 5.10 The application of the Suzuki reaction in the synthesis of insect pheromone 287……………………………………………………………………………160

Scheme 5.11 The cross coupling of intermediates 288 and 289 by Suzuki reaction during the synthesis of palytoxin………………………………………………………162

Scheme 5.12 Sequential Suzuki coupling reactions in the synthesis of Michellamine B…………………………………………………………………………………………163

Scheme 5.13 Chiral induction of biaryl stereochemistry using chromium complexes………………………………………………………………………………………………164

Scheme 5.14 The B-alkyl Suzuki-Miyaura reaction (a), and (b)-(d) other valuable cross-coupling reactions……………………………………………………………………………166

Scheme 5.15 The proposed synthetic pathway utilising the Suzuki coupling for the preparation of phenyl-, benzyl-, and phenylethylisoquinolines possessing a biaryl moiety……………………………………………………………………………………………167

Scheme 5.16 Preparation and Suzuki coupling of iodide 230 and boronate 311………170

Scheme 5.17 Preparation and Suzuki coupling of boronate 315 and iodide 230………173

Scheme 5.18 Mechanism of formation of 2,3,9,10-tetramethoxydibenzo[c,e]oxepin-5(7)-one 317 from biaryl 316………………………………………………………………………174
Scheme 5.19 Formation of phenylisoquinoline 305 from lactone 317………………175

Scheme 5.20 Proximity of the carbonyl to the aromatic ring substantially changes the reactivity towards nucleophiles…………………………………………………………176

Scheme 5.21 a) Bringmann used alkali metals salts to atroposelectively ring open lactones; b) Application of his conditions to lactone 317 failed to afford amide 318…………………………………………………………………………………….178

Scheme 5.22 Ester aminolysis by dimethylaluminium amides……………………………179

Scheme 5.23 Acylation of a Weinreb amide with an organometallic via a metal-chelated intermediate……………………………………………………………………………179

Scheme 5.24 Conversion of lactone 34 into phenylisoquinoline 38……………….180

Scheme 5.25 Preparation of phenylethylisoquinoline 309 from ester 256…………184

Scheme 5.26 Proposed future work based around phenylethylisoquinoline 309……187

Scheme 5.27 Attempted boronate formation………………………………………….187

Scheme 5.28 Alternative synthesis for benzylisoquinoline 308……………………190

Scheme 5.29 Conversion of alcohol 336 to biaryl alcohol 341…………………….191

Scheme 5.30 Proposed mechanism for transformation of alcohol 341 to aldehyde 342…………………………………………………………………………………….192

Scheme 5.31 PCC mediated oxidation of homobenzylic and homoallylic alcohols….193

Scheme 5.32 Conversion of alcohol 341 into amide 345……………………………..195

Scheme 5.33 Sequential oxidation used to prepare acid 347……………………….196

Scheme 5.34 Synthesis of benzylisoquinoline 308 from alcohol 341………………197
List of Tables

Table 2.1 Use of chloride scavengers to suppress chlorination.................................41

Table 3.1 Oxidation of 145 to 146 with a variety of oxidants.................................59

Table 3.2 The synthesis and oxidative coupling of phenyl acetate esters......................67

Table 3.3 The synthesis and oxidative coupling results for esters 179A-E.....................85

Table 3.4 The synthesis and oxidative coupling results of esters, 186A-E.....................92

Table 6.1 Pre-screen cytotoxicity assay for compounds from Chapters 2-5..............201

Table 6.2 IC₅₀ determinations...204

Table 6.3 Anti-HIV results..206

Table 6.4 Anti-HIV activity of anti-HIV Drugs...207

Table 6.5 Anti-bacterial testing results MIC µg/mL..208

Table 6.6 Receptor binding studies % control specific binding...............................210

Table 6.7 Receptor binding studies % inhibition of control specific binding............212
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABq</td>
<td>AB quartet</td>
</tr>
<tr>
<td>AcOH</td>
<td>Acetic Acid</td>
</tr>
<tr>
<td>AgOTFA</td>
<td>Silver Trifluoroacetate</td>
</tr>
<tr>
<td>AlMe₃</td>
<td>Trimethylaluminium</td>
</tr>
<tr>
<td>amu</td>
<td>Atomic mass unit</td>
</tr>
<tr>
<td>Ar</td>
<td>Argon</td>
</tr>
<tr>
<td>BF₃,Et₂O</td>
<td>Borontrifluoride diethyletherate</td>
</tr>
<tr>
<td>Br₂</td>
<td>Bromine</td>
</tr>
<tr>
<td>BRSM</td>
<td>Based on Recovered Starting Material</td>
</tr>
<tr>
<td>bs</td>
<td>Broad singlet</td>
</tr>
<tr>
<td>CI⁺</td>
<td>Chemical Ionisation</td>
</tr>
<tr>
<td>Ce(OH)₄</td>
<td>Cerium(IV) Hydroxide</td>
</tr>
<tr>
<td>CDCl₃</td>
<td>deutero-Chloroform</td>
</tr>
<tr>
<td>CHCl₃</td>
<td>Chloroform</td>
</tr>
<tr>
<td>δ</td>
<td>Delta (Chemical Shift in Parts per million)</td>
</tr>
<tr>
<td>d</td>
<td>Doublet</td>
</tr>
<tr>
<td>dd</td>
<td>Doublet of doublets</td>
</tr>
<tr>
<td>ddd</td>
<td>Double doublet of doublets</td>
</tr>
<tr>
<td>°C</td>
<td>degrees Celsius</td>
</tr>
<tr>
<td>DCC</td>
<td>Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DEPT</td>
<td>Distortionless Enhancement by Polarisation Transfer</td>
</tr>
<tr>
<td>DMA</td>
<td>Dimethylacetamide</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-N,N-Dimethylaminopyridine</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>DMF</td>
<td>Dimethylformamide</td>
</tr>
<tr>
<td>dt</td>
<td>Doublet of triplets</td>
</tr>
<tr>
<td>EDCI</td>
<td>1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride</td>
</tr>
<tr>
<td>EDG</td>
<td>Electron donating group</td>
</tr>
<tr>
<td>EI+</td>
<td>Electron Impact Ionisation</td>
</tr>
<tr>
<td>ES+</td>
<td>Electrospray Ionisation (positive ion mode)</td>
</tr>
<tr>
<td>EtOAc</td>
<td>Ethyl Acetate</td>
</tr>
<tr>
<td>EWG</td>
<td>Electron withdrawing group</td>
</tr>
<tr>
<td>gCOSY</td>
<td>gradient Correlated Spectroscopy</td>
</tr>
<tr>
<td>gHSQC</td>
<td>gradient Heteronuclear Single Quantum Correlation</td>
</tr>
<tr>
<td>gHMBC</td>
<td>gradient Heteronuclear Multiple Bond Correlation</td>
</tr>
<tr>
<td>HCHO</td>
<td>Formaldehyde</td>
</tr>
<tr>
<td>HCl</td>
<td>Hydrochloric acid</td>
</tr>
<tr>
<td>HOBT</td>
<td>1-Hydroxybenzotriazole</td>
</tr>
<tr>
<td>HRMS</td>
<td>High Resolution Mass Spectrometry</td>
</tr>
<tr>
<td>I₂</td>
<td>Iodine</td>
</tr>
<tr>
<td>K₂CO₃</td>
<td>Potassium Carbonate</td>
</tr>
<tr>
<td>KOAc</td>
<td>Potassium Acetate</td>
</tr>
<tr>
<td>LRMS</td>
<td>Low Resolution Mass Spectrometry</td>
</tr>
<tr>
<td>M</td>
<td>Molar (moles / litre)</td>
</tr>
<tr>
<td>m</td>
<td>Multiplet</td>
</tr>
<tr>
<td>MeCN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>MeI</td>
<td>Methyl Iodide</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>MgSO₄</td>
<td>Magnesium Sulfate</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>mL</td>
<td>millilitre</td>
</tr>
<tr>
<td>mmol</td>
<td>milli mol</td>
</tr>
<tr>
<td>m.p.</td>
<td>Melting Point</td>
</tr>
<tr>
<td>MoCl₅</td>
<td>Molybdenum pentachloride</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>[M⁺]</td>
<td>Molecular ion</td>
</tr>
<tr>
<td>[M+H⁺]</td>
<td>Protonated Molecular ion</td>
</tr>
<tr>
<td>m/z</td>
<td>mass/charge ratio</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>µ</td>
<td>micro</td>
</tr>
<tr>
<td>N₂</td>
<td>Nitrogen</td>
</tr>
<tr>
<td>NaBH₄</td>
<td>Sodium Borohydride</td>
</tr>
<tr>
<td>NaCNBH₃</td>
<td>Sodium Cyanoborohydride</td>
</tr>
<tr>
<td>Na₂CO₃</td>
<td>Sodium Carbonate</td>
</tr>
<tr>
<td>NaHCO₃</td>
<td>Sodium Hydrogen Carbonate</td>
</tr>
<tr>
<td>NaOAc</td>
<td>Sodium Acetate</td>
</tr>
<tr>
<td>NEt₃</td>
<td>Triethylamine</td>
</tr>
<tr>
<td>NIS</td>
<td>N-Iodosuccinamide</td>
</tr>
<tr>
<td>¹H NMR</td>
<td>Proton Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>¹³C NMR</td>
<td>Carbon Nuclear Magnetic Resonance</td>
</tr>
<tr>
<td>PCl₅</td>
<td>Phosphorus Pentachloride</td>
</tr>
<tr>
<td>(Ph₃P)₂PdCl₂</td>
<td>Dichlorobis(triphenylphosphine)palladium(II)</td>
</tr>
<tr>
<td>PIFA</td>
<td>Phenyliodine(III) bis(trifluoroacetate)</td>
</tr>
<tr>
<td>PS</td>
<td>Petroleum Spirit (b.p. 40-60 °C)</td>
</tr>
<tr>
<td>q</td>
<td>Quartet</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>RT</td>
<td>Room Temperature</td>
</tr>
<tr>
<td>SM</td>
<td>Starting Material</td>
</tr>
<tr>
<td>s</td>
<td>Singlet</td>
</tr>
<tr>
<td>t</td>
<td>Triplet</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>TTFA</td>
<td>Thallium(III) trifluoroacetae</td>
</tr>
<tr>
<td>VOF$_3$</td>
<td>Vanadium Oxyfluoride</td>
</tr>
</tbody>
</table>
Declaration

I, Stephen Roy Taylor, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the Department of Chemistry, University of Wollongong, is wholly my own work unless due reference is provided. This document has not been submitted for qualifications at any other academic institution.

Stephen Roy Taylor

January, 2006
ABSTRACT

This thesis examines the preparation of phenyl-, benzyl-, bisbenzyl- and phenylethylisoquinolines possessing a biaryl moiety, based on the structures of reticuline and laudanosine. The synthetic strategy involves the formation of an appropriately protected biphenyl unit followed by construction of the isoquinoline unit by converting the biphenyl into a 2-[3,4-dimethoxyphenyl]ethylamide, cyclising the amide under Bischler-Napieralski cyclisation conditions and reducing the resulting imine under conditions that will also reductively methylate the isoquinoline nitrogen.

In Chapter 2, the bisbenzylisoquinoline 49 was the primary synthetic target. Formation of the biphenyl moiety was investigated using the Ullmann coupling reaction of halides 89 or the oxidative coupling of ester 97 to form the symmetrical biphenyl 94. The Ullmann reaction proved to be the best method for preparing dimer 94, isolated in 69 % yield. Oxidative formation of 94 was achieved with a best yield of 55 % with MoCl₅ as the oxidant, however a chlorinated side product was also observed. Following formation of 94, the isoquinoline rings of 49 were built up by formation of the bisamide 100, which cyclised under Bischler-Napieralski to an unstable bisimine. Reduction afforded diastereomeric amines 102, separable by silica gel column chromatography, and reductive methylation of the major diastereomer afforded the bisbenzylisoquinoline 49. Compounds 102 and 49 were subjected to biological assay and found to be poorly biologically active. Our synthetic effort then turned to the preparation of phenyl-, benzyl, and phenylethylisoquinolines each possessing a biaryl moiety. Oxidative coupling, Pd-mediated arylation and the Suzuki cross-coupling reaction were selected as methods for biaryl bond formation, after which we could elaborate the isoquinoline skeleton.
The focus of Chapter 3 was the formation of the biaryl bond by oxidative coupling. Ester 145 was selected as the substrate to optimise the oxidation conditions. The hypervalent iodine reagent PIFA proved the most efficient oxidant, yielding the desired biaryl product 146 in 85% under mild reaction conditions. Nucleophilic ring opening of biaryl lactone 146, hydroxyl protection, Bischler-Napieralski cyclisation and reductive amination afforded benzylisoquinolines 149 and 152. A series of aromatics, linked by an ester tether were prepared, and subjected to oxidation with PIFA. In most cases intramolecular biaryl bond formation failed to occur, largely due to the difference in electron density of the tethered aromatics. Rather, intermolecular dimerisation occurred. Dimers possessing hydroquinone character subsequently oxidised to quinones, while esters possessing a \(p \)-methoxy substitution pattern were uniformly cleaved in a DDQ type fashion.

In Chapter 4 our attention turned to the preparation of biaryl lactones using the Pd-mediated arylation of mono-iodinated aromatics, tethered to an electron rich aromatic by an ester tether. The tether was constructed at specific lengths, such that the biaryl lactone formed would be either a 6-, 7-, or 8-membered fused ring system following biaryl bond formation. Heating of our monoiodinated esters with Pd(II) and a base in DMA in a sealed tube revealed formation of 6-membered rings to be the favoured outcome, particularly when the halogenated ring also possessed an electron withdrawing substituent, thereby increasing the electrophilic nature of the palladium species following oxidative insertion into the aryl halide bond. Biaryl lactones 242, 243 and 245 were prepared under these conditions, however the lactone stability to aminolysis has prevented their conversion into phenylisoquinolines. Increasing the tether length by one methylene carbon revealed the fragility of phenol derived esters as compounds 258, 260, 262 and 263 all decomposed under the reaction conditions, preventing the
formation of 7-membered lactones by this methodology. Increasing the tether length by a second methylene carbon revealed a propensity to form a Pd-enolate, resulting in the formation of cinnamate 265 and isochromans 268 and 275. The chemistry presented in Chapters 3 and 4 revealed some interesting results, however the oxidative coupling and Pd-mediated arylation reactions described did not offer a systematic methodology for the preparation of various isoquinolines possessing a biaryl moiety.

In Chapter 5 the Suzuki cross coupling reaction was selected as the method of biaryl bond construction. Electron rich aryl halides 314, 325, and 340 were converted to aryl boronates with bis(pinacolato)diboron in the presence of a Pd catalyst. Boronates 315, 326 and 337 were cross-coupled with the electron deficient iodide 230 in uniformly good yields to furnish biaryls 316, 327 and 338, respectively. Deprotection of biaryl 316 afforded lactone the 317, a compound requiring AlMe₃ assisted (Weinreb technology) aminolysis with amine 90. Alcohol protection, Bischler-Napieralski cyclisation and reductive amination afforded phenylisoquinoline 323. Amide boronate 326 cross-coupled exceptionally well with 230 after which Bischler-Napieralski cyclisation and reductive amination afforded the phenylethylisoquinoline 309. Deprotection of biaryl 338 revealed a primary alcohol that required a 2-step oxidation, Dess-Martin periodinane and then NaClO₂, to generate the carboxylic acid precursor of the benzylisoquinoline 308. Amide formation, cyclisation and reductive amination converted acid 339 into the benzylisoquinoline 308 in respectable yield.

Final compounds and strategic intermediates prepared in Chapters 2-4 were subjected to biological assay. These compounds were tested against 3-cancer cell lines for cytotoxicity in addition to assessment for anti-HIV activity, anti-microbial activity and CNS receptor binding potency. Chapter 6 presents the results of the biological data collected. Unfortunately, each of the compounds assessed were not active enough to
warrant further investigation as therapeutic agents, or were totally inactive. We are yet to submit isoquinolines 308, 309 and 323, prepared in Chapter 5, for biological assay.